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ABSTRACT

In the first part of this study, Jones et al. compared the relative skill of assimilating simulated radar

reflectivity and radial velocity observations and satellite 6.95-mm brightness temperatures TB and found that

both improved analyses of water vapor and cloud hydrometeor variables for a cool-season, high-impact

weather event across the central United States. In this study, the authors examine the impact of the obser-

vations on 1–3-h forecasts and provide additional analysis of the relationship between simulated satellite and

radar data observations to various water vapor and cloud hydrometeor variables. Correlation statistics showed

that the radar and satellite observations are sensitive to different variables. Assimilating 6.95-mm TB primarily

improved the atmospheric water vapor and frozen cloud hydrometeor variables such as ice and snow. Radar

reflectivity proved more effective in both the lower and midtroposphere with the best results observed for

rainwater, graupel, and snow. The impacts of assimilating both datasets decrease rapidly as a function of forecast

time. By 1h, the effects of satellite data become small on forecast cloud hydrometeor values, though it remains

useful for atmospheric water vapor. The impacts of radar data last somewhat longer, sometimes up to 3h, but

also display a large decrease in effectiveness by 1h. Generally, assimilating both satellite and radar data si-

multaneously generates the best analysis and forecast for most cloud hydrometeor variables.

1. Introduction

Prior studies have shown that assimilating satellite

and surface-based radar remote sensing observations

using advanced data assimilation methods improves the

analysis and forecast accuracy of numerical weather pre-

diction (NWP) models with mesoscale (e.g., Vukicevic

et al. 2004; Otkin 2010, 2012a,b; Jones et al. 2013a) and

convective scale (e.g., Vukicevic et al. 2006; Dowell et al.

2010, 2011; Polkinghorne and Vukicevic 2011; Jones

et al. 2013b) resolutions. Satellite and radar data con-

tinuously sample the atmosphere at high spatial and

temporal resolutions, beyond that possible from con-

ventional observations such as radiosondes and surface

stations. Assimilating radar and satellite observations

separately has led to an increase in model skill for a va-

riety of scales and atmospheric conditions; however, few

studies have investigated the impact of their simulta-

neous assimilation.

Satellite sensors such as the Geostationary Opera-

tional Environmental Satellite (GOES) Imager and its
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successor, the Advanced Baseline Imager (ABI) to be

included on GOES-R, sample top-of-the-atmosphere

radiances in the visible, shortwave, and longwave in-

frared spectrums (Schmit et al. 2005). Assimilating

radiances directly into NWP models using a radiative

transfer model (RTM) is now common practice in

operational global and continental-scale models with

radiances accounting for the largest portion of the data

volume (Moreau et al. 2004; Weng et al. 2007; English

and Une 2006). Retrievals of temperature and hu-

midity profiles from multispectral sounding instru-

ments are also considered an important source of

satellite data in NWPmodels (Li and Liu 2009; Liu and

Li 2010). Assimilating either form of satellite data

improves the characterization of the atmosphere in the

model, especially in otherwise data-sparse regions

such as over the oceans (e.g., Andersson et al. 1991;

Mo et al. 1995; Derber and Wu 1998; Bouttier and

Kelly 2001; Chevallier et al. 2004; McNally et al. 2006;

Le Marshall et al. 2006; Xu et al. 2008; McCarty et al.

2009; McNally 2009; Collard and McNally 2009).

Several assimilation techniques have been employed

and include 3D and 4D variational methods (Rodgers

2000; McNally et al. 2000; Bouttier and Kelly 2001;

Chevallier et al. 2004; McNally et al. 2006; Le Marshall

et al. 2006; McCarty et al. 2009; McNally 2009; Collard

and McNally 2009) as well as ensemble Kalman filter

approaches (Vukicevic et al. 2006; Reale et al. 2008;

Otkin 2010, 2012a,b; Stengel et al. 2010; Seaman et al.

2010; Jones et al. 2013a). The latter have proven par-

ticularly effective at assimilating satellite data since

they are able to provide a flow-dependent and dynami-

cally evolving estimate of the background error co-

variance (Kalman 1960; Evensen 1994; Heemink et al.

2001; Aksoy et al. 2009, 2010).

Surface based radars, such as the Weather Surveil-

lance Radar-1988 Doppler (WSR-88D), provide valu-

able information about storm-scale winds and cloud

and precipitation properties as inferred from 3D vol-

ume scans of radar reflectivity and radial velocity

(Crum and Alberty 1993). Various cloud microphysical

properties, such as phase, particle size, and number

concentration can be inferred from the reflectivity data

while their motion relative to the radar is sampled using

radial velocity. During the past decade, many studies

have examined the potential for assimilating radar data

into storm-scale NWP models to improve the repre-

sentation of convective precipitation within the model

analysis (e.g., Weygandt et al. 2002; Snyder and Zhang

2003; Zhang et al. 2004; Xiao et al. 2005; Stensrud et al.

2009; Aksoy et al. 2009, 2010; Dowell et al. 2010, 2011).

Many of these studies employ high-resolution (,5 km)

grids that explicitly resolve the precipitation features

using variational techniques (e.g., Gao et al. 1999,

2004; Weygandt et al. 2002; Xiao et al. 2005; Gao and

Stensrud 2012). Additional studies have focused on

using an ensemble approach (Snyder and Zhang 2003;

Zhang et al. 2004; Aksoy et al. 2010; Yussouf and

Stensrud 2010; Dowell et al. 2011). Results have shown

that assimilating radar data using either technique

improves the characterization of convection and the

near-storm environment within these high-resolution

models.

Jones et al. (2013a) assimilated satellite brightness

temperatures TB and radar reflectivity and radial ve-

locity data using an observing system simulation ex-

periment (OSSE) for a cold-season case study occurring

on 24 December 2009. The results indicated that as-

similating satellite brightness temperatures TB reduced

errors for mid- and upper-tropospheric water vapor

mixing ratio as well as frozen cloud hydrometeor vari-

ables. Impacts were smaller in the lower troposphere

because of reduced sensitivity for the satellite observa-

tions. Radar data generally had a larger positive impact

than the satellite data, primarily due to the much

higher-resolution vertical profile information. As a re-

sult, improvements to humidity and cloud hydrometeor

variables were observed at all atmospheric levels with

Doppler radial velocity information also resulting in

a significant reduction in wind velocity errors. Assimi-

lating both satellite and radar data generally produced

the most accurate cloud and thermodynamic analyses,

indicating that both are providing unique information

to the model.

Jones et al. (2013a) primarily focused on the analysis

accuracy obtained after 1 h of assimilating satellite and

radar observations. In this study, their results are ex-

tended to include additional analysis to determine the

potential impact of assimilating each dataset on specific

cloud-related state variables. Results presented herein are

computed using the experiments described in Jones et al.

(2013a), starting at the final analysis time of 1200 UTC

24 December and continuing over a 3-h forecast period

to 1500 UTC. The introduction is followed by a discus-

sion of the truth simulation and corresponding simu-

lated observations in section 2. Section 3 discusses the

overall experiment design while section 4 provides an

analysis of correlations between simulated remote

sensing products with water vapor and cloud hydrome-

teor variables. Section 5 summarizes the results found by

Jones et al. (2013a). Section 6 discusses the comparison

of moisture and cloud hydrometeor forecasts between

truth and each experiment as a function of time. Section 7

shows a similar comparison using simulated satellite TB

and radar reflectivity. Section 8 summarizes the results

and provides the conclusions.
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2. Truth simulation and simulated observations

a. Simulation characteristics

A truth simulation depicting the evolution of a strong

midlatitude cyclone and associated precipitation across

the central United States on 24 December 2009 was

generated using the Advanced Research Weather Re-

search and Forecasting Model (ARW-WRF), version

3.3 (Skamarock et al. 2008), hereafter labeled as

‘‘truth.’’ Global 0.58 Final Analyses (FNL) provide ini-

tial and boundary conditions for the simulation starting

at 0000 UTC 23 December 2009 on a continental U.S.

(CONUS) domain with 6-km horizontal grid spacing

(1100 3 750) and 52 vertical levels (Fig. 1), which is

integrated over the next 48 h and output at 5-min in-

tervals. The truth simulation uses the WRF single mo-

ment 6-classmicrophysics scheme (Hong and Lim 2006),

the Yonsei University planetary boundary layer scheme

(Hong et al. 2006), the Kain–Fritsch cumulus parame-

terization scheme (Kain and Fritsch 1993; Kain 2004),

and the Rapid Radiative Transfer Model (RRTM)

longwave and shortwave radiation schemes (Iacono

et al. 2008) to parameterize subgrid-scale processes. The

Noah land surface model is used to compute surface

heat and moisture fluxes.

b. Simulated observations

Simulated observations are generated from truth for

observation types representing conventional, satellite,

and radar data. Conventional observations include those

from Automated Surface Observing System (ASOS),

Aircraft Communications Addressing and Reporting

System (ACARS), and radiosonde instruments. Obser-

vation types include temperature, humidity, wind speed

and direction, and surface pressure observations. Obser-

vation errors are drawn from uncorrelated Gaussian error

distributions that are based on a given sensor’s accuracy.

Simulated infrared 6.95-mm TB are computed using

the Successive Order of Interaction (SOI) forward ra-

diative transfer model developed by Heidinger et al.

(2006). This band is sensitive to water vapor content in

the mid- and upper troposphere. The simulated ABI

observations are computed every 5min on the 6-km

truth grid, which are then averaged to a 30-km resolu-

tion prior to assimilation. Synthetic WSR-88D re-

flectivity and radial velocity observations are generated

from the truth simulation for 13 radar locations in the

south-central United States (Fig. 1) at 5-min intervals

from 1100 to 1200 UTC 24 December 2009 using the

radar simulator contained within the Data Assimilation

Research Testbed (DART) software (Anderson et al.

2009). Observations are obtained using the volume

coverage pattern (VCP) 21WSR-88D scan strategy with

a 68 in azimuthal increment (Crum and Alberty 1993).

Simulated radar gate length is set at 15 km, with the

closest and farthest gates at 3 and 240 km, respectively.

Further details of the truth simulation and correspond-

ing observations are available in Jones et al. (2013a).

3. Experiment design

The experiment design closely follows that previously

laid out byOtkin et al. (2011) and Jones et al. (2013a). In

summary, a 48-member WRF ensemble with perturbed

initial and lateral boundary conditions is generated from

Global Forecast System (GFS) analysis fields at 6-h in-

tervals starting at 0000 UTC 23 December 2009. The

assimilation experiments employed the same vertical

resolution (52 levels) and physics options as the truth

simulation, but were performed over a smaller spatial

domain containing 15-km horizontal grid spacing (2723
216 grid points) (Fig. 1). The ensemble freely evolves

starting at 0000 UTC 23 December and continues until

0900 UTC 24 December. Beginning at 0900 UTC, sim-

ulated conventional temperature, wind, and surface

pressure observations are assimilated at 5-min intervals

until 1100 UTC 24 December.

At 1100 UTC, four assimilation experiments are ini-

tiated, with observations assimilated every 5min until

1200 UTC. The first experiment represents the control

case (CONV) inwhich only conventional observations are

assimilated (Table 1). Other experiments are performed

in which simulated ABI 6.95-mm TB are assimilated

FIG. 1. Domains used in this study: domain 1, truth simulation;

domain 2, forecast model; and domain 3, verification. All domains

have a horizontal resolution of 15 kmwith 52 vertical levels. The 13

WSR-88Ds simulated are located within the verification domain.
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across the entire CONUS domain and WSR-88D re-

flectivity and radial velocity were assimilated from 13

radar locations across the southern plains, in addition

to conventional observations. These experiments are

referred to as SAT and RAD, respectively. The final

experiment (RADSAT) combines both satellite and

radar data with conventional observations to assess

their combined impact. Building on the Jones et al.

(2013a) study that focused on the data assimilation

period, in this study, the forecast impact is examined

for each experiment. Short-range ensemble forecasts

are performed using the final ensemble analyses for

each experiment for a 3-h period starting at 1200 UTC.

Figure 1 shows the assimilation and verification do-

mains used for this study.

4. Observation correlation analysis

As discussed in the introduction, Jones et al. (2013a)

showed that assimilating ABI 6.95-mm TB andWSR-88D

reflectivity and radial velocity observations produced

more accurate model analyses at 1200 UTC, with the

greatest impacts observed in the water vapor and cloud

hydrometeor mixing ratios in the mid- and upper tro-

posphere. To more closely examine these results, the

sensitivity of satellite and radar observations to the

water vapor and cloud fields as a function of height is

explored in this section through a correlation analysis.

Correlations are computed using the satellite and radar

observations located within the verification domain

(refer to Fig. 1) at 1200 UTC and the corresponding

water vapor and cloud hydrometeor fields from the truth

simulation. Data from the truth simulation are used for

this analysis rather than the first guess from the assimi-

lation experiments to eliminate the influence of locali-

zation and sampling errors on the correlations, as well as

to remove smoothing artifacts introduced when calcu-

lating the ensemble mean. The correlations derived from

the truth simulation should be representative of the im-

pact of the remote sensing data on the various hydro-

meteor variables.

Figure 2a shows the correlation between the water

vapor mixing ratio (QVAPOR) as a function of height

and simulated ABI 6.95-mm TB from the truth simula-

tion. As expected, the variables are inversely related

over most of the troposphere, with colder TB corre-

sponding to higher QVAPOR values because the peak

of the weighting function profile occurs higher in the

atmosphere with increasing water vapor content (refer

to Fig. 3a in Jones et al. 2013a). Comparing clear- and

TABLE 1. Observation types assimilated into each experiment.

Expt Observation types

CONV Conventional observations only (ASOS,

ACARS, raob)

SAT Conventional1 6.95-mmABI clear and cloudy

radiances

RAD Conventional 1 radar reflectivity and radial

velocity

RADSAT Conventional 1 radar 1 satellite

FIG. 2. (a) Correlation between simulatedABI 6.95-mmTB andwater vapormixing ratio (QVAPOR) as a function

of height for all, clear, and cloudy observations in the verification domain at 1200 UTC from the truth simulation.

(b) Correlation between 2- and 6-km simulated radar reflectivity where reflectivity is .0 dBZ.
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cloudy-sky samples reveals that both have similar cor-

relation profiles though their magnitudes are somewhat

less than the combined sample (Fig. 2a). Cloudy model

grid points are defined as those where the total in-

tegrated column combined liquid and frozen cloud

mixing ratios is .0.01 g kg21. Overall, the correlation

between clear-sky TB and QVAPOR is lower than for

cloudy-sky observations, which is somewhat surprising.

One potential explanation is that the cloudy-sky sample

size is over 6 times larger than the clear-sky sample

(5790 vs 851); thus, outliers have a greater impact on the

latter. A scatterplot of 500-hPa QVAPOR and 6.95-mm

TB indicates this to be the case with the clear sample

generally confined to TB . 240K and QVAPOR ,
1.0 g kg21 (Fig. 3). However, several outliers are present

in the clear sample where QVPAOR . 1.0 g kg21, re-

ducing the overall magnitude of the correlation, also

evident by their distance from the best-fit linear re-

gression line. The cloudy sample is somewhat noisy, but

also has the much larger sample size. In cloudy-sky

regions, there will also typically be a deeper saturated

layer beneath the cloud top, thereby increasing corre-

lations between 6.95-mm TB and the water vapor field

over a greater depth of the atmosphere.

Simulated radar reflectivity observations also show

a strong correlationwithQVAPOR, though themaximum

values are generally less than for satellite data (Fig. 2b).

The statistics are computed using radar reflectivity at

2-km and 6-km AGL to determine if there is sensitivity

to the observation height. Only those observations with

a reflectivity.0 dBZ are used. Overall, radar reflectivity

and QVAPOR are positively correlated, indicating that

higher reflectivity corresponds to higher QVAPOR

values. Correlations are maximized near 600 hPa for the

2-km observations and near 500 hPa for the 6-km re-

flectivity observations. Higher correlations occur at

most levels for the 6-km observations, indicating a closer

relationship between radar reflectivity and water vapor,

possibly because of less spatial variability at higher

levels. Despite radar reflectivity not being directly sen-

sitive to atmospheric water vapor aside from assumed

saturation in the presence of clouds, modest correlations

exist throughout the troposphere. Because radar re-

flectivity is sensitive to precipitating hydrometeors, the

relatively high correlations are likely due to the pres-

ence of saturated cloud layers both above and below

the precipitation, similar to that found for the satellite

observations in Fig. 2a. As a result, high reflectivity

corresponds to higher atmospheric water vapor content

indicating that assimilating radar reflectivity can also

improve the QVAPOR analysis. The most direct re-

lationship remains with the 6.95-mm TB generating

higher correlations in the midtroposphere compared to

radar reflectivity.

Figure 4a shows the correlation between simulated

6.95-mm TB and radar reflectivity and various cloud hy-

drometeor variables present in the model analysis. The

total cloud hydrometeor mixing ratio (QALL) is defined

as the summation of cloud liquid water (QCLOUD),

cloud ice (QICE), graupel (QGRAUP), snow (QSNOW),

and rain (QRAIN) mixing ratios (Otkin 2010; Jones

et al. 2013a). This variable was created to provide a

measure of the effects of assimilating both satellite and

radar data on the bulk characteristics of the cloud field.

Inspection of Fig. 4a shows that substantial differences

exist in the correlation profiles for the 6.95-mm TB ob-

servations. The highest correlations exist for QICE and

QSNOW, with the maximum values occurring in the

mid- and upper troposphere. Correlations for QGRAUP

and especially QCLOUD are generally lower. Inter-

estingly, the correlation between QRAIN and 6.95-mm

TB is surprisingly large below 700 hPa, indicating a

modest sensitivity to liquid raindrops (Fig. 3). It is un-

likely that 6.95-mm TB are sensitive to these drops di-

rectly, but instead suggests a closer relationship between

higher ice and snow concentrations aloft, which are di-

rectly sensed from the satellite, and precipitating hy-

drometeors in the lower troposphere. These results

indicate that assimilating 6.95-mm TB should have its

greatest impact on the snow and ice variables with

a potential impact on rain, which is consistent with the

findings of Jones et al. (2013a). Last, nearly constant

correlations around ;0.5 occur throughout the depth of

FIG. 3. Scatterplot of clear (green) and cloudy (purple) ABI

6.95-mmTB andwater vapormixing ratio (QVAPOR) at 500 hPa at

1200UTC from the truth simulation. Best-fit linear regression lines

are overlaid for both clear and cloudy samples.
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the troposphere for QALL, with lower TB corresponding

to higher cloud mixing ratios, similar to that present for

QVAPOR.

Correlation profiles between the cloud species and

2- and 6-km radar reflectivity observations are shown

in Figs. 4b,c. The correlations are generally positive

indicating that higher reflectivity correspond to larger

hydrometeor mixing ratio values. The correlation

between 2-km reflectivity and QALL is.0.5 from the

surface to 400 hPa. Below 800 hPa, QRAIN accounts

for much of this correlation. This is expected since

radar reflectivity is more sensitive to rain than to the

other hydrometeor species. Above 800 hPa, the cor-

relations increase for QGRAUP and QSNOW due

to the presence of more frozen hydrometeors aloft.

As with 6.95-mm TB, the correlation between re-

flectivity and QCLOUD is generally lowest. Correla-

tion profiles for the 6-km reflectivity observations

show similar characteristics (Fig. 4c), with the primary

difference being that larger correlations occur and

are maximized higher in the atmosphere. The higher

QALL correlations in the upper troposphere are pri-

marily due to the higher QSNOW correlation since

at 6-km radar reflectivity is primarily sensing snow

hydrometeors.

In summary, the relatively high correlations indicate

that satellite and radar reflectivity observations should

have a significant impact on water vapor and cloud hy-

drometeor variables when assimilated. In particular, the

satellite data should be most effective with improving

the QICE and QSNOW fields in the mid- and upper

troposphere, while radar is likely to have greater im-

pacts on QRAIN, QGRAUP, and QSNOW through-

out the atmospheric column.

5. Comparison with 1200 UTC assimilation results

Jones et al. (2013a) provided a thorough analysis of

the effects of assimilating simulated satellite and radar

data between 1100 and 1200 UTC with an emphasis

placed on the final analysis at 1200 UTC. The results of

that work are summarized here for reference and in the

context of the correlation statistics described above. All

experiments show a moist bias between the surface and

700 hPa with a smaller dry bias above at 1200 UTC

(Fig. 5a). SAT reduces the magnitude of the bias in this

lower layer, but also increases RMSD slightly compared

to CONV, which is consistent with the low correlation

between QVAPOR and 6.95-mm TB in the lower at-

mosphere observed in Fig. 2a. In the midtroposphere

where the magnitude of the correlation is higher, SAT

lowers RMSD compared to CONV. The RAD experi-

ment also reduces RMSD compared to CONV from 900

up to at least 400 hPa above which moisture concentra-

tions and correlations between QVAPOR and radar

reflectivity are small (Figs. 2a and 5a). Most of the im-

provement in QVAPOR error can be attributed to as-

similating radar reflectivity rather than radial velocity

because it is more strongly correlated to atmospheric

moisture content (not shown).

Strong correlations between QALL and both remote

sensing observation types (Fig. 4) translate into re-

ductions in RMSD at several model levels depending on

whether satellite or radar data are being assimilated

(Fig. 6). SAT produces the greatest reduction in RMSD

in the 700–300-hPa layer generally corresponding to

the levels of maximum correlation (Figs. 4a and 6a).

RAD reduces RMSD compared to SAT (and CONV)

at all levels consistent with its higher correlation values

FIG. 4. As in Fig. 2, but for cloud hydrometeor variables (QALL, QCLOUD, QRAIN, QGRAUP, QICE, and QSNOW) correlated with

(a) ABI 6.95-mm TB, (b) 2-km radar reflectivity, and (c) 6-km radar reflectivity.
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(0.6 vs 20.4, Figs. 4a and 6a). QCLOUD from CONV

and SAT have almost identical RMSD profiles in-

dicating that the assimilation of 6.95-mm TB have little

impact, which is consistent with the low correlation

found between these two variables (Figs. 2b and 6b).

Radar reflectivity is also weakly correlated to QCLOUD,

but it does manage to reduce RMSD compared to

CONV by 0.03 g kg21. QRAIN has a high correlation

with radar reflectivity (Figs. 4b,c); thus, RAD reduces

RMSD compared to CONV below 600 hPa where liquid

water drops are present (Fig. 6c). The modest correla-

tion with satellite TB is also apparent through a small

but consistent reduction in RMSD for SAT compared

to CONV (Figs. 2b and 6c). For QGRAUP, biases are

near zero at most levels for all experiments with RMSD

errors maximized at the 650-hPa level (Fig. 6d). A small

decrease in RMSD occurs in SAT compared to CONV

between 650 and 400 hPa. The correlation between sat-

ellite TB and QGRAUP is maximized near 700 hPa, but

the maximum value is only20.4 (Fig. 4a). In the case of

RAD, QGRAUP RMSD is reduced by nearly half

compared to the CONV value in the midtroposphere

(Fig. 6e). High correlations exist between radar reflec-

tivity (especially at 6 km) and QGRAUP at these levels

suggesting the positive impact observed in the error

calculations.

For the QICE field, SAT should have its greatest

impact near 400 hPa corresponding to correlation values

of at least 20.7 (Fig. 2a). The reduction in RMSD in

SAT compared to CONV indeed is maximized at these

levels (Fig. 6e). For RAD, the picture is somewhat more

complex owing to the negative correlations between

QICE and radar reflectivity in the lower half of the at-

mosphere (Figs. 4b,c). As a result, RAD only shows

marginal skill compared to CONV at these levels, which

improves with height as the correlations become positive.

Finally, large differences are present in QSNOW with

the maximumRMSD reduction occurring at 500 hPa for

FIG. 5. Vertical profile of bias (‘‘B’’) and RMSD (‘‘R’’) for QVAPOR at (a) 1200, (b) 1300, (c) 1400, and

(d) 1500 UTC representing the analysis time and 1-, 2-, and 3-h forecast, respectively.
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both SAT and RAD (Fig. 6f). This corresponds well to

the levels of maximum correlation between QSNOW

and satellite TB or radar reflectivity. The higher corre-

lation coefficient for radar reflectivity corresponds with

a larger reduction in RMSD for RAD compared to SAT

(Fig. 6f).

6. Forecast moisture and cloud errors

a. Water vapor mixing ratio (QVAPOR)

Results from Jones et al. (2013a) indicate that assim-

ilating ABI 6.95-mm TB and WSR-88D reflectivity had

positive impacts on moisture and cloud hydrometeor

variables in the analysis. Here, we examine the forecast

accuracy of these variables for a 3-h forecast period

starting at 1200 UTC 24 December. Ensemble forecasts

are performed for each experiment using the final en-

semble analyses obtained at the end of the assimilation

period.

Figure 7a shows time series of ensemble mean 500-hPa

QVAPOR bias and RMSD for each experiment.

Throughout the forecast period, CONV contains the high-

est RMSD with SAT providing a consistent 0.02 g kg21

improvement. Assimilating radar data initially reduces

RMSD up to 0.05 g kg21 at 1200 UTC, but the impact

decreases to 0.025 g kg21 by 1500 UTC. The RADSAT

experiment performs best at all times, indicating that the

superior analysis accuracy achieved when both datasets

are assimilated persists during the forecast period. All

experiments show a small dry bias at 1200 UTC, which

slowly changes to a wet bias later in the forecast pe-

riod. Assimilating either satellite or radar data ap-

pears to dry the midtroposphere compared to CONV

producing lower bias and RMSD at the end of the fore-

cast cycle.

In the lower troposphere (Fig. 8a), RMSD are

;0.05 g kg21 larger during the SAT case compared

to CONV at all forecast times, which indicates that

6.95-mm TB assimilation has a negative forecast impact

here (Fig. 8a). Conversely, RAD lowersRMSDa similar

amount compared to CONV indicating that radar data

continue to provide useful information near the surface.

These results are consistent with the tendency for the

satellite observations to be most sensitive to clouds and

water vapor in the mid- and upper troposphere, whereas

radar observations are sensitive to features throughout

the troposphere due to their greater 3D coverage.

The vertical distributions of bias and RMSD for water

vapor averaged over the verification domain are shown

in Figs. 5b,c,d for the 1-, 2-, and 3-h forecast times, re-

spectively. These figures show that the forecast impact

FIG. 6. Vertical profile of bias (‘‘B’’) and RMSD (‘‘R’’) for (a) QALL, (b) QCLOUD, (c) QRAIN, (d) QGRAUP, (e) QICE, and

(f) QSNOW calculated over the verification domain for each experiment at 1200 UTC 24 Dec.
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of satellite and radar data assimilation varies greatly as

a function of height and time. At 1300 UTC, the bias

profiles for all experiments remain similar to those

found at 1200 UTC with a small moist bias centered

around 800 hPa and a smaller dry bias maximized near

600 hPa (Fig. 6b). The SAT experiment contains higher

RMSD than CONV below 700 hPa with improvements

confined to higher levels, consistent with the time series

in Figs. 7 and 8. By 1500 UTC, the dry bias above 600hPa

had disappeared; however, the low-level moist bias

persists (Fig. 6d). At this time, the vertical profile of

RMSD below 700 hPa loses its smooth nature with

larger errors values than the 1-h forecast. One result that

is clear is that the effects of assimilating both datasets

are apparent out to at least a 3-h forecast. However, the

negative impact of satellite data assimilation below

700 hPa indicates a need for better low-level moisture

information from satellite observations.

FIG. 7. Time series of bias (‘‘B’’) (experiment2 truth) and RMSD (‘‘R’’) for (a) 500-hPa water vapor mixing ratio (QV500), (b) total

cloud water mixing ratio (QA500), (c) graupel mixing ratio (QG500), (d) cloud ice mixing ratio (QI500), and (e) snow mixing ratio

(QS500) between 1200 and 1500 UTC 24 Dec. Bias and RMSD statistics are calculated within the verification domain only.

FIG. 8. As in Fig. 7, but calculated for 850-hPa data. Ice and snow mixing ratios at this level are small and replaced with (d) cloud liquid

water mixing ratio (QC850) and (e) rain mixing ratio (QR850).
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b. Total cloud water mixing ratio (QALL)

Figure 7b shows the time series of bias and RMSD for

QALL at 500 hPa for the 3-h forecast period. Bias is

small for all experiments, showing a transition from

slightly too dry to slightly too wet with time, consistent

with the QVAPOR results. Although the SAT experi-

ment improved the QALL analysis at 1200 UTC,

its impact becomes insignificant 1 h into the forecast

(Fig. 7b), with CONV and SAT producing similar

RMSD values (;0.34 g kg21). The RAD experiment

contains lower RMSD than CONV at all forecast times,

but the improvement also decreases quickly as a function

of time. The RADSAT experiment, however, remains

themost accurate case at all times despite the detrimental

impacts of the satellite data after the 1-h forecast, sug-

gesting that the radar observations may be constraining

errors introduced by the satellite observations. The

high-resolution cloud characteristics added to the model

analysis by assimilating these data are apparently lost

during the forecast period as the ensemble members

begin to diverge, washing out the high-resolution detail

in the ensemble mean. This is consistent with the results

shown in Otkin (2012b) for the same case study. Similar

error characteristics were observed at 850 hPa, but with

SAT only producing a small decrease in RMSD even

at 1200 UTC (Fig. 8b). After 1300 UTC, SAT becomes

slightly worse than CONV while the improvement from

assimilating radar data also disappears by the end of the

3-h forecast period. These results indicate that both

datasets have less impact on the lower-level, liquid

phase clouds.

Vertical profiles of bias and RMSD for QALL at 1300

and 1500 UTC are shown in Figs. 9a and 10a. For all

experiments the bias is generally small at all levels. At

1300UTC, SAT has slightly smaller RMSD than CONV

between 650 and 500 hPa with limited improvements

elsewhere. Much smaller errors occurred during RAD

with improvements spread over a larger vertical depth.

By 1500 UTC, no improvements are evident in the SAT

case, with larger RMSD occurring at some levels

(Fig. 10a). Some improvements are maintained during

the RAD experiment, though again the magnitude has

decreased substantially. In summary, the results indicate

that assimilating 6.95-mm TB does not provide a long

lasting forecast impact during this case study, whereas as-

similating radar data provided some additional skill com-

pared to CONV, but by 1500 UTC its impact is also weak.

c. Hydrometeor species

Next, we examine the forecast impact on the cloud

hydrometeor species. Figure 8d shows time series of

850-hPa QCLOUD bias and RMSD for each experiment

FIG. 9. As in Fig. 6, but for 1-h forecasts at 1300 UTC.
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during the forecast period. At 1300 UTC, CONV and

SAT have similar errors with RAD and RADSAT con-

taining slightly lower RMSD; however, by 1500 UTC, all

experiments have similar errors. The importance of as-

similating radar data is much more apparent in QRAIN

because radar reflectivity is directly sensitive to liquid

water drops. RAD lowers RMSD compared to CONVby

0.06 gkg21 at 1200UTCwith the improvement decreasing

with time (Fig. 8e). Despite the more limited impact of

satellite data on QRAIN evidenced by the similar CONV

and SAT errors, the overall RADSAT experiment gen-

erally has the lowest errors. The vertical profiles of

QRAIN bias and RMSD show that the impact of radar

reflectivity is consistent throughout the layer where liquid

drops are present (below 600hPa) (Figs. 9c and 10c).

QGRAUP represents an interesting hydrometeor

species in the form of elevated frozen drop-sized parti-

cles. At 1200 UTC, Jones et al. (2013a) found that both

SAT andRAD loweredQGRAUPRMSD compared to

CONV. However, the QGRAUP time series of bias and

RMSD for both 850 and 500 hPa shows that the impact

of satellite and radar data decreases rapidly resulting in

limited improvement by 1300 UTC. At 500 hPa, RAD

and RADSAT are more accurate than CONV after

1400 UTCwhile RADSATmaintains the lowest RMSD

at all forecast times despite the corresponding SAT and

RAD experiments losing any improvement (Fig. 7c).

This indicates the potential value of assimilating both

observation types.

Finally, we examine QICE and QSNOW variables as

a function of forecast time. ForQICE at 500 hPa, RMSD

values are very low corresponding to low overall QICE

concentrations in the domain. RAD andRADSAT both

contain slightly lower RMSD at all forecast times. Much

larger differences are apparent in QSNOW at 500 hPa

(Fig. 7e). Both SAT and especially RAD reduce RMSD

with the former maintaining skill out to 1330 UTC

and the latter until the end of the forecast period at

1500 UTC. As with QRAIN and QGRAUP, QSNOW

represents a hydrometeor directly observable by radar

reflectivity, though with somewhat less sensitivity. The

greatest improvement from either satellite or radar data

occurs between 600 and 400 hPa (Fig. 9f), consistent

with the 1200 UTC findings summarized above and in

Jones et al. (2013a). The pattern remains consistent out

to 1500 UTC except that the SAT and CONV RMSD

profiles become similar (Fig. 10f).

7. Simulated radar and satellite data forecasts

a. GOES-R ABI 6.95-mm TB

To assess the impact of assimilating remote sensing data

on more complex products, we compare the ensemble

FIG. 10. As in Fig. 6, but for 3-h forecasts at 1500 UTC.
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mean satellite TB and radar reflectivity from each ex-

periment with the corresponding truth simulation as

a function of forecast time. In addition to calculating

bias and RMSD statistics for each experiment, skill

scores including the probability of detection (POD),

false alarm rate (FAR), and Heidke skill score (HSS)

are also computed using a threshold of 6.95-mm TB ,
230K (Wilkes 2006). If both the truth and experiment

forecast have a pixel where 6.95-mm TB , 230K then

this is considered a ‘‘hit.’’ If the experiment contains

a pixel with 6.95-mmTB, 230K and this threshold is not

exceeded in truth, then it is considered a false detection.

Finally, if neither truth nor the experiment exceeds this

threshold, then it is considered a correct null forecast.

The goal is to generate a forecast where ‘‘hits’’ are

maximized, resulting in a high POD, but false detections

are limited, thereby resulting in a low FAR. The HSS

takes both into account to generate a statistic indicating

the overall skill of the experiment at forecasting TB.

Jones et al. (2013a) found that the final 6.95-mm TB

analyses from the SAT, RAD, and RADSAT cases are

characterized by higher POD and HSS scores and lower

FAR than CONV with SAT having the highest skill

(Fig. 11). The rapid decrease in skill among the hydro-

meteor variables noted in the previous section suggests

that the improvements to simulated 6.95-mm TB should

also decrease with time. The skill score statistics by

1300 UTC strongly indicate that this is indeed the case.

Skill scores for all four experiments converge by 1300UTC

indicating that any skill from assimilating either satellite

or radar data is mostly lost early in the forecast period.

For example, HSS falls from 0.71 at 1200 UTC to below

0.4 by 1300 UTC for the SAT experiment (Fig. 11c).

Thereafter, HSS for all experiments remain near 0.4.

Inspection of the simulated satellite output at 1300 UTC

(Fig. 12) shows that assimilating satellite or radar data

appears to capture some of the detailed structures in the

cloud fields better than CONV. All experiments exhibit

a cold TB bias relative to truth that is mostly eliminated

at 1200 UTC (Jones et al. 2013a), indicating that the

experiments may contain excessive cloud cover. This is

most apparent along the convection in eastern Arkansas

and Louisiana and also in the more stratiform clouds

across Missouri and Oklahoma. Thus, it appears that

6.95-mm TB and radar reflectivity data have a limited

impact on simulated satellite imagery during the fore-

cast period, at least as computed using traditional grid-

point verification statistics.

b. WSR-88D reflectivity

A similar comparison is conducted using simulated

radar reflectivity data at 2 and 6km to determine the rel-

ative impacts of the observations on the radar reflectivity

analysis. Skill scores are computed in the same manner

as employed for the satellite data, but now using a

threshold of .25 dBZ. Results show that assimilating

radar data provides a longer lasting impact to simulated

reflectivity forecasts at 2 and 6 kmAGL compared to its

impact on simulated satellite data (Fig. 13), as would

be expected. At 2 km, RAD and RADSAT generate a

FIG. 11. Time series of (a) POD, (b) FAR, and (c) HSS between

1200 and 1500 UTC for simulated ABI 6.95-mm TB forecast from

each experiment.
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POD significantly greater than CONV until 1500 UTC

(Fig. 13a). Even SAT performs slightly better despite

this being a lower-tropospheric level. Similar results are

present for FAR and HSS with RAD and RADSAT be-

ing the best performers. However, SAT is also noticeably

better than CONV at most forecast times. At this level,

SAT maintains some skill longer compared to the cor-

responding forecasts of simulated 6.95-mm TB.

Comparing the 2-km simulated radar reflectivity

forecasts at 1300 UTC with truth data shows that all

FIG. 12. Simulated GOES-R ABI 6.95-mm TB (K) for the truth simulation and each experiment at 1300 UTC 24 Dec.
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experiments contain excessively large areas of higher

reflectivity (Fig. 14). Several areas of high-reflectivity

values correspond with the locations of low 6.95-mm

TB in Fig. 12. The primary difference between SAT

and RAD is that the latter better captures the higher-

resolution reflectivity characteristics present in the

truth analysis, which is reflected in the better skill

scores (Fig. 13). Similar results were found at 6 km AGL

(not shown) with RAD maintaining higher skill than

CONV until 1500 UTC with the improvement gener-

ally decreasing with time. Initially, SAT generates a

comparable FAR to the RAD experiment, but the im-

provement relative to CONV diminishes be 1330 UTC.

The improvements in POD and HSS become small by

1330 UTC, which is a similar time frame as observed

in the simulated satellite and cloud hydrometeor

forecasts.

8. Conclusions

Detailed analysis of the relationship between water

vapor and cloud hydrometeor variables and 6.95-mm TB

and radar reflectivity show that assimilating both data

types improves the analysis accuracy. For most cases,

the magnitude of the correlation coefficients and their

altitude correspond well with where the greatest re-

duction in RMSD occurs between CONV and either

SAT or RAD. These results further support the findings

by Jones et al. (2013a) who concluded that assimilating

these data did indeed generate improved model analyses.

FIG. 13. Time series of (a) POD, (b) FAR, and (c) HSS between 1200 and 1500 UTC for 2-km AGL simulated

WSR-88D reflectivity forecasts. (d)–(f) As in (a)–(c), but for 6-km AGL reflectivity forecasts.
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The improved analysis accuracy leads to better water

vapor and cloud hydrometeor forecasts, though the

forecast impact of satellite data and radar reflectivity

varies greatly with variable and forecast time. Assimi-

lating 6.95-mm TB had the greatest positive impact on

midtropospheric water vapor content that remains evi-

dent 3 h into the forecast. However, water vapor fore-

casts nearer the surface from SAT actually performed

worse than CONV alone. This indicates the need for

additional satellite derived moisture information at these

FIG. 14. Simulated WSR-88D 2-km AGL radar reflectivity at 1300 UTC for the truth simulation and each experiment.
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levels. The GOES-R ABI will provide this information

in the form of a 7.34-mm channel, which initial testing

shows an improved lower-tropospheric moisture analy-

sis compared to assimilating the 6.95-mm channel. The

effects of satellite data on cloud hydrometeor variables

are also pronounced, but the positive impacts generally

only last approximately 1 h during the forecast. Gener-

ally, SAT performs better with the analysis and forecast

of frozen hydrometeor variables such as QICE and

QSNOW in the mid- and upper troposphere compared

to lower-level liquid hydrometeors. One concern is that

the assimilation of satellite data degrades the low level

forecasts of certain variables (QRAIN, QVAPOR) near

850 hPa as forecast time increases beyond 1 h.

Assimilating simulated radar observations generally

improves analysis and forecast fields of water vapor and

cloud hydrometeor variables more than the satellite

data. The improvement is apparent at most atmospheric

levels and not confined to the mid- and upper tropo-

sphere. This is due in large part to the much greater

number of radar observations being assimilated and

their high vertical resolution compared to the single

atmospheric column nature of individual satellite ob-

servations. Assimilating radar data is most effective at

improving skill in the larger hydrometeor variables such

as QRAIN, QGRAUP, and QSNOW, where sensitivity

to radar reflectivity is the greatest. Both lower- and

midtropospheric radar observations have positive im-

pacts on the forecasts, generally maximized in the layers

surrounding the observation. The larger overall positive

impact from radar data assimilation generally results in

better downstream forecasts compared to SAT. The

6.95-mm TB provide the most lasting positive impact on

500-hPa QVAPOR while radar reflectivity also im-

proves QVAPOR and QRAIN consistently out to 3 h.

Otherwise, even the positive impacts from radar data

are small 3 h into the forecast.

Several challenges and avenues for future research

exist building on the results and lessons learned as a part

of this research. One need is to determine the impact of

different error characteristics of clear and cloudy satel-

lite observations, as they are likely different from the

constant assumption used here for all observations.

Also, the impacts of multichannel satellite data assimi-

lation combined with radar observations should be

assessed. It is likely that including more satellite chan-

nels sensitive to different layers of the atmosphere will

provide additional vertical profile information, increasing

its relevance relative to radar observations. Development

of vertical localization techniques for satellite radiances

should also improve the satellite data impact by con-

straining their influence only to layers where they are

most sensitive. These and other topics will be explored

by the authors in future studies using simulated and real-

data experiments.
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