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ABSTRACT

The U.S. Drought Monitor (USDM) classifies drought into five discrete dryness/drought categories based on

expert synthesis of numerous data sources. In this study, an empirical methodology is presented for creating a

nondiscrete USDM index that simultaneously 1) represents the dryness/wetness value on a continuum and 2) is

most consistent with the time scales and processes of the actual USDM. A continuous USDM representation

will facilitate USDM forecasting methods, which will benefit from knowledge of where, within a discrete

drought class, the current drought state most probably lies. The continuous USDM is developed such that the

actual discreteUSDMcan be reconstructed by discretizing the continuousUSDMbased on the 30th, 20th, 10th,

5th, and 2nd percentiles—corresponding with USDM definitions for theD4–D0 drought classes. Anomalies in

precipitation, soil moisture, and evapotranspiration over a range of different time scales are used as predictors to

estimate the continuous USDM. The methodology is fundamentally probabilistic, meaning that the probability

density function (PDF) of the continuousUSDM is estimated and therefore the degree of uncertainty in the fit is

properly characterized. Goodness-of-fit metrics and direct comparisons between the actual and predicted

USDM analyses during different seasons and years indicate that this objective drought classification method is

well correlated with the current USDM analyses. In Part II, this continuous USDM index will be used to

improve intraseasonal USDM intensification forecasts because it is capable of distinguishing between USDM

states that are either far from or near to the next-higher drought category.

1. Introduction

Drought is a naturally recurring climate phenomenon

that can reduce agricultural productivity and damage

natural ecosystems if it persists for an extended period of

time or if it occurs during critical stages of crop devel-

opment. Extreme drought events have impacted exten-

sive areas of the United States in recent years, most

notably the south-central United States in 2010–15, the

Corn Belt in 2012, the Pacific Northwest in 2013–15, and

California during 2012–16. According to the U.S.

Drought Monitor (USDM; Svoboda et al. 2002), ex-

treme D3 to exceptional D4 drought conditions oc-

curred for at least several months during the growing

season during each of these events. These exceptional

conditions led to large agricultural losses. For example,

the 2011 drought was the most expensive drought in

Texas history, with grain and livestock losses estimated

at $7.62 billion (Fannin 2012). Drought-related losses

were even larger during the 2012 Midwest ‘‘flash

drought’’ because of its widespread impact on corn and

soybean yields across the Midwest, where county-level

crop yields were often less than 75% of normal (Otkin

et al. 2016). Indeed, the 2012 flash drought was one of

the most expensive natural disasters in U.S. history, with

federal crop indemnity payments alone surpassing

$17 billion (NRDC 2013) and the total economic cost

estimated to be in excess of $35 billion (AON Benfield

2013). More recently, extreme drought conditions oc-

curring over prime agricultural land in California haveCorresponding author: David J. Lorenz, dlorenz@wisc.edu
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led to estimated agricultural losses in that state ex-

ceeding $2.7 billion for 2015 alone (Howitt et al. 2015).

Though greater reliance on irrigation has blunted the

impact of the drought on California agriculture, losses

have been increasing each year as more land is being left

fallow because of diminishing irrigation allocations and

rapidly falling water tables that make it impossible or

too expensive to pump groundwater.

The occurrence of numerous extreme drought events

affecting vast areas of the United States in recent years,

combined with the high social, economic, and environ-

mental toll exacted by these events, demonstrates our

continued vulnerability to drought and the need to de-

velop drought early warning systems (DEWS) that ef-

fectively characterize and disseminate value-added

information about current and future drought condi-

tions. Vulnerable stakeholders such as farmers and

ranchers and governmental organizations tasked with

providing aid to those affected by drought can use this

information to assist drought mitigation efforts (Otkin

et al. 2015). Indeed, a defined goal of the National In-

tegrated Drought Information System (NIDIS), which

was enacted by Congress in 2006 and reauthorized in

2013, is to create a DEWS capable of providing proba-

bilistic drought intensity forecasts with sufficient tem-

poral and spatial resolution for stakeholders to make

informed management decisions. This task, however, is

mademore difficult by the diversity of drought types and

their differing impacts on various stakeholder groups

(Wilhite and Glantz 1985). For example, flash droughts

that develop quickly during the growing season

(Svoboda et al. 2002; Mozny et al. 2012; Otkin et al.

2013; Hunt et al. 2014) can seriously impact agriculture

while leaving other groups sensitive only to long-term

hydrological drought unaffected. The extremely rapid

drought intensification rates observed during the 2012

flash drought also indicate that a robust drought early

warning system should provide subseasonal forecasts

updated at weekly intervals in addition to seasonal

forecasts that are updated less frequently.

Most drought forecasting systems, however, only

provide seasonal forecasts that are updated at monthly

intervals, which limits their real-time utility when con-

ditions are rapidly changing. For subseasonal drought

prediction (e.g.,,3 months), a promising new approach

is to use rapid changes in drought indices sensitive to

evapotranspiration, precipitation, or soil moisture to

identify areas most susceptible to drought development

(Otkin et al. 2014, 2015). In this two-part paper, we will

expand upon the method described in Otkin et al. (2014,

2015) by using more sophisticated statistical tools to

estimate the current drought state and to forecast the

probabilistic likelihood of future drought development.

In this paper (Part I), the primary focus is not on future

prediction but on better characterizing the current

drought state. We describe a new method to compute a

continuous USDM index (i.e., wetness/dryness is mea-

sured on a continuum rather than as six discrete dryness/

drought classes) that estimates the likelihood that the

current conditions are within each of the six USDM

drought categories based on standard precipitation in-

dex (SPI), evaporative stress index (ESI), and North

American Land Data Assimilation System (NLDAS)

anomalies computed over various time periods. The

methodology is fundamentally probabilistic, meaning

that the probability density function (PDF) of the con-

tinuous USDM is estimated and therefore the degree of

uncertainty in the fit is properly characterized. The

probabilities are objectively derived from the long-term

history of the predictor fields and the categorical USDM

observations from 2001 to 2014. While the ultimate goal

of this research is to predict future changes in the

USDM, Part I does not predict the future; instead, we

aim tomore precisely define the current state of drought

as depicted in the USDM. In Lorenz et al. (2017, here-

after Part II), the improved current drought state esti-

mates generated using the method described in this

paper are used to compute probabilistic intensification

forecasts over subseasonal time scales. The state esti-

mates in this current paper improve future forecasts

because they quantify how far the current state is from

the next-higher dryness/drought category. For example,

the no drought USDM designation can mean near-

normal conditions or it can mean extremely wet. Re-

cent dry anomalies are much more likely to lead to an

intensification of the drought category in the former case

than in the latter case.

There are many potential drought indices/indicators

that we could use to characterize drought. We use the

USDM because it is the most widely available index that

incorporates local drought impacts through its network of

observers and contributors around the country. Through

expert assessment, the USDM assimilates these contri-

butions with measurements of climatic, hydrologic, and

soil conditions into a single drought indicator that at-

tempts to best summarize the drought state across dif-

ferent regions with different drought processes and

characteristics. While the impacts-based approach has

many advantages, it also introduces some subjectivity

into the indicator. We believe a probabilistic approach,

such as that used here, is particularly well suited to coping

with the subjective aspects of the USDM because it

characterizes both the explained and the unexplained

portion of the variance. In the USDM’s case, the sub-

jective aspects are accounted for in the unexplained

portion of the variance. The single composite drought
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indicator approach of the USDM also introduces un-

certainties because different kinds of droughts (i.e., short

vs long term) can have the same USDM designation, and

sometimes short- and long-term conditions are on op-

posite sides of the wet/dry spectrum. Such uncertainties

are also are handled well by a probabilistic approach.

In this paper, we begin with a description of the

datasets (section 2) and a discussion of the assumptions,

fitting, and interpretation of the new methodology

(section 3). Results are presented in section 4 and a

summary and discussion follow in section 5.

2. Datasets

The purpose of this study is to develop a methodology

for weekly predictions of current and future states of the

USDM in gridded form; therefore, we focus on pre-

dictors that are available in gridded form at weekly time

scales. We thus do not use divisional Palmer drought

severity index data, streamflow data, crop and range

conditions, and other nongridded datasets. In future

studies, these additional variables could be added as

predictors after gridding. Because the USDM is a rela-

tively low-resolution depiction of drought conditions on

the ground, all predictors have been aggregated to a

coarse-resolution grid (0.128 3 0.128) before application
of the statistical models (see section 2e).

a. USDM

The USDM is created each week through expert

synthesis of numerous data sources, including surface

streamflow, soil moisture, rainfall anomalies, tempera-

ture anomalies, crop and range conditions, and snow

cover. These sources are assimilated in more or less real

time into the latest USDM. The above data sources are

combined with local impact reports (e.g., crop and range

conditions) from over 400 observers across the country.

Many times the local impacts are not known until after

theUSDM is made, and therefore these reports are used

to validate and/or adjust the USDM as they become

available. Because of the nature of the USDM, there is

sometimes a lag between drought-related anomalies on

the ground and theUSDM (e.g., Otkin et al. 2014, 2015).

Nevertheless, for the USDM state estimates in this pa-

per, we find that not using a time lag results in the best

skill. In addition, USDM attempts to identify all kinds

of drought. Hence, if long-term hydrologic indicators

are very dry, then the USDM will show drought even if

recent rains have led to good crop and range condi-

tions. The opposite scenario is also possible. This

USDM disadvantage is also true of any composite in-

dex that condenses multivariate information into a

single variable.

The USDM is updated each week based on data ob-

tained through Tuesday morning and is publicly re-

leased on Thursday. Using the ray-casting algorithm

(Shimrat 1962; Hacker 1962), we assignUSDMvalues to

individual grid points in the modeling domain using the

USDM shapefile analyses that classify dryness/drought

into five categories ranging from abnormal dryness to

exceptional drought (Svoboda et al. 2002). We define

the drought category for each grid point as the value of

the USDM at the center of the grid point. For this study,

we designate the six dryness/drought categories as

integers from 21 to 4: ‘‘no drought’’ has a value

21, ‘‘abnormally dry’’ 5 0, ‘‘moderate drought’’ 5 1,

‘‘severe drought’’ 5 2, ‘‘extreme drought’’ 5 3, and

‘‘exceptional drought’’ 5 4.

b. SPI

Precipitation anomalies are computed with the SPI

(McKee et al. 1993, 1995), which uses precipitation as its

sole input and is widely used to detect meteorological

drought conditions. It is standardized so that values less

than zero indicate that the observed precipitation was

less than the climatological median precipitation over a

given time period. The SPI was computed using the 0.258
resolution Climate Prediction Center’s gridded analysis

of daily precipitation reports from National Weather

Service reporting stations and cooperative observers

(Higgins et al. 2000). First, the daily precipitation (1948–

2014) was interpolated to the 0.128 3 0.128 resolution
grid and then the SPI was computed at weekly intervals

ending on Tuesday after compositing precipitation over

4-, 8-, 12-, 16-, 20-, 26-, 39-, and 52-week time periods.

c. ESI

Moisture stress can be expressed as the reduction in

actual evapotranspiration (ET) from the reference ET

(ETref) expected under non-moisture-limiting conditions.

To facilitate identification of anomalous moisture con-

ditions, the ESI was developed to represent standardized

anomalies in the ET fraction (ET/ETref), where the

Atmosphere–Land Exchange Inverse model (ALEXI)

(Anderson et al. 1997, 2007b) is used to estimate the ac-

tual ET and estimates of surface air temperature, surface

specific humidity, surface pressure, and wind speed from

the Climate Forecast System Reanalysis (CFSR) dataset

(Saha et al. 2010) are used to compute ETref based on the

Penman–Monteith formulation (Allen et al. 1998). Nor-

malization by a reference ET is used to minimize the

impact of non-moisture-related drivers of ET such as the

seasonal cycle in solar radiation.

ALEXI is a two-source energy balance model

(Norman et al. 1995) that uses land surface temperatures

(LSTs) obtained from satellite thermal infrared imagery
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to estimate sensible, latent, and ground heat fluxes for

vegetated and bare soil components of the land surface.

The partitioning of the energy fluxes into soil and veg-

etated components is estimated using vegetation cover

fraction estimates derived from the MODIS leaf area

index product (Myneni et al. 2002). The total surface

energy budget is computed using the observed increase

in LST from ;1.5 h after local sunrise until 1.5 h before

local noon, with the McNaughton and Spriggs (1986)

atmospheric boundary layer (ABL) growth model used

to provide closure to the energy balance equations.

Lower-tropospheric temperature profiles used by the

ABL model are obtained from the CFSR dataset (Saha

et al. 2010). ALEXI is run each day over the contiguous

United States with 4-km horizontal grid spacing using

LST retrievals and insolation estimates derived from the

Geostationary Operational Environmental Satellite

imager. It has been shown to provide reasonable ET

estimates for a variety of climate regimes and vegetation

types (Anderson et al. 2007a).

Because ALEXI uses the morning rise in LST to esti-

mate ET, incomplete cloud screening can add noise to the

ET time series used to compute the ESI. These errors are

reduced using a temporal smoothing algorithm that

identifies and removes days with ET estimates that differ

by more than two standard deviations from surrounding

days within a 14-day moving window (Anderson et al.

2013). The remaining clear-sky ET estimates are com-

posited over longer time periods to achieve more

complete domain coverage. Standardized ET fraction

anomalies, expressed as pseudo z-scores normalized to a

mean of 0 and a standard deviation of 1, are computed

each week using 4-, 8-, 12-, 16-, 20-, 26-, 39-, and 52-week

composite periods ending on Tuesday. For consistency

reasons, these are the same composite periods as the SPI.

While ESI is not measured during periods of snow cover,

the amount of missing data is surprisingly small (92% of

the domain has at least 75% temporal coverage for the

4-week composite ESI). The mean ET fraction and stan-

dard deviations for each composite period are computed

at each grid point using data from 2001 to 2014. Stan-

dardized anomalies are computed as

ESI(w, y)5

V(w, y)2
1

n
y

�V(w, y)

s
, (1)

where V(w, y) is the composite ET fraction for week

w and year y at a given grid point, the second term is

the mean ET fraction for weekw averaged over all years

(ny 5 number of years), and the denominator is the

standard deviation. By standardizing the anomalies, this

means that negative (positive) values depict below

(above) average ET fluxes, which are typically associ-

ated with lower (higher) than average soil moisture

content or vegetation health.

d. NLDAS

Soil moisture anomalies in the top 10, 100, and 200 cm

of the soil profile were computed for several models in

phase 2 of the NLDAS (NLDAS-2; Xia et al. 2012a,b),

including Noah (Ek et al. 2003; Barlage et al. 2010; Wei

et al. 2013), Mosaic (Koster and Suarez 1994, 1996), and

the Variable Infiltration Capacity model (VIC; Liang

et al. 1996; Bowling and Lettenmaier 2010). Though

eachmodel simulates surface energy, water balance, and

soil moisture in multiple layers, their treatment of key

processes such as infiltration, drainage, vegetation

rooting depth, and canopy uptake differs, which can lead

to different soil moisture responses. Given this vari-

ability, we use the ensemble average soil moisture

(hereafter referred to as NLDAS) because this has been

shown to more accurately depict drought conditions

(Xia et al. 2014). Daily soil moisture values for each soil

layer were averaged each week over 4-, 8-, 12-, 16-, 20-,

26-, 39-, and 52-week time periods and then converted

into standardized anomalies using data from 1979 to

2014 in the same way as the ESI.

Given the fact it has been shown that the above drought

predictors can lead to USDM changes (e.g., Otkin et al.

2014, 2015), it may seem counterproductive to use such

long period composites (i.e., 4, 8, 12, 16, 20, 26, 39, and

52 weeks) and to not use a time lag. We have tried these

alternatives but have found that the current approach

works best. For Part II, on the other hand, we find that

weekly predictors that are lagged in time work best. The

predictors are different because the time tendency of any

general geophysical time series (i.e., with variations at all

time scales) is a high-frequency version of the original

time series. Therefore, long-term composites work best

for estimating theUSDMstate and short-term composites

work best for predicting USDM changes (Part II).

In summary, we have five fields: SPI, ESI, 0–10 cm soil

moisture, 0–100 cm soil moisture, and 0–200 cm soil

moisture. Each of these fields is composited over eight

different time periods. Hence, we have 40 total pre-

dictors. While the different predictor variables have

different periods of record, this is of less consequence

for this study because we do not consider the raw

anomalies in isolation. Instead, the regression tech-

niques used here naturally scale and add an offset that

will take into account the different climatologies.

e. Time period and smoothing

The current study focuses on warm season USDM

from May through September (technically from the
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eighteenth to the thirty-ninth Tuesday of the year; the

data cutoff for the weekly USDM is Tuesday) for the

years 2001–14. Data from the remainder of the year are

included for the calculation of long-term predictor

composites. To improve correlation with the low-

resolution USDM maps, the predictor variables were

spatially smoothed using a two-dimensional Gaussian

weighting function:

w5 exp

 
2
1

2

(�
Dx

a cos(408)

�2
2

�
Dy

a

�2
)!

,

where Dx and Dy are the difference in longitude and

latitude, respectively, between the central grid point

and a surrounding grid point; a is the smoothing radius in

latitude; and the cos(408) factor scales the longitude

distance so that the smoothing radius is approximately

equal in longitude and latitude.

3. Methodology

Any estimate of the USDM from SPI, ESI, and

NLDAS will not have perfect skill, particularly because

the USDM includes subjective elements. Therefore, we

believe it is most useful to make probabilistic pre-

dictions because such predictions characterize the de-

gree of uncertainty and how the estimate deviates from

the most likely value. To create an explicit statistical

model of the USDM PDF that can be used to make

quantifiable predictions, we must first make some ex-

plicit assumptions about the USDM.

a. General assumptions

TheUSDMclassifies drought into five discrete dryness/

drought categories.1 The goal of this research is to better

characterize current state of USDM so that we can

quantify how far the current drought state is from the

next-higher or next-lower drought category. In other

words, we want to define a ‘‘continuous version’’ of the

USDM. We assume that the actual discrete USDM can

be reconstructed from the continuous USDM by dis-

cretizing based on the 30th, 20th, 10th, 5th, and 2nd

percentiles. These are the explicit percentile thresholds

that the USDM uses to define the boundaries of the

drought categories from wettest to driest. Figure 1 is a

schematic showing the PDF of this hypothetical contin-

uous version of the USDM and the five dryness/drought

categories. Because only the discretized value of the

USDM is known a priori, the most likely value of the

continuous version of the USDM must be estimated.

Figure 1a shows the climatological PDF at a single grid

point over all times in the record. Note that unlike the

actual USDM, which only distinguishes between degrees

of dryness, the continuous USDM quantifies the degree

of wetness and dryness. In the actualUSDM, on the other

hand, all wet states are aggregated together into a single

no drought category.

Figures 1b and 1c are examples of the USDM PDF at

two particular times t1 and t2 given the values of the SPI,

ESI, and NLDAS predictors (i.e., these represent con-

ditional PDFs). It is assumed that SPI, ESI, and NLDAS

add information about the USDM state; therefore, the

conditional PDFs at times t1 and t2 are narrower than the

total PDF (Fig. 1a). At time t2, the predictors suggest

conditions are wetter than normal because the PDF is

centered to the right of the peak in the total PDF. At

time t1, on the other hand, the predictors suggest that

conditions are drier than normal. However, the area of

the PDF to the right of the abnormally dry threshold is

larger than the area to the left, which implies that con-

ditions are still more likely to be in the no drought cat-

egory than in the abnormally dry or moderate drought

categories. The distributions at times t1 and t2 are both

cases where the majority of the PDF is in the USDM no

drought category; however, the degree of certainty and

the closeness to other drought categories is very differ-

ent in these two cases. In this example, given the pre-

dictors alone, the USDM category at time t1 is much less

certain than the USDM category at time t2. Further-

more, suppose we also know that the actual USDM is in

the no drought category at both t1 and t2. Then, given an

identical forecasted drying trend, one would expect that

the USDM is more likely to intensify at time t1 than at t2.
This information is exploited in Part II in order to pre-

dict changes in the USDM.

The above discussion introduces a general frame-

work for generating a nondiscrete representation of

the current USDM state. To explicitly define a statis-

tical model that can be fit to the input data, we must

specify the functional form of the distribution and how

the mean, width, and shape of this distribution vary

as a function of the SPI, ESI, and NLDAS predictors.

Here we assume that the shape and width are con-

stants independent of SPI, ESI, and NLDAS and that

the mean of the distribution is a linear function of SPI,

ESI, and NLDAS. The details of the parametric dis-

tribution and the fitting of the free constants in the

model are described in the next subsection.

b. Specification of the model

Let f(x) and F(x) be the PDF and CDF describing the

shape of the continuous USDM distribution given the

1 Six categories if one includes the ‘‘no drought’’ designation as a

category.
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SPI, ESI, and NLDAS values (Figs. 1b,c). The distri-

bution can be generalized by allowing the width and the

position of the distribution to vary:

PDF5 sf (s[x2m]) and

CDF5F(s[x2m]) , (2)

where s is a constant that controls the width (smaller

values of s imply a wider distribution and greater un-

certainty) and m controls the position. If the PDF is the

standard normal distribution, then m is the mean and s is

the reciprocal of the standard deviation. As mentioned

above, we assume that themean (i.e., position) is a linear

function of the predictors:

m5 a
0
1 a

1
p
1
1 a

2
p
2
1⋯ , (3)

where the ai are constants that need to be fit and the pi
are the 40 SPI, ESI, and NLDAS predictors. The pi
change in time depending on the state of SPI, ESI, and

NLDAS. In addition to the ai, the constant s also needs

to be fit to the data.

For the distribution itself [i.e., f(x)], we explored the

standard normal distribution as well as the following

distributions with heavier tails than the normal distri-

bution: 1) Student’s t, 2) logistic, and 3) hyperbolic se-

cant. To quantify the ‘‘best’’ distribution the Brier skill

score (BSS) was used, and this led to the Student’s t

distribution being chosen. The Student’s t distribution

has a free parameter n, which corresponds to the degrees

of freedom when the distribution is applied to signifi-

cance testing. Significance testing is not the point here,

so instead t distributions with excess kurtosis of 1, 2,

and 3 were tried and the distribution with excess kur-

tosis of 1 was chosen. This corresponds to n 5 10. Note

that the above distributions are all symmetric about the

mean. We did not use a skewed distribution (i.e.,

Gamma distribution) because the PDFs of our pre-

dictors are nearly symmetric for all but the driest por-

tions of the domain (not shown). The ESI and soil

FIG. 1. (a) Schematic of the hypothetical, continuous USDM distribution for all times for

a single grid point. (b) Conditional PDF estimate of USDM at time t1 given the information in

the SPI, ESI, and NLDAS. Note the width of the distribution is smaller than in (a) because

SPI, ESI, and NLDAS help constrain the range of USDM possibilities. (c) As in (b), but for

time t2.
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moisture variables are symmetric because the 4-week

(and longer) averaging time scales are long enough for

the central limit theorem to apply. The SPI is sym-

metric by construction.

The thresholds that separate the continuous USDM

distribution into discrete categories must also be

specified. One choice is to set the thresholds equal to

the 30th, 20th, 10th, 5th, and 2nd percentiles of the

standard Student’s t distribution; however, the distri-

bution of the USDM over all times is not necessarily

the same as the conditional distribution but instead

depends on the details of the PDFs of the SPI, ESI, and

NLDAS predictors that determine the mean at each

time. Therefore, alternative forms were also tried,

including equally spaced and empirically determined

thresholds. Sensitivity tests showed that no single

method performed consistently better than the others;

therefore, the thresholds were set to the 30th, 20th,

10th, 5th, and 2nd percentiles for the Student’s t dis-

tribution with n 5 10. In the equations below, the

thresholds that bound a drought category are labeled as

Td21 and Td, where d is an integer index for the drought

category that increases as drought becomes more in-

tense. For ease of notation, let Td21 for the no drought

category be ‘ and Td for exceptional drought be 2‘.
Recently, Hao et al. (2016) developed a similar

probabilistic scheme for estimating the USDM from

objective drought indicators over the state of Texas.

Rather than assuming a continuous USDM that is dis-

cretized based on 30th, 20th, 10th, 5th, and 2nd per-

centiles, they use a general statistical method called

ordinal regression. One advantage of our method is that

the number of free parameters is less, so the statistical

fits are potentially more robust: our method has n 1 2

free parameters, where n is the number of predictors.

The method in Hao et al. (2016) has n 1 5 free param-

eters (for the five thresholds separating the categories).

Our method also naturally predicts the dependence of

skill onUSDM category (see section 3c). In future work,

we will consider their method and compare it to ours.

c. Fitting of the model

We fit the statistical model described above by first de-

termining the likelihood function associated with our

model and then maximizing the likelihood using general

optimization software. Suppose the state of the actual,

discrete USDM at a certain time is category d, which is

bracketed by the continuous USDM thresholds of Td21

and Td. Meanwhile, the PDF of the USDM at this same

time is of the form sf(s[x 2 m]), where m varies with time

because it is a linear combination of the predictors [e.g.,

(3)].According to this PDF, the likelihood lof thedUSDM

category is the integral of the PDF from Td21 to Td:

l5

ðTd

Td21

sf (s[x2m]) dx

5F(s[T
d
2m])2F(s[T

d21
2m]) , (4)

where the definition of CDF is used to write the PDF

integral explicitly in terms of F. Ideally, the likelihood

is 1, which means that the statistical model is 100%

certain that the USDM is in category d. With only one

time (or case) this is trivial: simply choose m to be

between Td21 and Td and let the width of the PDF be

infinitesimally small (s 5 ‘). In reality, we want to

explain the USDM variability over many cases, and in

this instance the total likelihood over all times L is

the product of the likelihoods at each individual

time [5 l(t)]:

L5 l(t
1
)l(t

2
)l(t

3
)⋯ . (5)

With a large collection of times, however, it is not pos-

sible to achieve likelihoods of 1 (100% certainty) while

simultaneously satisfying the constraints that s is con-

stant and m is a linear combination of the predictors.

Also, to prevent overfitting, we clearly do not want to

keep elaborating the model to eliminate these con-

straints. Instead, we find the parameters s, a0, a1, a2, . . . ,

which maximize the likelihood function in (5). This is

the maximum likelihood solution, which can be thought

of as the most probable parameters given the data. The

details of the algorithm and numerical scheme to solve

this optimization problem are given in the appendix.

Once the parameters are found, we have a best guess of

the time-varying PDF of the continuous USDM state

given the SPI, ESI, and NLDAS predictors.

d. Distilling the PDF into a single value

The time-varying PDF of the USDM state is useful

because it quantifies the uncertainty in the prediction of

USDM given the SPI, ESI, and NLDAS. Nevertheless,

for succinctly comparing the results with the actual

USDM, it is helpful to summarize the PDF information

into a single value. There are multiple ways of summa-

rizing the PDF depending on the metric one uses to

define closeness between the predicted and actual

USDM. In this study, we use a metric based on the least

squares error, which is perhaps the most widely used

measure of error. As mentioned above, the USDM

categories are given integers from21 to 4, representing

the no drought, abnormally dry, moderate drought,

severe drought, extreme drought, and exceptional

drought categories, respectively. Given the PDF of the

continuous USDM and the value b for the ‘‘best’’ single

number that summarizes the PDF, the expected value of

the square error as a function of b is
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«5

ðT21

2‘

[b2 (21)]2sf (s[x2m]) dx 1

ðT0

T21

(b2 0)2sf (s[x2m])dx 1

ðT1

T0

(b2 1)2sf (s[x2m]) dx

1

ðT2

T1

(b2 2)2sf (s[x2m]) dx 1

ðT3

T2

(b2 3)2sf (s[x2m])dx 1

ð‘
T3

(b2 4)2sf (s[x2m])dx . (6)

Simplifying by taking the derivative with respect to

b and setting the derivative to zero, we find the b that

minimizes the square error:

b52

ðT21

2‘

sf (s[x2m]) dx1

ðT1

T0

sf (s[x2m]) dx

1 2

ðT2

T1

sf (s[x2m]) dx1 3

ðT3

T2

sf (s[x2m]) dx

1 4

ð‘
T3

sf (s[x2m]) dx . (7)

This least squares error value b, depicting the most

likely category in the continuous USDM distribution,

is used to measure the goodness of fit by calculating the

correlation between the predicted (i.e., b) and the

observed USDM and is also used to compare maps of

the observed and predicted USDM values across the

United States.

e. Cross validation

When making predictions with multiple input vari-

ables, it is essential to avoid overfitting, which can oc-

cur when a model has too many predictor variables

relative to the number of observations. In this situation,

the model may optimize over the random variability

in a given sample in addition to any real relationships

that might be present. When an overfit model is applied

to independent data, it may perform poorly. In this

study, cross validation is used to determine if a given

predictor adds skill to the statistical model. This pro-

cess involves 1) removing one year of data from the

analysis, 2) fitting the statistical model on all other

years, 3) calculating the skill when applying the model

to the year that was left out, and 4) repeating until all

years have had a chance to be left out. Typically, one

prevents overfitting by incrementally adding additional

predictors with cross validation until skill decreases on

independent data. This process of determining the

useful predictors is called forward variable selection.

Unfortunately, because of the relatively short period of

record, the number of skillful predictors chosen by

forward selection is not robust and tends to vary sig-

nificantly from grid point to grid point. In addition, for

more than half the domain only one predictor is chosen,

despite the fact that the USDM authors use a wide

range of drought indictors. There is also finescale

structure in the particular predictors chosen, and typi-

cally changes in the dominant predictor occur as sharp

transitions over adjacent grid points rather than more

gradual transitions where one predictor gains weight

while another loses weight.

f. Aggregate variables before model fitting

The issues with robustness suggest that it is helpful

to increase the sample size by including data from grid

points surrounding a given grid point when fitting the

statistical model. Though nearby grid points may not

have the same relationship between the various pre-

dictors and the USDM, our tests indicate that the

errors from the limited sample likely dominate in

most locations. While the fitting of the statistical

model is performed using nearby grid points, the

validation of the model on the left-out year is still

done on the central grid point. For fitting, the nearby

grid points are not given full weight; instead, the

weight w of a grid point in the analysis is given by a

Gaussian function:

w5 exp

"
2
(Dx)2 1 (Dy)2

(28)2

#
, (8)

where Dx and Dy are the difference in longitude and

latitude, respectively, between the central grid point

and a surrounding grid point in degrees. The choice of

28 for the weighting function is a compromise value

that was found to perform the best on average. The use

of surrounding grid points could potentially be used

with the same forward variable selection scheme above

to fit the model. Unfortunately, with 40 variables to

try, the computational cost of forward selection is

simply too much, and therefore alternative methods

must be used.

g. Pattern selection using regularized regression

One strategy for addressing the computational cost of

forward selection is to aggregate the predictors together

before performing the cross validation. For example,

empirical orthogonal functions (EOFs) have been used

in the past to distill a field of predictors into a few

dominant patterns before applying another statistical

model. However, the EOFs would optimize the variability

1950 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



over the 40 predictors instead of optimizing the re-

lationship to USDM. Another strategy is to use the

coefficients from linear least squares regression (with

USDM as the predictand) as weights to linearly com-

bine predictors. With the limited sample size, however,

linear regression will not be robust with 40 predictors,

even with the use of surrounding grid points. Because

simple regression is prone to overfitting, some form

of regularized linear regression to find the weights is

more appropriate. Regularized regression methods

introduce a penalty for complexity that typically

favors models with smaller and/or fewer nonzero re-

gression coefficients. This penalty is typically associ-

ated with a parameter that controls the size of the

penalty and hence the degree of regularization. Re-

cently, Meinshausen (2013) and Slawski and Hein

(2013) have shown that least squares regression with a

sign constraint on the regression coefficients can have

similar regularization properties without having to

determine the ‘‘best’’ value of a regularization pa-

rameter. Because the sign of the relationship between

the drought indicators and the USDM is known a priori

(minus random sampling noise), sign-constrained re-

gression is easy to apply. Moreover, the sign constraint

is consistent with our understanding of the way the

USDM is created. For example, we expect that if the

SPI at a certain time scale is used to predict the USDM,

its weight is such that a more negative value implies

more intense drought. Conversely, if this SPI predictor

is not used, then its weight is zero.We do not expect SPI

to have the ‘‘wrong’’ sign weight, yet this is exactly what

standard linear regression will do to some predictors as

it tries to reduce the error to the smallest possible

value. Sign-constrained regression, on the other hand,

respects our expectations about the sign of the pre-

dictor weights. In practice, with 40 predictors, this

means that only a portion of the coefficients of sign-

constrained regression will be nonzero and the rest will

be exactly zero. In this respect, it is similar to the

standard forward-selection procedure above; however,

we find that the number of predictors used is signifi-

cantly more than those used in forward selection, which

is consistent with the wide range of drought indicators

considered for the USDM. In addition, we find that the

nonnegative least squares (NNLS) method is more

robust with higher correlations with the ‘‘observed’’

USDM and there are fewer grid points with no skill on

independent data.

The details of our calculation of the predictor weights

using sign-constrained regression are as follows. First,

we specify real numbers for each drought category. Here

it is assumed that the continuous USDM follows the

standardized normal distribution and that the thresholds

separating the six drought categories are the 30th, 20th,

10th, 5th, and 2nd percentiles. The real number for each

category is defined as the mean of the standard normal

distribution within that category. Using the thresholds

above, the calculated means are 0.50, 20.68, 21.04,

21.45,21.82, and22.42, for the no drought, abnormally

dry, moderate drought, severe drought, extreme drought,

and exceptional drought categories, respectively. Let this

new observed USDM index with these values for the

drought categories be called u. Defined in this way, u is

positively correlated with the SPI, ESI, and NLDAS

anomalies, and therefore the sign-constrained regression

takes the form of least squares regression with non-

negative regression coefficients (except for the intercept).

The predictors are normalized before applying theNNLS

algorithm. With normalized predictors, the NNLS re-

gression coefficients are determined solely by the cor-

relations among the predictors and between the

predictors and u. For efficiency, the correlations are

first calculated for each grid point and then later

smoothed in space using the weighting scheme in (8).

We calculate the NNLS coefficients from the correla-

tions using cyclic coordinate descent (e.g., Franc et al.

2005). The regression coefficients define the weights to

linearly combine the 40 variables to create a single

‘‘master index.’’ All steps are cross validated by cal-

culating the NNLS coefficients separately for each

subperiod. After the master index is created for each

subperiod, the standard forward-selection cross vali-

dation is then performed using this single ‘‘master

predictor’’ to determine if it has skill on independent

data. Skill is measured with the log likelihood. Unlike

the NNLS weighting scheme, which uses surrounding

grid points to determine the weights, the final one-

predictor model is fit using the master predictor and the

USDM at a single grid point.

4. Results

a. Correlation with the USDM

The correlation computed using the above is shown in

Fig. 2. All correlations shown here are cross validated,

meaning that the statistical model has not ‘‘seen’’ the

data used to calculate the correlation. There are

22 weeks and 14 years, which implies a sample size of 308

total weeks. Overmost of the central and easternUnited

States correlations are greater than 0.70; however, corre-

lations are lower across large parts of the western United

States. In fact, there are a few locations in the western

United States where there is no skill (white). In future

studies, including runoff from NLDAS may provide skill

in these regions. Averaged over the domain, the correla-

tions are 0.79 over the central and eastern United States
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(east of 1058W) and 0.65 over the western United States.

To better compare with other studies, the corresponding

correlations without cross validation are 0.85 and 0.78.

b. Chosen predictors

In this section, we discuss the number and the relative

importance of the various predictors. Figure 3a shows

the number of predictors with nonzero weight. At least 9

predictors are used throughout most of the central and

easternUnited States, with some locations using up to 18

predictors. On average, fewer predictors are used in the

western United States, but most places still use at least 6

predictors.

Figures 3b–f show the relative weight of the SPI, ESI,

and 10-, 100-, and 200-cm NLDAS soil moisture vari-

ables, respectively. For this comparison, the contribu-

tion of all time periods (4, 8, 12, 16, 20, 26, 39, and

52 weeks) is aggregated for each variable. Because all

predictors are standardized and all coefficients are

positive, the relative weight for each variable is calcu-

lated by summing over the nonzero coefficients from the

NNLS. Overall, the SPI has similar weight over most of

the United States (Fig. 3b), whereas the other four

variables have various regions where they tend to per-

form well. For example, the ESI has highest weight in

Florida where the thermal LST signal is picking up an-

cillary sources of moisture due to groundwater in-

teractions that are not well represented in NLDAS

(Hain et al. 2015). The 100-cm NLDAS soil moisture

performs best in a relatively narrow corridor in the

central United States and in the Pacific coast states,

while soil moisture at 200 cm tends to dominate over the

semiarid regions of the central and western United

States, where moisture in the soil surface layer is typi-

cally quite low. The lower weight assigned to ESI is

expected because USDM assessments to date have re-

lied heavily on precipitation and soil moisture in-

dicators. This weighting may evolve in the future as ET

becomes more directly incorporated in USDM process

to better capture rapid onset (flash) drought events.

There are significant regional differences in the

weighting patterns in Fig. 3; however, we believe much

of this structure is not based on actual physical differ-

ences between regions. The source of the structure is

likely due to the fact that the different predictor fields

(i.e., SPI and soil moisture) are quite highly correlated,

and therefore multicollinearity is an issue. In this case,

the individual regression coefficients can change

dramatically in response to small changes in the data.

Fortunately, while multicollinearity affects the in-

terpretation of the individual predictors, it does not tend

to affect the predictive power of the model when regu-

larization (i.e., NNLS) is used.

If the predictors are divided based on time scale,

however, then interesting physical structure emerges.

For example, when the predictors are divided into short-

term (,16 weeks) and long-term (.20 weeks) periods

(Figs. 3g and 3h, respectively), a more physically based

pattern emerges. For example, the short-time-scale

predictors dominate in the central United States where

drought conditions can develop very rapidly (e.g., Otkin

et al. 2013), whereas the long-time-scale predictors

dominate in the western United States where annual-

time-scale processes are most important. One should

think of the time-scale distinction above as the ‘‘aver-

age’’ drought behavior. In reality, short- and long-term

droughts can occur anywhere, and our methodology

simply determines the typical drought time scale for

each region (or combination of drought time scales for

cases where both short- and long-term predictors are

given significant weight).

c. Probabilistic skill

In this subsection, probabilities predicted by the sta-

tistical model are evaluated using two verification met-

rics, including the BSS and reliability diagrams. Note

that by ‘‘prediction’’ we mean the estimate of the cur-

rent state of USDM from SPI, ESI, and NLDAS. In this

context, prediction should not be confused with ‘‘future

forecasts,’’ which will be evaluated in Part II. The BSS

measures the difference between the predicted proba-

bility of a particular outcome and the actual observed

outcome relative to climatology (Wilks 2011). A value

of one (zero) indicates perfect (no) skill. The predicted

probability of a particular USDM category is given by

(4). Cross-validated maps of the BSS for each of the six

dryness/drought categories are shown in Fig. 4. Areas in

white mean that there are no recorded instances of that

FIG. 2. Cross-validated correlation (%) between USDM and the

USDM estimated from the 40 SPI, ESI, and NLDAS predictors

using the weighting scheme involving NNLS. The sample size is

308 weeks.
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drought category during 2001–14. In most places, the no

drought category has the best BSS. The lowest skill oc-

curs for the abnormally dry category and then increases

for more intense droughts, with the exceptional drought

category exhibiting the highest skill of the drought cat-

egories. To understand the dependence of the BSS on

the drought category, first note that the continuous

USDM can potentially take any real number and

FIG. 3. (a) The number of predictors with nonzero weights using the NNLS scheme. (b) Sum of the weights involving

SPI. (c) Sumof theweights involvingESI. (d) Sumof theweights involving the 0–10-cmsoilmoisture fromNLDAS. (e)As

in (d), but for the top 0–100 cm. (f) As in (d), but for the top 0–200 cm. (g) Sum of the weights for predictors composited

over 4, 8, 12, and 16 weeks. (h) Sum of the weights for predictors composited over 20, 26, 39, and 52 weeks.
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therefore the no drought and exceptional drought cat-

egories, which are at the two ends of the USDM distri-

bution, include an infinite portion of the real line. The

intermediate drought categories, on the other hand,

include a relatively narrow range of values of the con-

tinuous USDM. As an example, consider Fig. 1a, which

shows the spacing of the USDM thresholds for a con-

tinuous USDM that is normally distributed. Because the

width of the conditional PDF is independent of the

predictors, predictions of the intermediate drought cat-

egories are therefore inherently less predictable than the

ends of the distribution. Similarly, the no drought cate-

gory displays the best skill because it includes the widest

range of real numbers from normal to extremely wet.

To demonstrate that the above ideas are the source of

the BSS differences, assume that our conditional PDF of

USDM is in fact the true PDF of the USDM given the

predictors. We then randomly sample the PDF to

make a synthetic time series of the USDM that is per-

fectly consistent with our statistical model and then

compute the BSS for the synthetic time series. The

domain-average BSS for each drought category for the

observed USDM and for the synthetic USDM is shown

in Fig. 5. As expected, because the synthetic data are

perfectly consistent with our predicted PDF, their BSS is

elevated. The interesting result is that the observed de-

pendence of the BSS on drought category is very well

captured by the synthetic data demonstrating that the

low BSS for the intermediate values is not a result of a

poorer fit to the data. Instead, the system is inherently

less predictable for the intermediate drought categories

because the spacing of the USDM thresholds (30th,

FIG. 4. Cross-validated BSS for the probabilities of (a) no drought, (b) abnormally dry, (c) moderate drought,

(d) severe drought, (e) extreme drought, and (f) exceptional drought.
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20th, 10th, 5th, and 2nd percentiles) implies that in-

termediate drought categories are narrower in terms of

absolute SPI, ESI, and soil moisture anomalies.

Next, we measure the skill of the estimates using re-

liability diagrams (Wilks 2011). A ‘‘reliable’’ estimate

means that, given a large number of individual cases

when the continuous USDM assigns a 60% probability

of moderate drought, the actual USDM will be in the

moderate drought category in 60% of these cases and

will be in some other drought category in 40% of these

cases. The reliability diagram is calculated by first

ranking the time series of predicted probabilities of

drought category d from smallest to largest. Next, the

ranked probabilities are divided into n (nearly) equally

populated bins. For each of these n bins, the average

predicted probability is computed as well as the actual

observed fraction of cases in drought category d. Finally,

these n pairs of numbers are plotted on a two-dimensional

scatter diagram together with the line y 5 x. For a per-

fectly reliable forecast the predicted and observed prob-

abilities are equal, and therefore the n points on the

scatter diagram would lie on the line y5 x. The different

colors denote the reliability diagrams for the six distinct

drought categories. For these plots, we choose to divide

the data into 20 bins (n 5 20). To help reduce noise, we

average the individual reliability diagrams at each grid

point over the northwest, southwest, northeast, and

southeast portions of our domain.

Figure 6 shows reliability diagrams for data that have

not been cross validated, separated into four regions

corresponding to the northwest, southwest, northeast,

and southeast parts of the United States. This allows us

to examine the maximum reliability of the method be-

cause, in this case, the model is trained on the same data

used to calculate the reliability diagram. The x axis is the

predicted probability and the y axis is the observed

probability of occurrence. In general, the reliability

diagrams are quite good, with the scatter following the

diagonal line for most categories and regions and with

the highest reliability in the eastern United States. The

reliability for the no drought category is especially good.

The largest deviations from the line y 5 x are for ex-

ceptional drought in the northwest section of the domain

(Fig. 6a). In this case, when the prediction says that there

is an x percent chance of exceptional drought, the actual

chance is significantly smaller than x. The predicted

probabilities for moderate drought also tend to be too

large in all four regions. Perhaps the thresholds that

bound moderate drought (in the statistical model)

should be brought closer together so that moderate

drought is less likely. Note this threshold bias is also

consistent with the fact that the synthetic BSS is espe-

cially large compared to the observed BSS for moderate

drought (Fig. 5). There is also a smaller tendency for the

opposite bias for abnormally dry, particularly in the east.

Figure 7 shows the reliability diagram computed using

cross-validated data. Compared to Fig. 6, the most no-

ticeable difference is the downward-curving scatter for

some categories as the predicted probabilities increased,

particularly for the west, which indicates that the statistical

model is overconfident. Note that this bias is only large for

the intermediate drought categories that include relatively

small portions of the real line (see BSS discussion). More

work is necessary to identify the source of this bias. One

possibility is the changing character of theUSDManalyses

during the 2001–14 period. For example, in earlier years,

the USDM-depicted drought severity varied slowly in

space and typically only showed broad-scale drought fea-

tures; however, in recent years, it has the tendency to depict

much-finer-scale features and to more closely follow fine-

scale structures in the precipitation field. Perhaps this

nonstationary behavior of the USDM is a source of the

biased reliability diagram.Another source of nonstationary

statistics is the subjective aspect of the USDM and the fact

that different experts take turns producing the maps.

Another potential source of bias is that the USDM

distinguishes between short- and long-term drought,

which can have different characteristics in space and

time. It is possible that including two separate USDM

distributions, one with short-term predictors and an-

other with long-term predictors, would improve the re-

liability of the cross-validated data. In this two-tiered

model, the predicted drought state would be the more

extreme of the two individual components. These and

other strategies to improve the model are the subject of

current and future work.

d. Examples

Examples showing comparisons of the observed and

predictedUSDM analyses are shown in this section. The

FIG. 5. Domain-averaged BSS as a function of drought category

for the cross-validated BSS in Fig. 4 (blue) and the synthetic

USDM perfectly consistent with the statistical model (red).
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predicted PDF of the USDM is distilled to a single

number using the least squares error method described

in section 3d. All results shown here are cross validated,

meaning that the statistical model was fit on data from

all years besides the one shown. Figures 8–10 show

comparisons during the beginning, middle, and end of

the growing season for the last 9 years of the period of

record (2006–14). The spatial correlations between the

observed and predicted USDM states are shown in the

title of the prediction panels. Overall, the predictions

accurately reproduce the large-scale drought patterns

depicted by the USDM; however, the finer details

sometimes disagree. In general, the correlations are

highest when large portions of the domain are in more

intense drought categories. For example, May 2011,

May 2013, and May 2014 have the most exceptional

drought coverage and also have the highest correlations

at 0.93, 0.86, and 0.89, respectively (Fig. 8), with similar

behavior evident during mid-July (Fig. 9) and mid-

September (Fig. 10). In addition, as the drought in

2012 intensified in July and September, the spatial cor-

relations improved to 0.83 and 0.81, respectively, from

0.70. This fact is also consistent with the idea that spatial

correlation improves as the area of intense drought in-

creases. In contrast, the worst spatial correlations (,0.5)

occur in July and September 2010, when almost the

entire country was drought-free or only in minor

drought. This is consistent with the BSS analysis that

showed that the intermediate drought categories are the

least skillful because of the relatively narrow range.

5. Summary and discussion

In this paper, a statistical method for producing prob-

abilistic estimates of the current drought state as pre-

dicted by the USDM was presented. The method uses

anomalies in precipitation (SPI), evapotranspiration

(ESI), and soil moisture (NLDAS) over different time

scales as predictors to estimate the current drought status

with high spatial and temporal resolution. The method

creates a continuous version of the USDM that is opti-

mally consistent with the actual, discrete USDM state.

The discrete USDM can be reasonably reconstructed

from the continuous USDM function by discretizing

the function into six dryness/drought categories based

on five thresholds that define the boundaries of the

FIG. 6. (a) Reliability diagram for the probabilistic USDM predictions for each drought category (colors). The

x axis is the predicted probability and the y axis is the probability from the observedUSDM. For an ideal fit the points

should lie on the line y5 x (black). To reduce noise, the probabilities are averaged over the northwest quarter of the

United States. (b) As in (a), but for the northeast. (c) As in (a), but for the southwest. (d) As in (a), but for the

southeast.

1956 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



dryness/drought categories. The values of the SPI, ESI,

and NLDAS predictors at any given time are used to

estimate the PDF of the continuous USDM. To make an

explicit statistical model that can be fit to observed data,

the following assumptions of the PDF of the USDM

conditioned on the SPI, ESI, and NLDAS predictors were

made: 1) the mean of the PDF is linearly related to the

predictors; 2) the shape and width of the PDF is in-

dependent of the predictors; 3) the functional form of the

PDF is the Student’s t distribution; and 4) the thresholds

defining the drought categories are the 30th, 20th, 10th,

5th, and 2nd percentiles of the Student’s t distribution.

These assumptions are enough to explicitly define the

likelihood function for the statistical model. By maxi-

mizing the likelihood function, we determine the pa-

rameters of the statistical model. Once the conditional

PDF of the continuous USDM is found, we can calculate

the probabilities for each of the six USDM categories by

integrating the PDF between the thresholds that define

the drought categories. To more easily compare with the

observed USDM, we also developed a scheme to sum-

marize the full PDF with a single least squares best guess

of the current USDM.

The cross-validated temporal correlation between the

best guess prediction and the observed USDM averages

0.79 over central and eastern United States (east of

1058W) and 0.65 over the western United States. To

better compare with other studies, the corresponding

temporal correlations without cross validation are 0.85

and 0.78. The cross-validated spatial correlations exceed

0.9 when relatively large regions of theUnited States are

in exceptional drought. Example comparisons between

the predictions and the actual USDM show very good

agreement over large scales but less agreement on

finescale features. For most probabilities, the pre-

dictions are reliable, meaning that when the chance of

the extreme drought category is 30%, for example, then

the actual probability of extreme drought is in fact 30%.

The BSS of the probabilistic predictions are best for the

no drought and exceptional drought categories and less

good for the intermediate drought categories. As

described above, our continuous USDM formalism

provides a straightforward explanation for the lower

skill of the intermediate drought categories.

The method is a very promising objective drought

classification technique. Because it is empirically tuned

to the USDM, this method can capture regional differ-

ences in the processes most relevant for drought im-

pacts. However, because the USDM and this new index

are composite indices, they will sometimes identify

droughts that do not affect all sectors and/or time scales.

Nevertheless, the USDM might be the best available

FIG. 7. As in Fig. 6, but for the cross-validated probabilities.
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FIG. 8. Comparison of USDM and the cross-validated predictions (i.e., the model has not ‘‘seen’’ the year shown) for mid-May of

the latest 9 years: (a) USDM and (b) prediction on 16 May 2006. The spatial correlation between USDM and the prediction is

shown in the title of the prediction panel (b). (c),(d) As in (a) and (b), but for 15 May 2007. (e),(f) As in (a) and (b), but for 13 May

2008. (g),(h) As in (a) and (b), but for 12 May 2009. (i),( j) As in (a) and (b), but for 18 May 2010. (k),(l) As in (a) and (b), but for

17 May 2011. (m),(n) As in (a) and (b), but for 15 May 2012. (o),(p) As in (a) and (b), but for 14 May 2013. (q),(r) As in (a) and

(b), but for 13 May 2014.
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indicator that summarizes the relevant information

into a single map. The development and incorporation

of gridded fields of other variables such as crop condi-

tions, streamflow, and mountain snowpack would likely

lead to further improvements in the method and results.

The latter two fields might be particularly beneficial in

the western United States, where skill tends to be less

than the east using the current predictors.

FIG. 9. As in Fig. 8, but for mid-July.
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In Part II, the USDM state predictions described in

this paper are used in combination with recent pre-

cipitation, ESI, and NLDAS soil moisture anomalies to

predict future changes in the USDM over intraseasonal

time scales (2–8 weeks). The USDM state predictions

developed here are useful for predicting future changes

in the USDM because 1) they quantify how close or far

adjacent drought categories are from the current state

FIG. 10. As in Fig. 8, but for mid-September.
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and 2) the USDM is more likely to change categories

when conditions are ‘‘almost’’ in another category. In

future work, this information will also be combined with

data from the North American Multi-Model Ensemble

to make future USDM predictions.
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APPENDIX

Maximizing the Likelihood

The values of parameters of the statistical model are

those that maximize the likelihood function (5). Pro-

vided the likelihood is not zero, the maximum of the

logarithm of the likelihood function occurs at the same

location as the likelihood. Therefore, as is standard

practice, we will maximize the log likelihood:

log(L)5 �
j

logfF(s[T
dj
2m

j
])2F(s[T

dj21
2m

j
])g ,
(A1)

where j is an index over time, F is the CDF of the Stu-

dent’s t distribution with 10 degrees of freedom, mj de-

pends on time because it is a linear combination of the

predictors (see below), dj is the current USDMcategory,

T are the thresholds that define the boundaries of the

drought categories for the continuous ‘‘version’’ of the

USDM, and s is inversely proportional to the width of

the distribution. The mean mj can be written explicitly in

terms of the ith predictor pij as

m
j
5 a

0
1 �

i

a
i
p
ij
, (A2)

where ai (i 5 0, 1, 2, 3, . . .) are parameters to be fit by

maximizing the log likelihood. The only other parame-

ter to fit is s. We maximize the likelihood function using

the variable metric algorithm in Press et al. (1992). This

algorithm requires the gradient of the function with re-

spect to each of the independent variables. In our case,

the function is the log likelihood and the independent

variables are the ai and s. The variables ai only enter into

the likelihood through mj, so the chain rule can be used:

d log(L)

da
i

5 �
j

2sf (s[T
dj
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j
])1 sf (s[T

dj21
2m

j
])

F(s[T
dj
2m

j
])2F(s[T

dj21
2m

j
])

dm
j

da
i

,

(A3)

where we use the fact that the derivative of the CDF F is

the PDF f. The ai gradient terms are completed by

noting that

dm
j

da
i

5

(
1, if i5 0; and

p
ij
, otherwise

. (A4)

Finally, the gradient with respect to s is

d log(L)

ds
5 �

j

(T
dj
2m

j
)f (s[T

dj
2m

j
])2 (T

dj21
2m

j
)f (s[T
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