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Abstract—Soil drainage is a widely used agricultural practice in
the midwest USA to remove excess soil water to potentially improve
the crop yield. Research shows an increasing trend in baseflow
and streamflow in the midwest over the last 60 years, which may
be related to artificial drainage. Subsurface drainage (i.e., tile) in
particular may have strongly contributed to the increase in these
flows, because of its extensive use and recent gain in the popularity
as a yield-enhancement practice. However, how evapotranspiration
(ET) is impacted by tile drainage on a regional level is not well-
documented. To explore spatial and temporal ET patterns and
their relationship to tile drainage, we applied an energy balance-
based multisensor data fusion method to estimate daily 30-m ET
over an intensively tile-drained area in South Dakota, USA, from
2005 to 2013. Results suggest that tile drainage slightly decreases
the annual cumulative ET, particularly during the early growing
season. However, higher mid-season crop water use suppresses the
extent of the decrease of the annual cumulative ET that might be
anticipated from widespread drainage. The regional water balance
analysis during the growing season demonstrates good closure,
with the average residual from 2005 to 2012 as low as -3 mm. As
an independent check of the simulated ET at the regional scale,
the water balance analysis lends additional confidence to the study.
The results of this study improve our understanding of the influence
of agricultural drainage practices on regional ET, and can affect
future decision making regarding tile drainage systems.

Index Terms—Data fusion, evapotranspiration, thermal in-
frared, tile drainage.
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I. INTRODUCTION

AGRICULTURAL management practices, such as irriga-
tion, fertilizer, and pesticide applications, are typically

employed to improve production, and can be critical to global
food production and food security. However, intensive modifica-
tion to the natural environment resulting from agricultural man-
agement can cause unintended environmental impacts, such as
soil erosion, salinization, nutrient and contaminant discharges
to water bodies, as well as changes in streamflow and water
availability [1]. The widespread installation of subsurface tile
drainage during the 20th and early part of the 21st century in the
midwestern USA is one example of management with poten-
tial unforeseen consequences. Subsurface tile drainage plays an
important role in poorly drained agricultural areas, especially
in the Corn Belt, removing excess soil water to facilitate ear-
lier crop planting, better field accessibility, and improved crop
yields [2], [3]. In many of these regions that have had a rapid in-
crease in drained area, a concomitant upward trend in baseflow
and streamflow has been observed, although the exact causes
are not well understood. For example, increased streamflow in
the Missouri River has been attributed primarily to changes in
precipitation [4]. In the driftless area of Wisconsin, increases
in baseflow magnitude have been attributed to agricultural land
management, while shifts in the timing of peak baseflow appear
related to changing rainfall patterns [5]. Schilling and Libra [6]
argue that increased baseflow in Iowa rivers is possibly related
in part to artificial drainage. Hoogestraat and Stam [7] assessed
trends in climate and streamflow characteristics in eastern South
Dakota (SD), USA, and found significant increases in the annual
streamflow at the lower part of the Big Sioux River Basin. Even
after correction for variations in streamflow related to precipita-
tion variability, the upward trend was still significant, indicating
that factors other than precipitation have a strong influence on
streamflow in that region [7].

Many studies have examined the effects of tile drainage on
soil temperature, streamflow dynamics, soil nitrogen losses, and
local water budgets. These studies fall into two general cat-
egories based on approach and scale: investigations based on
in-situ measurements at field scales, and analyses using process-
based hydrologic models at local/regional scales. For example,
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using field observations of soil temperatures from drained plots
in northwest Minnesota (MN), Jin et al. [8] showed that sub-
surface drainage had a significant positive effect on soil temper-
atures. Studies in the second category have employed various
models to study the impacts of subsurface tile drainage. Rah-
man et al. [9] used the modified soil and water assessment tool
(SWAT) [10], [11] to model the impact of subsurface drainage
on streamflow in the Red River of the North basin, and found
that tile drainage would likely decrease the magnitude of larger
peak flows, while increasing the magnitude of smaller peak
flows. Another study used DRAINMOD to simulate hydrologic
response in heavily drained and less-drained regions in Iowa,
and found increased annual baseflows in the heavily drained
areas, primarily occurring in the late spring and early summer
[12]. The agricultural drainage and pesticide transport model
(ADAPT) was applied to two commercial fields in south-central
MN to study the impact of tile drain spacing and depth on sub-
surface tile discharge and nitrate–nitrogen losses, and found that
increased tile drain spacing or decreased tile drain depth could
potentially decrease subsurface tile discharge [13].

Evapotranspiration (ET) is a key component of the hydro-
logic water cycle, reflecting crop consumptive water use and
evaporative losses from the soil. The hydrologic models that
have been used to study the impact of subsurface tile drainage
on streamflow and nutrient loss focus on infiltration and runoff
simulations, and typically use simplified algorithms to approx-
imate the evaporative loss of water as ET to the atmosphere.
Relatively few studies have been published investigating the
impact of subsurface tile drainage on ET, especially at the re-
gional scale. This is likely because information about the tile
design and installation is typically not available. Furthermore,
new advanced ET mapping techniques based on remote sensing
have only recently started to be accepted in the water resource
community, and they have not yet been well-integrated into
standard hydrologic modeling systems and studies.

Thermal Infrared (TIR) imagery acquired from satellites pro-
vides valuable information about surface moisture condition,
and can be used to map ET from local to regional to global
scales. The surface energy balance method based on TIR im-
agery has been successfully applied to estimate ET over regions
with varying climate and vegetation types [14]–[18], exploiting
the physical relationships that relate the evaporation rate to the
temperature of the evaporating surface. In comparison with ET
retrievals based solely on reflectance band vegetation indices
—the crop coefficient technique—remotely sensed land surface
temperature (LST) retrieved from TIR imagery is better able
to capture signals of early vegetation stress and variable soil
evaporation [19]. The latter is a particularly important feature
for studies of poorly drained soils.

One challenge in using TIR remote sensing in agriculture is
the need for imagery with both high spatial resolution, resolv-
ing individual farm fields, and high temporal resolution, tracking
highly volatile changes in ET that can result from changing soil
moisture, vegetation, and atmospheric forcing conditions. While
TIR data from Landsat can provide high spatial resolution (30
m, after sharpening with reflectance band data [20]), the long re-
visiting time (8–16 days or longer, depending on the cloud cover

Fig. 1. Schematic flow-chart describing the data fusion method for estimating
daily ET at 30-m resolution.

and number of functional Landsats) limits the frequency with
which ET updates can be obtained. Cammalleri et al. [21], [22]
addressed this issue by using the spatial and temporal adaptive
reflectance fusion model (STARFM) [23] to combine multispa-
tial and multitemporal ET retrievals using TIR imagery from
geostationary satellites (15-min revisit, ∼5-km resolution) and
from polar orbiting systems like MODIS (∼daily, 1 km), and
Landsat to generate daily ET maps at 30-m resolution. The fu-
sion system has been evaluated over rainfed corn and soybean
fields in the Walnut Creek watershed in Iowa (IA), USA, and
both rainfed and irrigated corn and cotton in Bushland, Texas
and Mead, Nebraska [21], [22]. The same approach has also
been successfully applied to a vineyard study area in California,
USA [24] and a managed pine-plantation in North Carolina,
USA [25]. In this paper, the data fusion method was employed
to estimate long-term daily subfield scale (30-m) ET over an
intensively drained agricultural area in SD from 2005 to 2013.
The objectives of this study were:

1) to evaluate the accuracy of ET retrieval over this landscape
in comparison with flux tower data;

2) to assess the impact of subsurface tile drainage on ET at
the regional scale;

3) to study the impact of subsurface tile drainage on the
long-term local/regional water balance.

II. METHODS

The multiscale ET mapping approach used in this study is
based on disaggregation of continental-scale maps generated
with the regional TIR-based Atmosphere-Land Exchange In-
verse (ALEXI) model [26], [27], forced with time-differential
LST data typically retrieved from geostationary satellite plat-
forms. ALEXI data are spatially downscaled (DisALEXI) using
higher resolution LST from MODIS and Landsat, which are
subsequently fused to generate high spatiotemporal resolution
ET time series (see Fig. 1). The major components of this mul-
tiscale system are described below.
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A. Atmosphere-Land Exchange Inverse Model

The two-source energy balance (TSEB) model developed by
Norman et al. [28], and then further refined by Kustas and
Norman [29], [30], is the foundation of the regional ALEXI
model. The TSEB model can be expressed as (1) and (2):

Rn, s − G = HS + LES (1)

Rn, c = Hc + LEc (2)

where the subscripts “s” and “c” represent the energy flux com-
ponents (in W · m−2) associated with soil and canopy, Rn is
the net radiation, G is the soil heat flux, H is the sensible heat
flux, and LE is the latent heat flux. ET, or mass water flux (mm
· s−1 or mm · d−1) can be computed as LE/λ, where λ is the
latent heat of evaporation.

The regional ALEXI model applies the TSEB in a time-
differential mode using measurements of morning surface-
temperature rise, typically obtained from geostationary satellites
[26], [27]. This time-differential approach renders ALEXI less
sensitive to biases in the LST inputs [26]. Direct ET estimates
with ALEXI are currently limited to clear-sky conditions when
TIR-based LST retrievals are possible, and to the coarse spatial
resolution of the geostationary input data (4 km in this study).
Given the cloud climatology over the model domain studied
here, in the central U.S., direct retrievals from ALEXI were
available for approximately 25–30% of days during the grow-
ing season. Spatiotemporal gaps in ALEXI ET due to cloud
contamination were filled using the ratio of actual-to-reference
ET, which was filtered and smoothed using a Savitzky–Golay
filter [31]. The reference ET was calculated using the Food and
Agriculture Organization (FAO) Penman–Monteith formulation
for a grass reference site [32].

B. MODIS and Landsat ET Retrieval

The DisALEXI [33], [34] approach is employed to disaggre-
gate ALEXI ET from regional scale (4 km) to higher spatial
resolution using finer-scale remote sensing data [e.g., LST, land
cover, leaf area index (LAI), and normalized difference vegeta-
tion index (NDVI)], in this case from MODIS and Landsat. In
DisALEXI, the TSEB is executed over every ALEXI pixel area,
and air temperature boundary conditions are iteratively modified
until the reaggregated TSEB flux is consistent with the ALEXI
pixel flux (see [16], [19], and [34] for further details).

For disaggregation using Landsat, the TIR band data are at-
mospherically corrected and then sharpened from their nominal
resolution (of 120, 60, and 100 m for Landsat 5, 7, and 8,
respectively) to the 30-m resolution of the Landsat surface re-
flectance bands using the Data Mining Sharpener (DMS) tool
[20] implemented within the fusion package. Landsat-based 30-
m LAI inputs to DisALEXI were obtained with the MODIS LAI
downscaling technique described by Gao et al. [36]. Spatial gaps
in the Landsat-retrieved ET images due to Scan-Line Corrector
stripes in Landsat 7 data and small clouds in all the Landsat se-
ries data were filled using the ET gap-filling method described
in Yang et al. [25]—an extension of the STARFM algorithm
(discussed in Section II-C).

For the MODIS-based disaggregation, the instantaneous LST
swath product was sharpened to 1 km using the DMS method
with MODIS NDVI inputs. While this is the nominal native res-
olution of the MODIS LST product, this additional sharpening
step helps to normalize the effective resolution of MODIS TIR
data collected at off-nadir viewing angles. Daily MODIS LAI
was smoothed and gap-filled using the methods described by
Gao et al. [35]. MODIS-retrieved ET (1 km) from DisALEXI
was gap-filled using the method applied to ALEXI ET, as de-
scribed in Section II A.

C. ET Data Fusion using STARFM

In the final processing step (see Fig. 1), STARFM [23] was
used to fuse the 30-m ET maps retrieved on Landsat overpass
days with the daily 1-km MODIS-retrieved ET time series to
produce high spatiotemporal resolution ET datacubes for each
year, with daily timesteps and 30-m resolution. More details
about STARFM can be found in Gao et al. [23], and applications
to ET data are further explained in [21], [24], and [25]. The
multi-year ET datacubes generated using STARFM were used
to analyze changes in water-use patterns in response to tile
drainage installation.

D. Basin-Scale Water Balance

The fused 30-m ET time series were also used to assess
changes in seasonal and annual water balance components over a
sub-basin within the study domain. In hydrology, water balance
at basin scales is a widely used approach for estimating ET,
typically computed as a residual

ET = P – Q – ΔS (3)

where P is the accumulated precipitation over the basin, Q is
the total stream flow leaving the basin, and ΔS is the change in
total terrestrial water storage within the basin. This balance will
hold for any temporal interval, but it is commonly assumed that
ΔS is zero for multiyear intervals, which may or may not be
a reasonable assumption. New methods for directly measuring
ΔS using satellite-based gravimetry allow us to directly test this
assumption, at least at coarse basin scales. In this study, we use
estimates of ΔS from the GRACE satellite, P from the PRISM
precipitation dataset, and Q from USGS gauge station datasets,
as discussed in greater detail in Section III-B5.

ALEXI ET has been successfully applied to interannual wa-
ter budget analyses in the past [37]. In this study, we used ET
estimated from water balance as an independent check on the re-
motely sensed daily ET time series. We also used these analyses
to investigate shifts in water between water balance compo-
nents over time as tile drainage became more prevalent over the
watershed.

E. Statistical Analysis

The T-test was applied when comparing the cumulative ET
from drained and undrained fields. P-values, t-values, and level
of significance were used to evaluate the differences in cumula-
tive ET between drained and undrained fields.
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Fig. 2. Study area located in SD and MN, USA. Figure shows the land-cover
types in this region based on the NLCD 2006 data. The major land-cover types
in the study area are cultivated crops and pasture. The blue box refers to the area
shown in Fig. 9, the green box refers to the area that has tile drainage permit
records shown Fig. 3, and the red circle is the location of the three fields with
known drainage status discussed in Section IV-E.

III. STUDY AREA AND DATA

A. Study Area

The study area (see Fig. 2) is mainly located in the state of
SD, USA, with some coverage extending into western MN. The
extent of the ET fusion modeling domain (latitude 44.56° N to
43.6° N; longitude 97.28° W to 96.24° W) was constrained to
lie within a single Landsat scene (WRS path 29, row 29), and
includes the counties of Brookings and Moody in SD, part of
the counties of Kingsbury, Minnehaha and Lake in SD and part
of the counties of Pipestone, Lincoln, and Rock in MN.

This area is a part of the central Lowland physiographic di-
vision and is characterized by a prevalence of prairie potholes,
which are wetlands that have formed as a result of glacial activ-
ity. Prairie pothole wetlands are often not connected to surface
water systems, but may have recharge or discharge groundwater
connectivity, and many are strictly dependent on precipitation
(i.e., snowmelt and rain) to supply water to the wetland basin
[38]–[40]. The major land use in the study area is agriculture
for row crops and ranching. Crops grown in this area predomi-
nantly include corn (Zea mays), soybeans (Glycine max), wheat
(Triticum), and alfalfa (Medicago sativa) [7]. The climate is
classified as humid continental with annual temperature rang-
ing from −15 °C in January to 27 °C in July. The average annual
precipitation as rainfall is around 660 mm, which mainly occurs
between March and October. The average annual precipitation
as snowfall is around 90 cm, which mainly occurs between
November and March (National Center for Environmental In-
formation).

The study area includes one Ameriflux tower site located in a
private pasture near Brookings (44.35° N / −96.84°W, USBkg
in Ameriflux Net— see Fig. 2). More information on this site is
provided in Section III-B2.

TABLE I
PERIOD OF RECORD OF DIFFERENT DATASETS AND ANALYSES APPLIED IN THIS

STUDY

Dataset/Analysis Data Length

ET Simulation 2005–2013
Flux Tower Comparison 2005–2009
Water Balance Analysis 2005–2012
Tile Drainage Permit Record 1987–2011 (Full Record)

2012, 2013 (Partial Record)
Crop Data Layer 2006–2012

B. Data and Study Period

ET time series were generated over the study area for the years
2005–2013. This encompasses a period of increased number
of agricultural tile drainage permits that likely resulted in the
installation of the tile systems in croplands during the years of
the study [41]. In comparison with average conditions during
the study period, 2010 was a relatively wet year over the study
area, and in 2012 the region was classified as being in severe
to extreme drought during the growing season according to the
U.S. Drought Monitor (http://droughtmonitor.unl.edu). Due to
the availability of various datasets used in this study (more
information described below), some analyses were applied over
a subset of the full simulation period (see Table I).

1) ALEXI/DisALEXI Model Inputs: Primary surface fields
input to ALEXI/DisALEXI include LST, LAI, albedo, and
NDVI. Other land-cover characteristics, such as surface rough-
ness and vegetation reflectance properties, are tied to land-cover
type [42]. Meteorological inputs were extracted from the NOAA
Climate Forecast System Reanalysis [43] dataset, which is avail-
able with low time latency and is used in the operational pro-
duction of ALEXI ET datasets by NOAA.

a) ALEXI (GOES): Two morning surface radiometric
temperature observations from GOES acquired at 1.5 h after
sunrise and 1.5 h before noon were used to retrieve the regional
scale ET. They were atmospherically corrected using vertical
profiles of potential temperature from a regional reanalysis and
estimates of directional surface emissivity, following the proce-
dure described by French et al. [44].

b) DisALEXI (MODIS): MODIS daytime LST swath data
(MOD11L2) [45] at 1-km nominal resolution were gridded
and reprojected from sinusoidal to geographic coordinate sys-
tems using the MODIS reprojection tool, and were then sharp-
ened with DMS using the 16-day 1-km MODIS NDVI product
(MOD13A2) [46] to reduce the off-nadir pixel smearing effect
for pixels with view angle larger than 30°. The MODIS LAI
(MCD15A3) [47] product is provided at 1-km spatial resolu-
tion every four days. The global MODIS albedo (MCD43GF)
[48] gap-filled (snowfree) product is produced at 1-km spatial
resolution every eight days. In addition, we used the MODIS
land-cover data (MCD12Q1) [49] annual product at 1-km spa-
tial resolution. MODIS NDVI and albedo data were interpolated
to daily time steps using a spline interpolation. All data were
from the 2005–2013 period, and were quality checked using
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TABLE II
OVERPASS DATE (IN DAY OF YEAR) OF LANDSAT IMAGERY FROM 2005 TO

2013 USED IN THIS STUDY

2005 2006 2007 2008 2009 2010 2011 2012 2013
357 945 815 1247 787 977 1565 77 897

755 1425 975 1325 1505 1535 1807 397 1537

915 1745 1057 1645 1825 1695 1885 1357 1618

1395 1905 1135 1965 2145 2175 2045 1837 1857

1875 1987 1217 2207 2305 2335 2365 2157 2177

2195 2147 1295 2285 2707 2737 2447 2797 2418

2437 2865 1377 2367 3187 2815 2525 2497

2917 3025 1615 2445 3347 2685 2657

3107 1857 2605 2767 2977

3505 2017 2765 2845

2415 3085 3005

2657 3327 3567

2817

2977

5represents data from Landsat 5.
7represents data from Landsat 7.
8represents data from Landsat 8.

the provided data quality layer to reduce the influence of cloud
contamination.

c) DisALEXI (Landsat): Landsat TIR and atmospheri-
cally corrected shortwave surface reflectance data at path 29
and row 29 from 2005 to 2013 were downloaded from USGS
(https://landsat.usgs.gov). All the overpass days of the scenes
used in this study are listed in Table II. These include data from
Landsats 5, 7, and 8. Scenes with cloud coverage more than
50% or with clouds or snow covering the Brookings flux tower
site were not used. The Landsat TIR data were atmospherically
corrected using the algorithm developed for the new Level-
3 Landsat LST products [50], and sharpened from their native
spatial resolution to 30 m using the DMS algorithm (see Section-
IIB). Landsat LAI was estimated using the method from Gao
et al. [36], which builds a regression tree relationship between
Landsat and MODIS reflectance and uses this relationship to
downscale MODIS LAI to 30 m.

While not used as input to DisALEXI (Landsat), a daily time
series of 30-m-resolution NDVI was developed for 2006 to
demonstrate the phenological development of different land-
cover types over the study area. This was accomplished using
the data fusion proposed by Gao et al. [23], [51], [52], fusing
Landsat NDVI on overpass dates with the 16-day 1-km MODIS
NDVI product (MOD13A2).

2) Flux Tower Data: The Brookings AmeriFlux tower was
located in a private pasture within the study area, cultivated with
grasses for grazing. While most of the study area is covered by
crop lands, grasslands comprise 5% to 15% of the land use over
the study period. At the USBkg site, the grass was normally
harvested for hay in the middle of the growing season, and
periodically grazed during the whole growing season (Meyers,
2016, personal communication). The canopy height around the
flux tower was 0.2–0.4 m and the tower height was 4 m. Daily
flux tower observations from 2005 to 2009 were used to evaluate
the model performance. Daily photographs from the flux tower
for 2006–2008 were also used for monitoring vegetation con-

Fig. 3. Polygons associated with tile drainage permit records, color coded
by permit application year and overlaid on a DEM map (downloaded from
National Elevation Dataset) with county borders and names. The red line is the
state border between SD and MN.

dition and the impact of human activity within the tower-fetch
area.

Based on the study of Wilson et al. [53], eddy covariance
flux measurements from most FLUXNET sites suffer from a
general lack of closure in the energy budget (Rn = H + LE
+ G), with an average imbalance of 20% of Rn across 22 sites
and 50 site-years. In comparison, energy balance closure errors
at the Brookings flux tower site are reasonable in 2005 and
2006. However, closure errors were 33% of the daily Rn in
2008, and therefore, the model comparisons in that year are
less reliable. High closure errors in some periods might be due
in part to human activity, e.g., harvest of grasses outside the
tower enclosure fence or farmer treatment of grasses within the
fence. This type of heterogeneity can serve to decouple upwind
conditions influencing the turbulent fluxes (H and LE) from
those influencing the local Rn and G measurements.

3) Agricultural Subsurface Tile Drainage Permit Data:
Agricultural subsurface tile drainage permit data were issued
by the respective county authorities of SD and collected by the
USGS. The dataset is publicly available and was downloaded
from USGS (https://www.sciencebase.gov) [41], including the
latitude and longitude of the location given on the permit, the
year the permit was applied for, and in some cases the year the
permit was approved. In most cases where an approval date was
provided, it was within the same year as the application (typi-
cally a few days later). Permit data for Lake, Moody, and a small
part of Minnehaha County were used to select the drained and
undrained area samples for analysis. The earliest permit record
in this dataset is from 1987, with the most recent from 2013.
Most of these permit data were collected as of January 2012,
with Minnehaha County updated in December 2013. As a result,
the number of applications recorded for 2012 and 2013 may not
be complete in this dataset.

The study area that intersects the permit dataset is shown in
Fig. 3, overlaid with permit polygons with color shading relating
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Fig. 4. Number of tile drainage permit applications by year in the study area
between 1987 and 2013.

Fig. 5. Comparison of drained and undrained pixels included in the drainage
permit record, based on the number of 30-m pixels within each permit polygon.
Only areas associated with a drainage permit application included in the USGS
database [41] are considered.

to the year of permit application. Fig. 4 shows the time history
of permit applications for areas located within the modeling
domain. Applications in the database peaked between 2006–
2011, with almost 400 permit applications submitted in 2011.
More than 80% of all fields for which tile drain permits were
applied for were in corn and soybean cultivation.

On the basis of this tile drainage permit dataset, two samples
of pixels were defined for each year to characterize the drained
and undrained agricultural land areas. First, we selected a set
of pixels lying within the boundary of each permit polygon
contained within the modeling domain, including all permit
applications for all years in the study period 2005–2013. Next,
we extracted average daily ET time series for each sampling
area and for each year. Finally, for each year, we partitioned
the samples into drained and undrained groups based on the
permit approval date. The number of samples that classified
into drained and undrained groups for each year is plotted in
Fig. 5. For example, for ET evaluations from 2006, polygons
with permit applications submitted in 2006 and earlier were
classified as drained, while polygons with applications from
2007 and later are considered to be largely undrained. This

classification assumes that the drainage system was installed
the year it was applied for. An assumption that drains were
installed the year after the application year was also tested, but
had no significant impact on the trends discussed in the results
section. This partitioning strategy also implicitly assumes that
the complete set of sampled fields did not have functional tile
or surface drainage systems before the permit application date.
This may not necessarily be the case if the application was to
expand an existing system of tile drains. It could also be that an
application was submitted, but the drainage system was never
installed. Also, the exact extent of possible drainage systems in
the fields is unknown from the tile drainage permit record.

Errors in these drained/undrained sample partitioning as-
sumptions will likely reduce the ET impact signal conveyed
through our statistical analyses. Therefore, inferred differences
between ET from drained and undrained fields reported here are
likely to be a lower limit on the actual differences.

4) Cropland Data: Crop area statistics for the study area
and period 2006–2013 were obtained from Cropland Data Layer
(CDL) dataset, generated annually by the National Agricultural
Statistics Service (NASS). This dataset was also used to separate
corn and soybean fields for crop-specific analyses of seasonal
water use. Corn and soybean crops together occupied more
than 60% of the study area during 2006–2013. Area planted in
corn was around 40%–50%, while soybeans occupied around
20%–35% of the study area. The third largest land use was
grass/pasture, which was around 5%–15% of the total area.
Other crop types in the study area included alfalfa, wheat, and
oats. There was no increase in total cultivated land area com-
mensurate with the increase of tile drainage installation, indi-
cating most tile drainage systems were installed in lands already
planted in crops. Relative corn/soybean planted area increased
substantially in 2007 and has fluctuated since then.

5) Water Balance Components: The sub-basin for water bal-
ance analysis (3) was defined using two outlets that have USGS
streamflow observations. Data used in the water balance analy-
sis include streamflow, precipitation, soil water storage change,
and ET (see Fig. 6). ET was obtained from the Landsat/MODIS
fused 30-m daily time series, while the other datasources used
are described below.

a) USGS Streamflow Data: Monthly streamflow data for
calendar years 2005–2013 for the Big Sioux River gauge sta-
tions near Brookings, SD (06480000, 44.18° N, 96.75°W) and
near Dell Rapids, SD (06481000, 43.79° N, 96.75° W) were
downloaded from USGS (https://waterdata.usgs.gov/nwis). The
contributing area is around 8645 km2 and 10171 km2 for site
06480000 and site 06481000, respectively, with the second area
completely containing the first one. The difference between the
two contributing areas was treated as a sub-basin. The monthly
PRISM precipitation data and estimated monthly accumulated
ET over this sub-basin and the difference between the mea-
sured monthly streamflow at the two sites were used to evaluate
sub-basin-scale water balance.

b) PRISM Precipitation Data: Monthly PRISM pre-
cipitation datasets [54] for 2005–2013 at 4-km resolution
were obtained from the PRISM Climate Group website
(http://www.prism.oregonstate.edu/). As a climate analysis sys-
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Fig. 6. Two USGS gauge stations (Brookings and Dell Rapids) used in the
water balance analysis and their corresponding watersheds. The difference be-
tween the two contributing areas (highlighted in pink) was treated as a sub-basin
for the analysis. The blue area is the drainage area of the brookings station. The
background grayscale image is an example of the GRACE data pixel scale. The
yellow color image shows the extent of the modeling domain for the 30-m ET
retrievals.

tem, PRISM uses point measurements, elevation data, and other
spatial datasets to estimate gridded climatic parameters (e.g.,
precipitation, temperature, and snowfall, etc.) Values of the pix-
els inside the sub-basin were extracted and averaged to get
monthly precipitation data over the sub-basin area.

c) GRACE Terrestrial Storage Change Estimates:
GRACE data represent the surface mass deviation compared
with the baseline average computed over the period January
2004–December 2009. Level-3 monthly Jet Propulsion Labora-
tory GRACE data for land from 2005 to 2013 (RL05.DSTvSCS
1411) at 1° resolution were used in the analysis (http://grace.jpl.
nasa.gov/data/get-data/monthly-mass-grids-land/). GRACE
data from 2013 were not used in the water balance analysis due
to missing data during the growing season. The Landerer and
Swenson [55] rescaling coefficient provided with the dataset
was applied. The soil water storage change for a given month
was calculated as the difference between the GRACE surface
mass deviation from that month and the previous month. The
sub-basin analyzed here crosses two GRACE pixels (see Fig. 6).
The monthly storage change of the sub-basin was calculated
as a weighted average of the two GRACE pixels, weighted by
the fraction of the sub-basin contained in each pixel. Due to
the coarse resolution of GRACE products relative to the study
area, a critical component of utilizing the GRACE data was
first verifying that they are capable of actually capturing water
storage variations at the sub-basin scale examined (see further
discussion in Sections IV-C and V-B).

Fig. 7. Scatterplot of modeled and measured daily surface energy fluxes on
Landsat overpass dates for the Brookings flux tower site.

IV. RESULTS

A. ET Evaluation at the USBkg Flux Tower Site

To assess the model performance at field scale, ALEXI/Dis
ALEXI-based energy fluxes were compared with measurements
from the USBkg Ameriflux site over the 2005–2009 period,
when flux data were available. Model values were averaged
over a 90-m × 90-m box centered on the pixel containing the
flux tower, approximating the daily average source area con-
tributing to the flux measurement. In general, flux closure at
the Brookings tower site is nonoptimal, as described in Section
III-B2; however, the comparison gives us some information on
how well the energy balance components are computed at one
point within the modeling domain.

A comparison of between modeled and measured daily (24-h)
flux components on clear Landsat overpass days (2005–2009)
is shown in Fig. 7. This plot demonstrates a good general agree-
ment over a wide range of radiation load and seasonal condi-
tions. LE is shown as measured and with a closure correction
computed as the energy budget residual: LE = Rn − H − G.
The true latent heat flux likely lies between these bounds. The
mean absolute error in the modeled daily latent heat in compar-
ison with the closed observations is around 2.18 MJ m−2 ·d−2

(see Table III). This is within the range of errors obtained in
previous studies with DisALEXI (∼1 to 2.5 MJ·m−2 d−1), and
may reflect in part the quality of the flux observations at USBkg.

Fused daily 30-m ET retrievals, extracted over the flux
tower footprint, are compared with the closed ET observations
from 2005–2009 in Fig. 8. Considering the full daily time se-
ries over the four years, the MAE in the LE comparison is
1.02 mm d−1. Due to the limited availability of clear snow-
free Landsat scenes, the early parts of 2006, 2008, and 2009
were not simulated. As noted in Section III-B2, closure errors
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TABLE III
SUMMARY OF STATISTICAL INDICES QUANTIFYING MODEL PERFORMANCE FOR

DAYTIME (SOLAR RADIATION LARGER THAN 0) INTEGRATED SURFACE

ENERGY FLUXES ON LANDSAT OVERPASS DAYS

Variable Rn G H LE ET ET(Fusion)

Unit MJ m−2 ·d−1 MJ m−2 ·d−1 MJ m−2 ·d−1 MJ m−2 ·d−1 mm d−1 mm d−1

n 39 39 39 39 39 747
Ō 13.47 0.96 4.02 8.23 3.36 3.22
MAE 1.20 0.74 1.71 2.18 0.89 1.02
RMSE 0.27 0.77 0.34 0.40 0.16 1.27
% error 8.9 76.9 42.7 26.5 26.5 31.8
MBE 0.23 -0.60 0.91 1.76 0.72 −0.44

Rn , daytime integrated net radiation; G, daytime integrated soil flux; H, daytime integrated
sensible heat; LE, daytime integrated latent heat; ET, daytime evapotranspiration on Landsat
dates in mm·d−1; ET(Fusion), daily ET from 2005 to 2009; n, number of observations;
Ō, mean measured flux; MAE, mean absolute error between the modeled and measured
quantities; RMSE, root mean square error; % error, percent error; MBE, mean bias error.

Fig. 8. Comparison of EC measured daily (daytime) ET forced by closure
with modeled ET. Daily precipitation is shown as a bar chart along the top axis.

in 2008 were very high, around 33%. This might explain in part
the apparent model underestimation compared to LE solved as
a residual in that year—a large bias not observed in the other
years. The model underestimation in 2008 might also be par-
tially due to a lack of clear Landsat observations available early
that year (see Table II). The lower modeled evaporative fluxes in
that year are consistent with the deficit in seasonal rainfall mea-
sured in 2008–381.8 mm (April–October), as compared with an
average of 519.6 mm for the other four years.

B. Spatiotemporal ET Patterns Over the Study Area

Seasonal patterns in water use across the eastern SD and
western MN parts of the study area are primarily related to
land-cover type, reflecting the characteristic phenological devel-
opment of different crops and natural vegetation. Fig. 9 shows
a seasonal extraction from ET time series on Landsat over-
pass dates in 2006, focused on a 7-km × 9-km sub-region at
the center of Moody County, SD, and close to the Big Sioux
River channel, as shown in Fig. 2. Daily 30-m resolution NDVI
curves were also developed for this year using the STARFM data
fusion technique applied to Landsat and MODIS datasets, and
average curves for major land-cover classes in the CDL (corn,
soybean, and grass/pasture) are shown in Fig. 9(a). Corn typi-
cally emerges and senesces earlier than soybean in this region,

Fig. 9. (a) Average daily NDVI curves for corn, soybean and grass/pasture
sites within the study area during 2006, based on CDL crop types. (b) CDL
map (legend is at the bottom of the figure) for a subset of the modeling domain
showing corn as yellow and soybean as green. Following maps show modeled
30-m daily ET on DOY 94, 142, 174, 190, 241, 269, and 286 of 2006, indicated
by the light blue vertical lines in panel “a”.

imposing large field-to-field variability in maps of NDVI and
ET through most of the growing season. The grass/pasture class
has higher NDVI during the dormant period and early growing
season and lower NDVI during mid-season. This explains the
higher ET over grass/pasture areas in spring and early summer
and the lower ET in the peak growing season in comparison
with corn and soybean.

C. Basin-Scale Water Balance

We also investigated changes in the regional water balance
over the full study period of 2005–2012, as evaluated over the
sub-basin defined in Fig. 6. Fig. 10 shows primary hydrologic
fluxes and stores for each year within the sub-basin, integrated
over a nominal growing season from April to October. The
seasonal water budget, P = ΔS + ET − Q, is reasonably bal-
anced over this period, with annual residuals ranging from −92
to +143 mm. The eight-year average residual is only −3 mm
and the eight-year average absolute residual is 56 mm, or 9%
percent of average seasonal precipitation.

Since GRACE does a very poor job spatially resolving our
sub-basin, an important consideration is the impact of GRACE
on this closure analysis. However, excluding the GRACE ter-
restrial water storage change estimate (and instead assuming
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Fig. 10. PRISM precipitation, streamflow, GRACE storage change, and ET for
the Big Sioux River sub-basin for 2005–2013, computed over the growing season
period (April–October). Lower plot shows the residual to the water balance (P–
ΔS–ET–Q), as well as a residual assuming ΔS is zero at this timescale.

ΔS = 0) actually increases the eight-year average residual to
−111 mm and the eight-year average absolute residual to
−127 mm, or 21% of the average precipitation. This indicates
that, despite its very coarse resolution, the GRACE data do in
fact add value to water budget analyses at the sub-basin scale
(∼1500 Km2) examined in this case. The water balance demon-
strated in Fig. 10 also provides an independent check on the
remote sensing ET retrievals at coarse spatiotemporal scales.

Annual stream flow for this sub-basin increased toward 2010
and 2011, which may reflect the regional streamflow trends
noted by Norton et al. [4]. Streamflow was markedly reduced
in the drought year of 2012, and future analyses will investigate
how Q recovered in subsequent years. There was a large rainfall
event in May 2012, leading to a monthly precipitation accumu-
lation of more than 250 mm. However, during the other months
in 2012, especially June and July, rainfall was much lower than
normal. Cumulative ΔS over the growing season is negative in
all years, indicating a net withdrawal of summer soil moisture
reserves, which are replenished by winter snowmelt and early
spring rainfall.

D. Impacts of Tile Drainage on ET and Crop Growth

The sampling methods described in Section III-B3 were used
to select pixels representing drained and undrained field con-
ditions for each year during the study period. Average daily
ET for 2009 for drained and undrained pixel classes is plotted
in Fig. 11, along with the standard deviation in ET over each
class. Variability in daily ET among different fields is high be-
tween DOY 120—DOY 200 for both drained and undrained
fields. During this period early in the growing season, daily
ET from the undrained fields is higher than from the drained
area. However, during the peak growing period, daily ET from
the undrained area is slightly lower in comparison with drained
fields. This is consistent with findings of Khand [56], who com-
pared modeled ET from drained and undrained fields and found
lower ET from drained fields in spring and early summer. This
behavior reflects the fact that drainage in this region mostly af-

Fig. 11. Average daily ET over drained and undrained areas (red and green
lines, respectively) plotted with standard deviation in each class (shaded area).
Red box indicates the corn silking/soybean blooming stage as reported in the
NASS crop progress reports for these counties.

Fig. 12. Cumulative ET for DOY 91 to 321 averaged over drained and
undrained sample fields for 2005–2010. Black bars indicate one standard error
in the mean.

fects the early season soil moisture, helping to remove excess
soil water from snowmelt and spring rains. As the crops ma-
ture, they remove much of the excess moisture by transpiration,
thereby reducing the influence of drainage. Crop transpiration
increases through the growing season up to the point when corn
enters the silking stage and soybeans start to bloom, as indicated
by the NASS crop progress report for 2009.

A comparison of cumulative ET, integrated from DOY 91 to
321, from drained and undrained areas is shown in Fig. 12. The
cumulative seasonal ET from the sampled area ranges between
600 and 800 mm. The average cumulative ET for 2005–2010
from the drained sample area is 665 ± 4 mm and from the
undrained area is 674 ± 10 mm; thus, the samples are not on
average statistically different at the growing season timescale.
Cumulative ET for individual years (except 2006) and the aver-
age cumulative ET for all years for drained area is lower than
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Fig. 13. Comparison of average monthly cumulative ET between drained
corn/soybean fields and undrained corn/soybean fields. Black bars show the
standard error in the mean.

that for undrained area, even considering the standard error. The
largest cumulative ET occurs in 2010, which was a wet year that
had higher precipitation than normal. The lowest cumulative ET
occurs in 2008, which may partially be due to the underestima-
tion around the peak growing season, which has been described
in Section IV-A. For the years 2005, 2009, and especially 2010,
the cumulative ET from undrained areas is significantly higher
than that from drained areas.

These comparisons are broken out seasonally in Fig. 13,
showing the average monthly cumulative ET for growing period
for corn and soybean fields that were computed, respectively,
for the drained and undrained area. ET in corn peaks in July for
both drained and undrained fields, while soybean ET peaks in
August. For April–June, the ET rates from undrained fields are
statistically higher than from drained fields, for both corn and
soybean crops (with P-values of 0.02 and 0.002 and t-values
of 2.62 and 3.90 (n = 15, α = 0.05) for corn and soybeans,
respectively). This is consistent with the daily ET analysis in
Fig. 11, which showed that early growing season ET is higher
in the undrained field sample. Monthly ET from drained corn
fields is greater than that from undrained corn fields in July–

September. This might reflect the healthier and more productive
condition of corn cultivated under drained conditions, which
promotes deeper rooting systems and better root aeration. For
soybeans, monthly ET from drained fields is higher than that
from undrained fields only in August.

The impact of drainage on crop growth was further assessed
by comparing LAI in the drained and undrained field subsets on
Landsat overpass days during the growing season from 2005 to
2011 (see Fig. 14). The average value of LAI ranges from 0.7 to
3.7 m2 m−2 . Except for some days in the early growing season,
on most days average LAI over drained areas is higher than that
from undrained areas, implying better growing conditions. The
difference in the average LAI between drained and undrained
areas is larger in 2010 and 2011 than for other years.

E. Comparison of Three Fields With Known Drainage Status

Given the uncertainty of the drained/undrained fields sam-
pling caused by the incomplete knowledge guiding sample con-
struction, we further studied the influence of tile drainage on
ET using specific fields located in Minnehaha County, SD with
known drainage status, based on the detailed records available
for that county. Three fields were selected such that they:

1) were in close proximity, exposed to similar meteorological
conditions;

2) have similar soil properties such as hydrologic
conductivity;

3) were planted with the same crop type, to minimize the
impact of different crop types on ET.

Among the three selected fields, one field was heavily drained
with a pattern drain system installed in 2005, and two ad-
ditional drainage lines added in 2008. The second field had
a partial drainage system installed in 2005, with another line
added in 2008. Finally, a nearby field known to be undrained
was also selected. The three fields are of similar size (around
80 ha), with similar soil properties and topography. Based on
the soil type, the depth to water table may be somewhat lower
in the undrained field (∼200 cm) than in the drained fields
(120–200 cm). According to the CDL dataset (see Section-III
B4), all the three fields were planted in corn during most of the
study period.

Based on the dominant precipitation patterns in this region,
with snowmelt and rainfall in the spring and heavy rainfall in the
early fall, our conceptual model is that tile drainage will have the
most impact on the crop development and ET in growing sea-
sons with a wet spring. For years where springtime is relatively
dry, ET from the drained and undrained fields should behave
similarly all else being equal. To test this theory, we selected
two years when all three fields were in corn according to the
CDL—one with a dry spring (2008), and one with ample spring
rains (2013). ET time series for these years are shown in Fig. 15,
along with plots of ET normalized by grass-based reference ET
(fRET) as computed using the FAO Penman–Monteith formu-
lation. Normalization with reference ET (RET) removes much
of the variability due to changing solar radiation load and atmo-
spheric demand, focusing more specifically on soil and canopy
drivers of ET.
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Fig. 14. Comparison of average LAI between drained and undrained area for Landsat overpass days during the growing season.

Fig. 15. Column (a): Time series plots of seven-day moving average of daily ET from heavily drained, partially drained, and undrained fields plotting with daily
precipitation and reference ET for 2008, 2012, and 2013. Column (b): Time series plots of actual-to-reference ET ratio (fRET) for 2008, 2012, and 2013.

In 2008, with light springtime rains, there is a little variability
in either quantity between fields. The drains have little excess
soil moisture to remove in the spring; hence, there likely was
no difference in the crop growth among field types, and crop
water use in the summer keeps the root-zone moisture at similar

levels. However, in the spring of 2013, the difference between
ET from the three fields is more obvious, with the highest ET
from the undrained field and the lowest ET from the heavily
drained field. The spring of 2013 was cold and the minimum
temperature was below 0 °C till early May, which was about
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one month later than normal years. The cold weather combined
with high precipitation in the spring resulted in an even larger
impact of tile drainage on ET.

Fig. 15 also shows that the field-specific responses for the
wet, but high temperatures and long periods of cloudless skies
starting in April 2012 resulted in a high evaporative demand [as
indicated by the RET curve in Fig. 15(a)], and a rapid reduction
in soil moisture reserves. In this year, ET was higher in the
drained fields during the green-up period in comparison with
the undrained field. This may reflect a greater resilience in the
drained crops, perhaps due to earlier planting in the spring and
development of deeper rooting systems to tap the deeper water
table induced by drainage, allowing them to better cope with the
subsequent drought than the crops in the undrained field.

V. DISCUSSION

A. Tile Drainage Influence on ET

Both the monthly cumulative ET and daily ET analyses sug-
gest that on average, tile-drained areas in the study region have
lower ET than undrained areas during the early part of the grow-
ing season (i.e., April–June) and relatively higher ET in August.
These findings for the early growing season are consistent with
the research of Schilling et al. [12], utilizing a water balance
analysis to estimate monthly ET from 1917 to 2004. They linked
the decreased ET with land use conversion from small grain or
hay to row crops (corn and soybean), and mentioned possible
contributions from tile drainage installation, which occurred at
the same time. However, in the study area examined here, only a
small portion of the tile drained area was converted from small
grain to row-cultivated corn or soybean. Most of the fields were
already in corn or soybean cultivation prior to tile drainage in-
stallation, as indicated in the NASS CDL. Therefore, the lower
ET observed in the spring and early summer cannot be fully ex-
plained by land-use changes and demonstrates the importance
of the influence of tile drainage on early season soil moisture
conditions.

The higher ET from drained fields during the peak growing
season—opposite in trend to the early season—tends to suppress
the difference in ET between drainage treatments at the seasonal
scale. Higher LAI in the drained areas suggests better crop pro-
ductivity resulting from the drainage, which corresponds with
higher ET during the peak growing season in the drained areas.
Since drainage removes excess soil water in spring and allows
easier access to the field, and thus, earlier planting, higher peak
LAI in drained areas may be expected due to increased growing
days and better soil conditions. On average over the entire 2005
to 2013 period, slightly lower growing-season cumulative ET
were found in tile-drained areas. The year of 2006 is an excep-
tion. This was a relatively dry year, especially in the first-half
of the season. Less precipitation in spring and early summer
means that the tile drainage system might not have any excess
soil water to remove, and thus, had relatively little influence on
the differences in ET between drained and undrained areas.

There are several practical factors that should be considered
as they pertain to the results presented here. It is believed that

a large portion of tile drainage systems installed in SD are used
to target small-sized problem areas or “wet spots” rather than
large continuous areas (e.g., >16 ha; i.e., pattern tiling). A small
drained area may not produce a strong signal in terms of im-
pact on field-scale ET. The influence of tile drainage on ET also
varies with climate conditions. In SD, the soil normally begins
to thaw in early April. Before the soil thaws, the excess soil
water from the snow melt/precipitation cannot be removed by
the tile drainage system. If the winter is mild, the tile drainage
system is expected to function well and drain soil water. The
difference in climate conditions each year may account for some
nonsignificant differences in ET between drained and undrained
areas. Also, tile drainage systems require ongoing maintenance
to function properly. In this analysis, the possible degradation of
the tile drainage system was not considered, which might cause
some error for the long-term analysis if some of the systems
stopped functioning after installation due to poor maintenance.
However, since the new tile drainage design lends itself to an
effective and long-lasting system, the influence of tile drainage
system degradation should be small. Tile drainage systems in-
clude both conventional and managed tile drainage. Farmers
have more control over managed tile systems; however, the dif-
ference between these two systems was not considered in this
analysis. Finally, it is possible that some fields included in the
analysis may include small protected wetland areas that remain
undrained. The impacts of small sub-field wetlands, which are
common in the Prairie Pothole region, have not been considered
here but could be included in the future studies.

B. Impact of Tile Drainage on Local/Regional Water Balance

From 2005 to 2013, the long term seasonal water budget
over the study sub-basin is almost balanced when GRACE data
were used; however, there are imbalances noted in the indi-
vidual years. It should be noted that the GRACE data are too
coarse to resolve the conditions within the sub-basin analyzed,
and they may not be representative for the specific basin area.
However, we find that including the GRACE storage term has
the effect of reducing the residual in the budget in most years
analyzed. While the resolution of GRACE data may not appear
to be absolutely appropriate for this particular application, they
nevertheless provide useful information about the extraction of
soil moisture reserves during the growing season, and the year-
to-year variability in that extraction term.

No clear trends in the streamflow were identified over the
study area and period of record. Higher streamflows were ob-
served during the wet years of 2010 and 2011, when we might
expect more soil moisture divergence into surface collection
channels and less streamflow in the drought year 2012. The ab-
sence of a clear trend might be due to limitations in length of the
study period, or because strong variability in the climate con-
ditions overwhelmed the drainage-induced signal. Replication
of these analyses across the region, including multiple water-
sheds and controlling for weather variability, would help to
further constrain estimates of the influence of drainage systems
on stream discharge.



2562 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 6, JUNE 2017

VI. CONCLUSION

To study the impact of subsurface tile drainage on ET over
an intensively drained agricultural area in SD, we employed
a multisensor remote sensing-based energy balance algorithm
to estimate ET at 30-m resolution and daily time-steps from
2005 to 2013. The ET retrievals compared well with flux tower
observations collected in a pasture site within the modeling
domain, and regionally with a water balance assessment at sub-
basin scale. Using tile drainage permit application data, a set of
fields within the study area were partitioned into drained and
undrained subsets and statistical differences in growing season
ET between these two subsets were analyzed, both on a daily
and annual level, to investigate the impacts of tile drainage on
evaporative water use. The analysis showed that tile drainage
tends to decrease ET in the early part of the growing season when
the crops are still in their early stage and soil moisture content is
commonly high due to winter snowmelt and early spring rains.
ET in drained fields was marginally higher during the peak
growing season, possibly due to better growing conditions and
earlier planting dates afforded by tile drainage. This is supported
by higher average LAI detected in drained versus undrained
fields. Annual cumulative ET was found to be slightly lower in
the drained area. The small signal detected at the seasonal scale
may be due to the inverse relationships early and late in the
season, which tend to cancel out. No obvious time trends were
identified in streamflow or ET over the period of study. Further
analysis involving a larger basin area and a longer study period
is needed.
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