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ABSTRACT

In this study, cycled forecast experiments were performed to assess the ability of different cloud micro-

physics and cumulus parameterization schemes in the Hurricane Weather Research and Forecasting

(HWRF) Model to accurately simulate the evolution of the cloud and moisture fields during the entire life

cycle of Hurricane Edouard (2014). The forecast accuracy for each model configuration was evaluated

through comparison of observed and simulated Geostationary Operational Environmental Satellite-13

(GOES-13) infrared brightness temperatures and satellite-derived tropical cyclone intensity estimates

computed using the advanced Dvorak technique (ADT). Overall, the analysis revealed a large moist bias in

the mid- and upper troposphere during the entire forecast period that was at least partially due to a moist bias

in the initialization datasets but was also affected by themicrophysics and cumulus parameterization schemes.

Large differences occurred in the azimuthal brightness temperature distributions, with two of the micro-

physics schemes producing hurricane eyes that were much larger and clearer than observed, especially for

later forecast hours. Comparisons to the forecast 10-m wind speeds showed reasonable agreement (corre-

lations between 0.58 and 0.74) between the surface-based intensities and theADT intensity estimates inferred

via cloud patterns in the upper troposphere. It was also found that model configurations that had the smallest

differences between the ADT and surface-based intensities had the most accurate track and intensity fore-

casts. Last, the cloud microphysics schemes had the largest impact on the forecast accuracy.

1. Introduction

Given the high socioeconomic costs associated with

hurricanes and the need for more accurate forecasts that

can be used to lessen their detrimental impacts on vul-

nerable coastal communities, substantial effort has been

directed in recent years toward reducing tropical cyclone

(TC) forecast track and intensity errors. Overall, forecast

track errors have steadily decreased during the past de-

cade; however, similar reductions in intensity errors have

been more elusive. Large intensity errors in numerical

weather prediction models can occur due to limited pre-

dictability of eyewall replacement cycles (Houze et al.

2007; Zhu et al. 2015) and rapid intensification events (e.g.,

Elsberry et al. 2007; Kaplan et al. 2010; Lee et al. 2016),

both of which can lead to large changes in TC intensity

over short time periods. The persistence of large intensity

errors over longer forecast lead times could also result

from systemic errors in the spatial distribution of latent

heating caused by inaccuracies in the simulated cloud field

(e.g., Liu andMoncrieff 2007). For example, differences in

how microphysics parameterization schemes partition

cloud condensate in the upper troposphere between dif-

ferent cloud hydrometeor species, combined with large

differences in total cloud mass, can strongly modulate the

vertical distribution of latent heat release. Other compo-

nents of the forecast model such as the planetary bound-

ary layer and cumulus parameterization schemes also

exert a strong influence on the simulated cloud field

through impacts on subgrid-scale moisture, heat, and

momentum fluxes. Modifications to the distribution of

latent heat release can lead to large differences in the

vertical circulation and upper-level outflow pattern, which

in turn can have a significant impact on TC track and in-

tensity forecasts (e.g., Wu and Wang, 2001; Wang 2009).
Corresponding author: Jason A. Otkin, jason.otkin@ssec.wisc.

edu

MAY 2017 OTK IN ET AL . 2027

DOI: 10.1175/MWR-D-16-0354.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:jason.otkin@ssec.wisc.edu
mailto:jason.otkin@ssec.wisc.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Many previous studies have examined the sensitivity of

TC forecast errors to the assumptions made by different

model parameterization schemes. Large differences have

been found in TC intensity, structure, and rainfall when

different microphysics, cumulus, and planetary boundary

layer schemes are used. For microphysics schemes, con-

version processes such as condensation, melting, and

evaporation between different hydrometeor species and

their feedback to the large-scale environment can sig-

nificantly impact the TC intensity (e.g., Pattnaik and

Krishnamurti 2007a,b, 2011; Fovell and Su, 2007; Fovell

and Corbosiero 2009; Fovell et al. 2010). The timing of

rapid intensification events and the intensity of simulated

TCs after several days of model integration has also been

shown by Smith and Thomsen (2010) to be sensitive to

different components of the planetary boundary layer

scheme such as the vertical eddy diffusivity and surface

drag coefficient. Indeed, Bao et al. (2012) showed that

uncertainties in the planetary boundary layer and mi-

crophysics parameterization schemes have comparably

large impacts on the intensity and structure of simulated

TCs. Subgrid scale detrainment processes and the vertical

transport of momentum, heat, and moisture represented

by cumulus parameterization schemes can also strongly

influence cloudmorphology and the distribution of latent

heat release, with attendant changes in TC structure and

intensity (e.g., Davis and Bosart, 2002; Mukhopadhyay

et al. 2011; Deshpande et al. 2012; Nasrollahi et al. 2012).

Though many prior studies have used traditional TC

verification metrics such as track and intensity errors to

evaluate the model sensitivity to different parameteriza-

tion schemes and assumptions, few have done so using

satellite observations even though they provide valuable

information about TC intensity and the spatial and tem-

poral distribution of clouds and water vapor. Airborne

and land-based Doppler radars also provide detailed in-

formation about the cloud field; however, their limited

spatial coverage and incomplete sampling hinders their

use as a routine model evaluation tool. The so-called

model-to-satellite approach in which model simulated

fields such as temperature, water vapor, and cloudmixing

ratios, are converted into simulated satellite brightness

temperatures using a forward radiative transfer model

has gained widespread acceptance as a useful method to

evaluate the accuracy of weather and climate model

forecasts. This approach has been used to assess the

ability of models to produce accurate cloud and moisture

forecasts (e.g., Karlsson 1996; Rikus 1997; Chaboureau

et al. 2000; Tselioudis and Jakob 2002; Lopez et al. 2003;

Grasso and Greenwald, 2004; Sun and Rikus 2004; Otkin

and Greenwald 2008; Otkin et al. 2009), identify param-

eter sensitivities in microphysics schemes (Chaboureau

and Pinty 2006; Grasso et al. 2014), and generate realistic

brightness temperature datasets used as a proxy for fu-

ture satellite sensors (Otkin et al. 2007; Grasso et al. 2008;

Feltz et al. 2009; Bikos et al. 2012).

Recent studies by Jankov et al. (2011), VanWeverberg

et al. (2013), and Cintineo et al. (2014) have shown that

the spatial and temporal distribution of ice clouds in the

upper troposphere can vary greatly depending upon

which microphysics parameterization scheme is em-

ployed, whereas Thompson et al. (2016) demonstrated the

importance of properly coupling the cloud microphysics

and radiation parameterization schemes when simulating

ice cloud radiative properties. Y. Jin et al. (2014) showed

that errors in TC track and intensity forecasts were

smaller when using a more sophisticated cloud micro-

physics scheme that predicts two moments of the particle

size distribution. A large cold bias in the simulated in-

frared brightness temperatures associated with an over-

abundance of ice clouds was also eliminated when using

the more sophisticated scheme. Taken together, these

studies demonstrate the sensitivity of the cloud field to the

assumptionsmade by different parameterization schemes.

In this study, we assess the accuracy of the cloud and

water vapor fields in Hurricane Weather Research and

Forecasting (HWRF) Model forecasts obtained when

using different cloud microphysics and cumulus pa-

rameterization schemes. Cycled 5-day forecasts cover-

ing the entire life cycle of Hurricane Edouard, which

briefly became a major hurricane in the central Atlantic

in 2014, were performed for each model configuration.

The forecast accuracy will be assessed through com-

parisons of observed and simulated infrared brightness

temperatures, satellite-derived TC intensity estimates,

and standard verification of simulated track and in-

tensity metrics against the National Hurricane Center

(NHC) best track (BT) dataset. The paper is organized

as follows. The HWRF Model simulations and satellite

datasets are described in section 2. Results are shown in

section 3 with conclusions presented in section 4.

2. Datasets and methodology

a. HWRF Model configurations

Themodel simulations evaluated during this study were

performed using the 2015 version of the operational

HWRF Model maintained and supported by the De-

velopmental Testbed Center (Bernardet et al. 2015). The

complete modeling and data assimilation system (revision

4463) was installed on the ‘‘jet’’ supercomputer located at

the Earth System Research Laboratory in January 2016.

HWRF is a primitive equation, nonhydrostatic coupled

atmosphere–ocean model that uses the Nonhydrostatic

Mesoscale Model dynamic core and the Princeton Ocean

Model for Tropical Cyclones (Yablonsky et al. 2015) to
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predict changes in sea surface temperatures. The simula-

tions contained three two-way interactive nested domains

with 18, 6, and 2-km horizontal grid spacing, respectively.

The parent domain covers an area spanning approximately

808 3 808, with the inner domains covering 128 3 128 and
7.18 3 7.18, respectively. The initial center locations of the
parent and inner domains vary for each forecast cycle and

are dictated by the observed location of the TC center at

the beginning of the forecast period. The parent domain

remains fixed during the entire forecast period, whereas

the inner two domains move with time so that they remain

centered on the TC. The vortex following algorithm

identifies the TC center based on a set of ‘‘fix locations’’

that depict minima in sea level pressure and geopotential

height or maxima in wind speed and vorticity in the lower

troposphere. TheTC center is defined as themean of these

fix locations. The model top is set to 2hPa with 61 levels

on a terrain-following vertical coordinate system. Com-

plete details can be found in Tallapragada et al. (2015).

Cycled forecast experiments were performed for eight

model configurations that employed different cloud mi-

crophysics and cumulus parameterization schemes, but

were otherwise identical. Four microphysics schemes

were evaluated, including the Ferrier scheme that was

operational in 2014, the Ferrier–Aligo scheme that be-

came operational in 2015, and two other schemes that are

being considered for inclusion in future versions of

the operational HWRF Model. These schemes include

the Thompson microphysics and a special version of the

Ferrier–Aligo scheme that contains separate horizontal

and vertical advection tendencies for each hydrometeor

species. The version of the Ferrier scheme used by

HWRF is based on the Eta Grid-Scale Cloud and Pre-

cipitation microphysics scheme that has been modified

for use in tropical environments (Ferrier 2005). It predicts

changes in mass mixing ratios for four hydrometeor

species including cloud water, rain, cloud ice, and pre-

cipitation ice (e.g., snow, graupel, and sleet). The indi-

vidual mixing ratios are combined into a total condensate

variable prior to computing the advection terms to reduce

computational expense and then diagnostically separated

into multiple species afterward. The Ferrier–Aligo

scheme is a modified version of the tropical Ferrier

scheme that was developed to improve simulations of

deep convection in high-resolution numerical weather

prediction models (Aligo et al. 2014). Like the older

Ferrier scheme, the operational version of the Ferrier–

Aligo scheme combines all of the hydrometeor mixing

ratios into one quantity before calling the advection

procedure. Recent work however has removed this con-

straint so that the advection tendencies are computed

separately for each cloud species. This version of the

scheme is known as the advected Ferrier–Aligo scheme.

Last, the Thompson scheme includes prognostic equa-

tions for cloud water, rain, ice, snow, and graupel mixing

ratios (Thompson et al. 2008). Unlike the other schemes,

it is a hybrid doublemoment scheme that also predicts the

number concentrations for cloud ice and rain.

To assess the forecast sensitivity to the cumulus pa-

rameterization scheme, each of themicrophysics schemes

was paired to either the simplified Arakawa–Schubert

(SAS) scheme or to a newer version of the scheme known

as the scale-aware SAS (SASAS) scheme. The cumulus

scheme was only used on the outer two domains; thus,

convection was explicitly represented on the innermost

domain. The SAS scheme is based on the scheme de-

scribed by Arakawa and Schubert (1974) that was sub-

sequently simplified for operational use by Grell (1993)

to consider only one cloud top at a specified time and

location rather than a full spectrum of cloud sizes as was

done in the original scheme. The scheme was revised to

make cumulus convection stronger and deeper by in-

creasing the maximum allowable cloud base mass flux

and by having convective overshooting from a single

cloud top. In the SAS scheme, convection depends on the

cloud-work function, which is a quantity that is derived

from the temperature and water vapor profiles in each

model column. When the cloud-work function exceeds a

certain threshold, the parameterizations are triggered

and themass flux of the cloud is determined using a quasi-

equilibrium assumption. The temperature and moisture

profiles are adjusted toward the equilibrium cloud-work

function within a specified time scale using the mass flux,

which is also allowed to transportmomentumvertically in

the column (Tallapragada et al. 2015). Recent work by

Arakawa and Wu (2013) has generalized the framework

for cumulus parameterization so that it can be applied to

any horizontal resolution. This version of the scheme,

known as the scale-aware SAS, is necessary for grid sizes

less than 10km where updrafts become partially or fully

resolved. It permits a smooth transition between param-

eterized and explicit simulation of cloud-scale processes

as the resolution increases by allowing the fractional area

covered by convective updrafts in each grid box to ap-

proach one at higher resolutions. Table 1 lists the cumulus

andmicrophysics parameterization schemes employed by

each model configuration, along with the simulation ac-

ronyms that will be used in the remainder of the paper.

Cycled forecast experiments were performed for each

model configuration with the initial forecast starting at

0000 UTC on 12 September 2014 when Edouard was

first declared a tropical storm. The storm steadily in-

tensified in a generally favorable environment as it

moved toward the northwest to become a hurricane

on 14 September and then a major hurricane on

16 September with maximum sustained winds of 105kt
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(1 kt 5 0.5144ms21) before rapidly weakening as it

curved toward the northeast (Fig. 1). Edouard fell below

hurricane strength on 19 September before becoming a

remnant low shortly thereafter (Stewart 2014). The final

forecast was initialized at 1200 UTC on 19 September.

Initial conditions for the model simulations were ob-

tained from Global Forecast System (GFS) analyses. The

cycled modeling runs were initiated every 6h using the

vortex relocation procedure described byGopalakrishnan

et al. (2012). The relocation procedure replaces the vortex

from the GFS analysis with the vortex from the previous

HWRF forecast after correcting it using the observed TC

location and intensity. Conventional observations, in-

cluding radiosondes, dropwindsondes, aircraft reports,

surface observations, and scatterometer winds, were as-

similated every 6h on the inner two domains using the

hybrid ensemble–variational Gridpoint Statistical In-

terpolation analysis system (Wang et al. 2013). Satellite-

derived atmospheric motion vectors along with clear-sky

infrared and microwave radiances from several sensors

were assimilated only on domain 2. No observations were

assimilated on the outer domain. In its current configu-

ration, operational HWRF forecasts start from a cloud-

free analysis, meaning that it will take some time to spin

up a realistic cloud field during the forecast.

To reduce computational and storage expense, 126-h

forecasts were only generated for forecasts starting at

0000 and 1200 UTC; however, full cycling still occurred

at 6-h intervals, with shorter 12-h forecasts sufficient

to start the next forecast cycle generated at 0600 and

1800 UTC. Sixteen 126-h forecasts initialized at 0000 or

1200UTCwere generated for eachmodel configuration.

In addition to the cumulus and microphysics schemes

listed in Table 1, all simulations used the Noah land

TABLE 1. Simulation acronyms and cumulus and microphysics

parameterization schemes used for each model configuration.

Simulation

Microphysics

scheme Cumulus scheme

FERR-SAS Ferrier Simplified Arakawa–

Schubert (SAS)

FERR-SASAS Ferrier Scale-aware SAS

(SASAS)

FA-SAS Ferrier–Aligo SAS

FA-SASAS Ferrier–Aligo SASAS

ADVFA-SAS Advected

Ferrier–Aligo

SAS

ADVFA-SASAS Advected

Ferrier–Aligo

SASAS

THOM-SAS Thompson SAS

THOM-SASAS Thompson SASAS

FIG. 1. National Hurricane Center best track position and intensity estimates shown at 12-h intervals from 11 to 19

Sep 2014. [Image obtained from Stewart (2014).]
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surface model (Mitchell 2005), the GFS planetary

boundary layer scheme (Hong and Pan 1996), and the

Rapid Radiative Transfer Model for General Circulation

Models longwave and shortwave radiation schemes with

partial cloudiness (Iacono et al. 2008).

b. Synthetic satellite brightness temperatures and
forward model description

The ability of each model configuration to accurately

predict the cloud andwater vapor fields is assessed through

detailed comparisons of real and synthetic Geostationary

Operational Environmental Satellite-13 (GOES-13) in-

frared brightness temperatures. The Community Radia-

tive Transfer Model (CRTM; Han et al. 2006) included in

the Unified Post Processer (UPP) code was used to con-

vert the model output into simulated infrared brightness

temperatures. Model fields used by the CRTM include

vertical profiles of temperature, water vapor mixing ratio,

and the mixing ratios for each cloud hydrometeor species

predicted by a given microphysics scheme, along with

surface skin temperature and 10-m wind speed. Vertical

profiles of effective particle diameters are also computed

for each cloud hydrometeor species based on the as-

sumptionsmadeby eachmicrophysics scheme (Otkin et al.

2007). With this method, the particle diameter varies as a

function of mixing ratio and number concentration (when

available), as occurs in real clouds. When only the mixing

ratio is available for a given species, the number concen-

tration is diagnosed using scheme-specific parameters,

such as the slope intercept, and the assumed particle size

distribution shape (e.g., Marshall–Palmer, etc.) for that

species. A functionwas added to the community version of

the UPP that correctly computes the effective diameters

for the schemes evaluated during this study. Cloud ab-

sorption and scattering properties, such as extinction,

single-scatter albedo, and full scattering phase function,

are then assigned for each species using lookup tables that

are a function of cloud mass and effective diameter. In-

frared cloud optical depths are computed by scaling the

visible optical depth by the ratio of the extinction effi-

ciencies, whereas gas optical depths are computed using

CompactOPTRAN code in the CRTM.

Simulated GOES-13 brightness temperatures were

computed at 6-h intervals during each forecast cycle, and

subsequently remapped to the GOES-13 projection to

allow for direct comparisons of the real and simulated

satellite data. The spectral bands used during this study

include the 6.5-mm band that is sensitive to clouds and

water vapor in the mid- and upper troposphere and the

10.7-mm window band that is sensitive to clouds when

they are present or to surface skin temperature when

skies are clear. Additional information about the accu-

racy of the forecast cloud field was obtained by passing

the simulated infrared brightness temperatures through

version 8.2.1 of the advanced Dvorak technique (ADT),

which is a fully automated, objective method that is used

to estimate TC intensity based on cloud patterns in geo-

stationary satellite infrared imagery (Olander and

Velden 2007). The ADT uses an objective scheme to

identify the TC center location and to compute various

cloud top parameters, such as the brightness temperature

gradient between the eye and the surrounding central

dense overcast region, that are indicators of TC intensity.

It makes use of long-term statistical relationships to de-

velop regression equations that are used to estimate the

TC intensity. It can be used during all phases of the TC

life cycle. Simulated ADT intensity estimates were

computed at 6h intervals during each forecast cycle using

simulated GOES 10.7-mm imagery. The same version of

the ADT algorithm was used to compute observed TC

intensity estimates based on the observedGOES10.7-mm

imagery. A recent study by Manion et al. (2015) dem-

onstrated that simulated ADT intensity estimates could

provide an effective means to compare the accuracy of

different parameterization schemes.

3. Results

a. Upper-level cloud and water vapor analysis:
Domain maps

This section uses GOES 6.5-mm brightness temper-

atures to assess the accuracy of the forecast cloud

and water vapor fields in the middle and upper tropo-

sphere. Figure 2 shows a representative comparison of

the observed and simulated brightness temperatures

from a 120-h forecast valid at 0000 UTC 18 September.

The simulated images represent a combination of bright-

ness temperatures on the two inner domains generated

during the HWRF postprocessing step. Edouard had

weakened into a category 1 hurricane by this time as it

moved toward the northeast and encountered a less

favorable environment. The hurricane was charac-

terized by a small but well-defined eye enclosed within

a decaying concentric eyewall (Abarca et al. 2016)

(Fig. 2a). These features were depicted very differently

in the forecasts, with most model configurations pro-

ducing much larger eyes embedded within a large cen-

tral dense overcast region. This behavior is consistent

with several prior studies (e.g., Davis et al. 2008; Fierro

et al. 2009; H. Jin et al. 2014) that have shown that un-

realistically large hurricane eyes and circulation pat-

terns can develop when the horizontal resolution is

coarse. However, given that the inner domain contains

2-km grid spacing, the large eyes likely result from

sensitivities to the model diffusion, surface physics, or

other parameterization schemes (e.g., Rotunno et al.
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2009; Marks et al. 2016) rather than the spatial resolu-

tion. It is also possible that the eyes are too large due to

the lack of an eyewall replacement cycle in the model

forecasts.

Overall, it also apparent that all of the forecasts contain

brightness temperatures that are colder than observed in

the clear-sky areas to the northwest and south of the

hurricane. This cold bias is illustrated by the lack of

simulated brightness temperatures greater than 245K.

Because the 6.5-mm band is sensitive to water vapor, the

cold bias indicates that the forecasts are too moist in the

middle and upper troposphere, which is causing the peak

of the satellite weighting function to occur at a higher,

colder level of the atmosphere. Comparison of the cu-

mulus scheme results shows that they also had a large

impact on the water vapor content in the clear sky areas.

For example, for each cloud microphysics scheme, the

simulated brightness temperatures were 1–2K warmer to

the south of the hurricane when the SASAS cumulus

scheme was used on the outer domains. The warmer

brightness temperatures along the southern edge of the

domain suggest that the SASAS cumulus scheme may

have produced stronger subsidence on the outer domains

that helped remove some of the moist bias in the upper

troposphere prior to being advected into the inner do-

main through the lateral boundary conditions.

b. Upper-level cloud and water vapor analysis:
Probability distributions

To examine the temporal evolution of errors in the

upper level cloud and water vapor fields during the

126-h forecast period, 6.5-mm brightness temperature

probability distributions were computed for each model

configuration as a function of forecast hour using data

from the eight forecast cycles that were initialized at

0000UTC. The 1200UTC forecasts were not included in

this analysis to avoid cancelling errors that are a function

of the diurnal cycle. Probability distributions were also

computed for the corresponding observations at each

forecast verification time, with differences subsequently

computed between the observed and simulated distri-

butions. The resultant differences for the inner domain

are shown in Fig. 3. Blue colors indicate that the model

forecasts do not contain enough grid points with

brightness temperatures of a certain value, whereas red

colors indicate that they contain too many.

FIG. 2. Observed and simulatedGOES 6.5-mmbrightness temperatures valid at 0000UTC 18 Sep 2014. The simulated images are from the

120-h forecast of the forecast cycle initialized at 0000 UTC 13 Sep 2014.
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Overall, the most notable feature on each panel is the

red–blue couplet that occurs during the entire forecast

period. This couplet shows that all of the model config-

urations produce too many (few) grid points with cold

(warm) brightness temperatures, which is consistent

with what was shown in Fig. 2. The overabundance of

cold brightness temperatures will by necessity lead to a

deficiency of warmer brightness temperatures given the

FIG. 3. Forecast-minus-observed GOES 6.5-mm brightness temperature probability distribution differences

plotted as a function of forecast hour for each model configuration. The probability distributions were computed

using data from all forecasts initialized at 0000 UTC.
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top-down nature of this satellite-based analysis. As dis-

cussed in the previous section, this shift toward colder

brightness temperatures indicates that there is too much

water vapor in themiddle and upper troposphere. Because

this moist bias is present at the beginning of the forecast

period, this indicates that it is at least partially due to a

moist bias in the GFS analyses used to initialize the

HWRF forecasts, which is consistentwith a recent study by

Ren (2016) that documented similarly large biases in the

GFSmodel. Comparison of themicrophysics schemes also

reveals large differences during the forecast, with the

FERR and FA schemes exhibiting the largest bias overall

whereas the initial bias remains the same or decreases with

time when the other schemes are used. For each micro-

physics scheme, simulations using the SASAS cumulus

scheme typically contained smaller errors for brightness

temperatures between 235 and 255K. This is especially

evident for the ADVFA and THOM simulations during

the last few days of the forecast. Together, these results

show that the parameterization schemes and how they

interact with other model physics is leading to different

responses to the same initial water vapor bias in the upper

troposphere. In addition, given that the cumulus schemes

were not used on the inner domain, the strong sensitivity of

these errors to the cumulus scheme also illustrates the

importance of assessing the model accuracy on the outer

domains and the behavior of the parameterization schemes

at coarser resolutions. Further work is necessary to explore

these sensitivities in greater detail.

Another interesting feature in Fig. 3 is the large di-

urnal cycle that occurs for each model configuration

during the entire forecast period for brightness tem-

peratures less than 235K. This error pattern is primarily

driven by differences in the diurnal cycle of deep con-

vection and its subsequent impact on the cloud and

moisture fields in the upper troposphere. Most of the

model configurations produce too many clouds with

brightness temperatures around 220K and not enough

near 230K, especially during later forecast hours. They

also tend to slightly underpredict the frequency of the

coldest clouds with brightness temperatures ,215K.

This complex error pattern suggests a general tendency

for most of the configurations to produce clouds that are

optically thicker or higher than observed within the

FIG. 4. Observed and simulatedGOES 10.7-mmbrightness temperatures valid at 0000UTC 14 Sep 2014. Cyclone intensitymetrics from the

best track (BT) dataset, forecast maximum sustained 10-m wind speeds (FCST), and satellite-derived ADT (SIM_ADT) are shown on each

panel. The simulated imagery and intensity metrics are from the 24-h forecast of the forecast cycle initialized at 0000 UTC 13 Sep 2014.
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upper-level cloud shield associated with the TC (e.g.,

refer to Fig. 2), while simultaneously underpredicting

the spatial extent of the deepest convective clouds

containing the coldest brightness temperatures. This

tendency toward colder brightness temperatures, how-

ever, could also be caused by a bias in the CRTMused to

compute the simulated brightness temperatures. This

topic will be briefly explored in Section 3g.

c. Intensity assessment using the advanced Dvorak
technique

In this section, the overall accuracy of the forecast

cloud field on the inner domain is assessed through

comparison of TC intensity estimates from the ADT

algorithm with maximum sustained 10-m wind speeds

from the NHC hurricane BT dataset and HWRFModel

forecasts (FCST) for a representative forecast cycle. The

FCST intensities were obtained using the Geophysical

Fluid Dynamics Laboratory vortex tracker algorithm

used by the operational HWRF Model to estimate the

vortex center position and provide TC intensity and

structure metrics. Figure 4 shows the observed and simu-

lated 10.7-mm brightness temperatures and intensity

estimates from a 24-h forecast valid at 0000 UTC

14 September. At this time, the BT and ADT intensity

metrics both indicated that Edouard was a strong tropical

storm (Fig. 4a). The observed satellite imagery depicts a

strengthening system characterized by a well-defined

circulation with an area of deep convection near the

storm center (Fig. 4a). Inspection of the model results

shows that all of the forecasts have surface winds that are

weaker than observed, with the simulated ADT in-

tensities being even weaker. The weak bias in the ADT

estimates does not represent a problem with the ADT

algorithm; instead, it indicates that 24h is not enough

time for the HWRF Model to spin up a completely re-

alistic cloud field after starting from a cloud-free analysis.

The weaker ADT intensity estimates are consistent with

the more disorganized appearance of the simulated cloud

field and the weaker surface circulations found in the

model forecasts.

By the 72-h forecast valid at 0000 UTC 16 September

(Fig. 5), Edouard had developed into a strong category 2

hurricane with maximum sustained winds of 95 kt ac-

cording to the BT dataset. The satellite imagery reveals

a very strong cyclone characterized by a well-defined

FIG. 5. As in Fig. 4, but corresponding to the 72-h forecast valid at 0000 UTC 16 Sep 2014.
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eye surrounded by a large central dense overcast region

(Fig. 5a). All of the surface-based intensities from the

model forecasts were weaker than observed, with the

FERR (THOM) forecasts having the strongest (weak-

est) surface winds. The simulated ADT intensity esti-

mates were stronger than the FCST wind speeds for all

of the model configurations and exhibited a wide range

of values that are consistent with differences in the

forecast cloud field. For example, the cloud field in the

FA–SASAS simulation (Fig. 5e) has a somewhat ragged

appearance consistent with the relatively weak 82-kt

ADT intensity estimate. Likewise, the THOM-SAS

forecast has a small eye surrounded by a nearly circu-

lar central dense overcast region containing very cold

brightness temperatures that is consistent with the much

stronger 115-kt ADT intensity estimate (Fig. 5h). Many

of the forecasts exhibit a large spread between the FCST

and ADT intensity metrics that indicates that there can

be a large disconnect between TC intensity based on

forecast 10-m wind speeds and that inferred by cloud

patterns in the simulated satellite imagery. Differences

between these two metrics are especially large when the

THOM scheme is used. In most cases, however, the

simulated ADT intensities are actually a closer match to

the observed BT intensity than were the FCST 10-m

wind speeds.

By 0000UTC 18 September, Edouard was in the latter

stages of an eyewall replacement cycle that had caused it

to weaken into a category 1 hurricane according to the

BT andADT intensity datasets (Fig. 6a). Comparison to

the 120-h forecasts shows that very large differences had

developed between the observed and simulated cloud

fields for the different parameterization schemes. For

example, the upper level cloud field is much smaller

during the FA forecasts than it is during the FERR and

THOM forecasts. The spatial extent of the coldest

brightness temperatures in these upper-level cloud fea-

tures is much larger than observed, which is consistent

with the probability differences shown in Fig. 3. Also,

unlike earlier in the forecast, the surface and ADT in-

tensities are generally stronger than observed. The most

notable feature in most of the images however is the

very large hurricane eye that stands in sharp contrast to

the small eye and double eyewall structure found in the

observations. Though the more intense hurricanes and

large eyes are at least partially due to the lack of an

eyewall replacement cycle in the model forecasts, the

eyes are still much larger than is typically observed.

FIG. 6. As in Fig. 4, but corresponding to the 120-h forecast valid at 0000 UTC 18 Sep 2014.
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d. Azimuthal cloud structure

In this section, we will use the observed and simulated

GOES 10.7-mm brightness temperatures to examine the

azimuthal structure of the forecast cloud field for differ-

ent TC intensities. Figure 7 shows the azimuthal mean

brightness temperatures extending from the TC center

to a distance of 500km for each model configuration and

for the observations. The observed cyclone center was

obtained from the hurricane BT dataset whereas the

grid point with the lowest mean sea level pressure was

used to determine the center of the forecast TC. The

observed TC intensity obtained at 6-h intervals was used

to aggregate the results into each TC intensity category

before computing the observed and simulated azimuthal

mean brightness temperatures. Model output from each

forecast cycle initialized at 1200 UTC was used to con-

struct these distributions; however, data prior to the

30-h forecast for each forecast cycle was not included in

order to limit the impact of the spin-up process on the

cloud field.

Overall, all of the model configurations realistically

captured the nearly constant brightness temperature

distributions for tropical storm strength disturbances

(Fig. 7a). For category 1 hurricanes, however, all of them

contain brightness temperatures that are much warmer

than observed for radial distances less than 75km before

becoming similar beyond 150km (Fig. 7b). The warmer

brightness temperatures near the storm center indicate

that the hurricane eye is clearer in the forecasts than it

FIG. 7. Azimuthal mean 10.7-mmbrightness temperature distributions extending from the tropical cyclone center

to a distance of 500km for the observations and each model configuration separated into (a) tropical storm and (b)–(d)

category 1–3 hurricanes. The sample size N is shown on each panel.

MAY 2017 OTK IN ET AL . 2037



was in the observations. This warm bias is partially due

to the tendency for some HWRF forecasts to produce

very large eyes during the decay phase of Hurricane

Edouard, such as that shown in Fig. 6. The observed

brightness temperatures had warmed substantially for

radial distances ,50km by the time Eduoard had

become a category 2 hurricane (Fig. 7c). The brightness

temperature distributions closely matched the observa-

tions when the THOM and ADVFA microphysics

schemes were used; however, they continued to be too

warm near the TC center when the FERR and FA

schemes were used. For category 3 hurricanes (Fig. 7d),

the simulated brightness temperatures continued to be

too warm near the TC center, with the warmer tem-

peratures extending to a greater radial distance than

observed. These results further reveal that the FERR

and FA schemes are most susceptible to producing un-

realistically large eyes for all hurricane intensities,

whereas the smaller eye diameters found in the THOM

and ADVFA forecasts are more accurate.

e. Relationship between ADT and 10-m wind speed
intensities

To more thoroughly assess the accuracy of the fore-

cast cloud field using the ADT, Fig. 8 shows scatterplots

of observed andmodel-derivedADT intensity estimates

versus the BT intensity accumulated at 6-h intervals

over a 6-day period from 0000 UTC 13 September to

0000 UTC 19 September. Because the HWRF forecasts

start from a cloud-free analysis, simulated ADT in-

tensities prior to the 30-h forecast are excluded from

the scatterplots to limit the impact of the model spinup

process on the cloud field. Overall, there is a strong

relationship between the observed ADT and BT in-

tensities as evidenced by a correlation of 0.87 (Fig. 8a).

There is a tendency however for the ADT estimates to

be slightly weaker (stronger) than the BT intensities

when Edouard was a weak (strong) TC. Though the

correlations are weaker, a similar relationship was

found for each of the model configurations, with the

FIG. 8. Scatterplots of satellite-derived ADT and hurricane best track intensity estimates for the observations and each model

configuration accumulated at 6-h intervals over a 6-day period from 0000 UTC 13 Sep to 0000 UTC 19 Sep 2014.
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highest correlations obtained for forecasts using the

FERR and FA microphysics schemes or the SAS cu-

mulus scheme. The tendency for the simulated ADT

intensities to be weaker than observed when Edouard

was a tropical storm suggests that the spatial pattern of

the cloud field was less organized or that there was less

deep convection in the forecasts similar to what was

shown in Fig. 4.

The consistency between the forecast TC intensities

obtained directly from the model-predicted lower-

tropospheric wind speeds with those inferred from

cloud patterns in the simulated satellite infrared im-

agery is assessed using Fig. 9. These scatterplots were

constructed using model output from the same ob-

servation and forecast time periods used in Fig. 8.

Overall, the correlations indicate broad agreement

between the surface 10-m wind speeds and the TC

intensity implied by the structure of the cloud field.

The ADT intensities tend to be weaker than the FCST

10-m wind speeds when the maximum sustained wind

speeds are less than 60 kt. Absolute differences be-

tween the ADT and FCST intensity metrics become

larger for more intense TCs; however, they still re-

main similar on a percentage basis when scaled by the

observed intensity. The simulated ADT intensities

exhibit little or no bias for the FERR and FA schemes

when the FCST 10-m wind speeds are greater than

60 kt. This stands in contrast to the propensity for the

THOM and ADVFA forecasts to have ADT intensity

estimates that are much stronger than the surface-

based intensities. For the hurricane intensities exam-

ined during this study, the presence of an eye along

with its size are typically the most important param-

eters that influence the ADT intensity estimates. As

was shown in section 3d, both of these schemes tend to

produce hurricanes with smaller eyes than the FERR

and FA schemes. Though the smaller eyes more

closely match the observations, they are typically in-

dicative of more intense hurricanes, and will generally

lead to higher ADT intensity estimates.

Colder brightness temperatures in the central dense

overcast region can also lead to higher ADT-derived in-

tensities; therefore, the presence of a cold bias during some

of the forecasts (e.g., Fig. 5) could also be contributing to

the positive ADT intensity bias for some of the stronger

storms. Inspection of the azimuthal brightness temper-

ature averages (Fig. 7); however, shows that with the

exception of the brightness temperatures within the first

100km of the TC center (which are warmer than ob-

served), the simulated brightness temperatures are similar

to the observations when averaged over all forecasts. To-

gether, these characteristics suggest that the primary

cause of the positive ADT intensity bias for observed BT

intensities .70kt is that the HWRF forecasts tend to

have eye features that are clearer and more prominent

than observed. In addition, it is important to note that the

positive bias in the simulatedADT intensity estimates for

the stronger hurricanes during the ADVFA and THOM

forecasts is mostly with respect to the FCST 10-m wind

speeds (e.g., Fig. 9), whereas the bias is not as large when

the simulated ADT intensity estimates are compared to

the observed BT dataset (Fig. 8). This behavior suggests

that at least some of the apparent bias may actually be

due to the HWRF Model producing a weaker surface

cyclone than observed rather than the ADT intensities

being too strong.

f. Forecast error time series

This section assesses the evolution of the track and

intensity errors during the 5-day forecast period with

respect to the BT dataset. Figure 10 shows a comparison

of traditional errormetrics computed using themean sea

level pressure and 10-mwind speed forecasts to intensity

errors computed using the ADT intensity estimates.

Overall, the track errors are similar for all model con-

figurations through forecast hour 60 and then diverge at

later forecast hours (Fig. 10a). Among the microphysics

schemes, the largest errors occur during the THOM

forecasts, whereas forecasts using the FERR and FA

schemes contain the smallest errors. A similar stratifi-

cation occurs for the maximum sustained 10-m wind

speeds (Fig. 10b) with the exception that the ADVFA

forecasts tend to have the largest errors on average.

Sensitivity in the track and intensity forecasts to the

cumulus parameterization scheme varies with time and

among the various microphysics schemes, thereby

making it difficult to determine which cumulus scheme

produced the most accurate forecasts during this case

study. Though all of the model configurations begin the

forecast period with essentially no wind speed bias

(Fig. 10d), a negative bias develops thereafter and rea-

ches its maximum magnitude between forecast hours 36

and 48 before diminishing during later forecast hours.

The ADVFA and THOM schemes are most susceptible

to producing storms that are weaker than observed. The

FERR scheme had the smallest wind speed bias and

produced the most accurate forecasts based on these

traditional verification metrics.

Inspection of the ADT intensity errors shows that all

of the model configurations contain very large errors at

the beginning of the forecast period due to the lack of

clouds in the initialization datasets (Figs. 10c,e). The

large weak bias and mean absolute errors rapidly de-

crease during the first 24 h of the forecast as the model

spins up a more realistic cloud field. Based on the wind

speed bias (Fig. 10e), the FERR scheme is able to
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FIG. 9. Scatterplots of satellite-derived ADT intensity estimates and forecast maximum

sustained 10-m wind speeds for each model configuration accumulated at 6-h intervals over

a 6-day period from 0000 UTC 13 Sep to 0000 UTC 19 Sep.
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produce a realistic cloud fieldmore quickly than the other

schemes and thus has the smallest ADT intensity bias

between forecast hours 18 and 48. Even so, a negative bias

persists up to the 60h forecast in the ADT intensities and

up to the 90h forecast in the 10-m wind speeds for most

model configurations. Though not examined during this

study, large differences in the spatial and temporal dis-

tribution of latent heating could at least partially account

for the tendency for weaker TCs during the first few days

of the forecasts. This is possible given that themodel must

spin up a complete cloud field at the beginning of each

forecast rather than starting with a cloud field that accu-

rately captures the latent heating distribution in the cen-

tral dense overcast region and spiral rainbands. This

possibility is supported by the tendency for the wind

forecast errors (Figs. 10b,d) to steadily increase during the

first 24h until the ADT intensity estimates derived from

patterns in the cloud field finally stabilize (Figs. 10c,e).

The forecast wind speed errors then slowly decrease with

time after a more realistic cloud field has developed. To-

gether, these results indicate that most of the model spin-

up process is complete within the first 24–36h of the

forecast, but that some detrimental impacts of the spin-up

process continue to affect the forecasts beyond this time.

g. Case study comparing different forward radiative
transfer models

Comparison of the observed and simulated brightness

temperatures in sections 3c and 3d revealed that the

simulated brightness temperatures tend to be too cold in

regions containing upper-level clouds. Here, we briefly

explore the sensitivity of these errors to the forward

radiative transfer model. Though beyond the scope of

the current study to explore this topic in detail, limited

sensitivity tests were performed using the successive

order of interaction (SOI; Heidinger et al. 2006) forward

radiative transfer model to see if its use could reduce the

magnitude of the cold bias in the upper-level clouds. The

16     15      14      13      12      11      10       9         8        7       6 661 789101112131415

FIG. 10. HWRF tropical cyclone (a) track errors computed using the forecast minimum sea level pressure and

(b) intensity and (d) intensity bias errors computed using the forecast maximum 10-m wind speed. The corre-

sponding ADT-estimated (c) intensity and (e) intensity bias errors are also shown. All errors are computed with

respect to the hurricane best track position andwind speed datasets and averaged over all forecast cycles. Errors are

plotted as a function of forecast hour. The sample size for each forecast hour is shown along the top of (a).
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SOI model has been used in prior model validation and

data assimilation studies (Cintineo et al. 2014; Otkin

2010, 2012; Jones et al. 2013) and has proven to be ca-

pable of producing accurate brightness temperatures in

both clear and cloudy-sky conditions. A key difference

in the SOI compared to the CRTM is its use of the Baum

et al. (2005) cloud property lookup tables that are used

to determine the ice cloud scattering and absorption

properties, such as single scatter albedo, extinction ef-

ficiency, and the full scattering phase function.

Figure 11 shows a comparison of the simulated 10.7-mm

brightness temperatures computed using the CRTM and

SOI models for a 72-h forecast valid at 0000 UTC 16 Sep-

tember 2014. The corresponding observed and simulated

FIG. 11. Simulated GOES 10.7-mm brightness temperatures computed using the CRTM

and SOI forward radiative transfer models along with the corresponding observed and sim-

ulated 10.7-mm brightness temperature probability distributions from a 72-h forecast valid at

0000UTC 16 Sep 2014. Results are shown for the (a)–(c) FERR-SASAS, (d)–(f) FA-SASAS,

(g)–(i) ADVFA-SASAS, and (j)–(l) THOM-SASAS forecasts.
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brightness temperature probability distributions are also

shown. For brevity, this figure only includes results from

forecasts in which the microphysics schemes were paired

to the SASAS cumulus scheme. Overall, it is evident that

the simulated brightness temperatures in cloudy regions

tend to be much warmer when the SOI model is used.

Inspection of the probability distributions shows that this

warming generally resulted in a more accurate depiction,

especially for mid and upper-level clouds characterized

by brightness temperatures,275K. This improvement is

illustrated by the shift in the peak of the distributions near

220K toward warmer values and the increase in bright-

ness temperatures between 275 and 240K. This example

reveals that itmay be possible to remove some of this cold

bias through use of different cloud property lookup tables

in the forward radiative transfer models used to compute

simulated brightness temperatures. Preliminary tests in-

dicate that the Baum et al. (2005) ice scattering phase

functions used by the SOI permitmore forward scattering

of radiation, thereby leading to warmer brightness tem-

peratures when ice clouds are present. A more thorough

analysis exploring this topic in greater detail will be pre-

sented in a future study.

4. Discussion and conclusions

In this study, cycled forecast experiments were per-

formed to assess the ability of different cloud micro-

physics and cumulus parameterization schemes in the

HWRF Model to accurately simulate the cloud and

water vapor fields. Data assimilation and other model

updates were performed at 6-h intervals during the en-

tire life cycle of Hurricane Edouard, with full 126-h

forecasts initiated each day at 0000 and 1200 UTC. The

forecast accuracy was assessed through comparison of

observed and simulated GOES-13 infrared brightness

temperatures and through a detailed assessment of

satellite-derived ADT TC intensity estimates. The

CRTM was used to convert the model-predicted water

vapor, cloud, and temperature fields into simulated in-

frared brightness temperatures that were then passed

through the ADT algorithm to produce TC intensity

estimates. Four cloud microphysics and two cumulus

parameterization schemes were assessed.

Evaluation of the 6.5-mm brightness temperatures

revealed the presence of a large moist bias in the middle

and upper troposphere during the entire forecast period

and for all model configurations. Because the moist bias

was present at the beginning of the forecasts, this in-

dicates that the excessive water vapor content was at

least partially due to a moist bias in the GFS analyses

used to initialize the HWRFModel forecasts. There was

some sensitivity to the parameterization schemes, with

the FERR microphysics scheme having the largest bias

and the THOM and ADVFA schemes having the

smallest bias. This suggests that having separate advec-

tion terms for each cloud hydrometeor species limited

the size of the bias. The bias was further reduced when

the SASAS cumulus scheme was used. There was also a

large diurnal cycle in the brightness temperature errors

that was related to errors in the diurnal cycle of deep

convection and its impact on the cloud and water vapor

fields in the upper troposphere. It is important to note

that the operational HWRF Model in its current con-

figuration does not assimilate any satellite observations

on the outer domain. Thus, assimilation of satellite in-

frared brightness temperatures sensitive to water vapor

could potentially reduce the moist bias in the initializa-

tion datasets. This in turn should lead to more accurate

forecasts; however, it may also necessitate retuning the

parameterization schemes given their different re-

sponses to the moist bias.

Comparison of observed and simulated 10.7-mm

brightness temperature imagery and mean azimuthal

brightness temperature distributions showed that all of

the model configurations produced hurricane eyes that

were larger and clearer than observed, especially for later

forecast hours. The tendency to produce unrealistically

large eyes was most noticeable for the FERR and FA

microphysics schemes and occurred for all hurricane in-

tensities. The THOM and ADVFA schemes produced

the most accurate brightness temperature distributions

and eye diameters, though the eyes were still larger than

observed. These results using satellite infrared brightness

temperatures are consistent with prior studies that used

more traditional wind radii metrics to document un-

realistically large hurricane eyes inmodel simulations. As

discussed in section 3a, prior studies have shown that

unrealistically large eyes can result from coarse model

resolution or biases in the surface physics and planetary

boundary layer schemes. The results from this study in-

dicate that the eye size is also sensitive to the micro-

physics scheme. Additional work is necessary to explore

this sensitivity in greater detail.

The accuracy of the forecast cloud fieldwas also assessed

using satellite-derived ADT TC intensity estimates. Com-

parisons to the forecast 10-m wind speeds showed that

there is reasonable agreement between the surface-based

intensities and the ADT TC intensities inferred via

cloud patterns in the upper troposphere. The FERR

and FA schemes had the strongest correlations between

these intensity metrics with no intensity bias evident for

the stronger storms. Forecasts using the ADVFA and

THOM schemes, however, exhibited much larger dif-

ferences for hurricane-strength storms, with the ADT

intensity estimates typically being stronger than the
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10-m wind speeds. This result reveals that there is often a

large disconnect between the forecast TC intensity based

on maximum sustained winds near the surface and that

implied by forecast cloud patterns in the upper tropo-

sphere when these microphysics schemes are used. The

ADT intensity metrics provided a powerful means to

document and evaluate these differences. More research

is necessary to determine the cause of this discrepancy

because it may be one of the reasons why the ADVFA

and THOM schemes produce more accurate hurricane

eye diameters, yet also have larger track and intensity

errors than the FERR and FA schemes. Given the longer

history of the FERR and FA schemes in the HWRF

Model, it is possible that their superior track and intensity

forecasts in spite of having less accurate cloud fields could

be due to better tuning with the other model parame-

terization schemes.

Finally, the largest forecast differences were typically

found when comparing the microphysics schemes. This

forecast sensitivity has also been shown in previous

studies and illustrates the importance of the cloud mi-

crophysics scheme for TC prediction. An interesting

result was that the ADVFA scheme behaved more like

the THOM scheme than the FA scheme from which it is

derived. Preliminary tests have shown that this behavior

appears to be primarily driven by enhanced vertical

transport of graupel into the upper troposphere in areas

with deep convection that then impacts the evolution of

the cloud field. Ongoing work is exploring this sensitivity

in greater detail. The cumulus scheme had a large im-

pact on the upper-level water vapor bias, with forecasts

using the newer SASAS scheme containing a smaller

bias than the SAS scheme, but otherwise the impact was

minimal or negative. This is consistent with recent work

by Biswas et al. (2014) that showed that new cumulus

schemes have yet to demonstrate superior forecast skill

in the operational HWRFModel when compared to the

original SAS scheme. More extensive analyses using

satellite infrared and microwave brightness tempera-

tures are necessary to refine these results.
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