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Assimilation of hyperspectral sounder data into numerical weather prediction (NWP)models has proven vital to
generating accuratemodel analyses of tropospheric temperature and humiditywhere few conventional observa-
tions exist. Applications to storm-scale models are limited since the low temporal resolution provided by polar
orbiting sensors cannot adequately sample rapidly changing environments associatedwith high impact weather
events. To address this limitation, hyperspectral sounders have been proposed for geostationary orbiting satel-
lites, but these have yet to be built and launched in part due tomuch higher engineering costs and a lack of a def-
inite requirement for the data.
This studyuses anObservation SystemSimulation Experiment (OSSE) approach to simulate temperature and hu-
midity profiles from a hypothetical geostationary-based sounder from a nature run of a high impact weather
event on 20 May 2013. The simulated observations are then assimilated using an ensemble adjustment Kalman
filter approach, testing both hourly and 15 minute cycling to determine their relative effectiveness at improving
the near storm environment. Results indicate that assimilating both temperature and humidity profiles reduced
mid-tropospheric both mean and standard deviation of analysis and forecast errors compared to assimilating
conventional observations alone. The 15 minute cycling generally produced the lowest errors while also gener-
ating the best 2–4 hour updraft helicity forecasts of ongoing convection. This study indicates the potential for sig-
nificant improvement in short-term forecasting of severe storms from the assimilation of hyperspectral
geostationary satellite data. However, more studies are required using improved OSSE designs encompassing
multiple storm environments and additional observation types such as radar reflectivity to fully define the effec-
tiveness of assimilating geostationary hyperspectral observations for high impact weather forecasting
applications.
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1. Introduction

Many advancements in numerical weather prediction (NWP) have
been made that can be attributed to the assimilation of satellite data
to improve the analysis of the atmospheric state where traditional ob-
servations are not available (Derber and Wu, 1998; Le Marshall et al.,
2007). Satellite observations include, but are not limited to, cloud-
track winds (CTWs), retrieved temperature and humidity profiles, pre-
cipitation estimates, and recently lightning observations (Velden et al.,
1998; Hou et al., 2004; Reale et al., 2008; Mansell et al., 2007; Schmit
et al., 2008a, 2008b). Each of these observation types can be assimilated
into a NWP model to improve certain aspects of the model state. In re-
cent years, assimilating information from hyperspectral sounders via
Storms Laboratory, 120 David L.
infrared radiances or temperature and humidity retrievals has become
a key component in NWP models (e.g., McNally et al., 2006; Reale et
al., 2008; Li and Liu, 2009; Migliorini, 2012; Jones and Stensrud, 2012).
One of the most significant limitations of NWP is the lack of observa-
tions describing the vertical structure of the atmosphere at high spatial
and temporal scales. A partial solution to the current data void is provid-
ed by hyperspectral infrared spectrometers including the 2378-channel
Atmospheric InfraRed Sounder (AIRS), the 8461-channel Infrared
Atmospheric Sounding Instrument (IASI), and the 1305-channel
Cross-track Infrared Sounder (CrIS). Temperature and humidity
profiles can be retrieved from both instruments with high vertical reso-
lution in clear to partly cloudy conditions from near the surface into the
stratosphere (Aumann et al., 2003; Susskind et al., 2003, 2006). With
such large channel sets, these instruments can substantially decrease
the uncertainty of retrieved vertical profiles compared to other sound-
ing instruments, which typically have no more than a few dozen
channels.
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Studies of assimilating retrieved profiles from polar orbiting
sounders into NWP models have generally found a positive impact on
model analyses and forecasts at various temporal and spatial scales
(e.g., Le Marshall et al., 2006; Chou et al., 2007; Reale et al., 2008). Sev-
eral studies focused on the impact of assimilating hyperspectral profiles
on tropical cyclone track and intensity forecasts (Wu et al., 2006; Li and
Liu, 2009; Liu and Li, 2010; Pu and Zhang, 2011; Atlas and Pagano,
2014). For example, Li and Liu (2009) and Liu and Li (2010) showan im-
provement to 12–96 hour track forecasts resulting from a better analy-
ses of the mid-tropospheric temperature and mixing ratio while
smaller, but still significant improvements, are present for intensity
forecasts. Pu and Zhang (2011) found similar results while noting the
possible need for bias adjustments in the assimilated profiles to further
reduce forecast error. Additional research has been conducting focusing
on the impacts of assimilating hyperspectral sounder profiles for severe
weather events. Chou et al. (2010) describe an event in eastern Texas on
12–13 February 2007 in which AIRS profiles improved the characteriza-
tion of the thermodynamic near storm environment leading tomore ac-
curate 6 hour precipitation forecasts. Jones and Stensrud (2012) further
analyzed the impact of assimilatingAIRS profiles on two Southern Plains
events and found that even assimilating a single overpass of high-reso-
lution temperature and humidity retrievals could significantly improve
the analysis and forecast of the pre-storm environment, which should
result in better forecasts of convective initiation and storm evolution.
As in these cited severe weather studies, this research is primary con-
cerned with the impact of retrievals on the representation of the envi-
ronment, not the internal characteristics, of severe storms, and the
subsequent impact on the evolution of the storms.

One key limitation of polar orbiting hyperspectral instruments is
their poor temporal resolution relative to the time scales of high
impact weather events. The importance of high temporal resolution
hyperspectral information has been demonstrated by Aune et al.
(2000) and Bingham et al. (2013). High impact weather events in par-
ticular are likely to be associated with a rapidly changing environment,
which is poorly sampled by current observations. If the initial model
representation of the environment is incorrect, then any potential fore-
casts will suffer. Even if the initial conditions are correct, it is unlikely
the model will accurately capture the evolution of the near storm envi-
ronment without high spatial and temporal resolution observations to
update the model in a timely manner. A key hypothesis of this research
is that improvements to the thermodynamic environment from assim-
ilating hyperspectral sounder profiles translate to improvements in
short-term forecasts of convection.

This research uses the Ensemble Adjustment Kalman Filter (EAKF)
data assimilation scheme (e.g., Kalman, 1960; Anderson, 2001;
Anderson and Collins, 2007; Yussouf and Stensrud, 2010), rather than
the more traditional variational approach (e.g., Barker et al., 2004).
The primary advantage of the EAKF approach is that it provides a flow
dependent and dynamically evolving estimate of themultivariate back-
ground error covariances that is updated at each assimilation cycle. This
is an important consideration for rapidly moving and developing
weather phenomena and allows observations of one variable (say tem-
perature) to influence other variables including those not observed
(winds in the present study and potentially cloud microphysics
variables).

Since there is no geostationary hyperspectral profiler that currently
provides high spatial resolution temperature and humidity profiles
overNorthAmerica, this research uses theObserving SystemSimulation
Experiment (OSSE) methodology to simulate such observations from a
nature run and then to quantify impacts by comparing data assimila-
tions and forecasts that include and exclude these data. Specifically,
this study employs a “Quick OSSE” approach (Atlas et al., 2015) and an
experimental setup similar to that of Jones et al. (2013a). Geostationary
hyperspectral profilerswould be expected to provide a temporal resolu-
tion of approximately 15 min with a spatial resolution on the order of
10 km or better. A case study approach is used based on the 20 May
2013 central Oklahoma (OK) tornado event that produced a violent tor-
nado inMoore, OK and weaker, short lived tornadoes in southern OK. A
very unstable, high shear environment was present over the Southern
Plains during this daywith convection forming along a frontal boundary
in central OK and a connecting dryline further to the south. NWP exper-
iments assimilating real radar and satellite observations of this event
have shown some skill at forecasting the severe convection, but many
uncertainties remain which were likely due to the lack of information
on the near storm environment being assimilated in the model
(Wheatley et al., 2015; Jones et al., 2016). An objective of this research
is to assess whether assimilating near-storm environment information
can, in fact, improve the model analyses, leading to better short-term
(0−3h) forecasts of high impact weather events. However, these ex-
periments only describe the impact for a single case using an OSSE sys-
tem that is not fully validated and without the benefit of other high-
resolution observations such as radar data. As a result, the applicability
of these results to realistic settings remains uncertain.

Following this introduction, Section 2 describes the nature run creat-
ed to simulate the 20May 2013 eventwith Section 3 describing the syn-
thetic simulated observations derived from the nature run. Section 4
provides an overview of the experiment design and Section 5 discusses
the results of these data assimilation experiments. Finally, concluding
remarks are given in Section 6.

2. Nature run

A nature run for the 20 May 2013 event was created from a deter-
ministic forecast initialized from the Global Forecast System (GFS) anal-
ysis at 1200 UTC 14 May. The nominal GFS resolution in 2013 was 0.5°
with 27 vertical levels which are downscaled to a 4 km resolution for
the nature run. The nature run used a 1400 × 1200 grid point domain
covering the continental United States (CONUS) with 56 vertical levels
extending from the surface to 10 hPa (Fig. 1). The nature run was con-
tinuously integrated forward in time until 0000 UTC 21 May using the
Advanced Weather Research Forecasting (WRF-ARW) model version
3.6.1 (Skamarock et al., 2008). Ferrier 3-class (cloud water, rainwater,
and snow mixing ratios) cloud microphysics is used along with GFDL
shortwave and longwave radiation schemes, MYJ boundary layer phys-
ics, and the NOAH land surface model with 4 soil layers (Ferrier et al.,
1996; Chou and Suarez, 1994; Janjic, 2002; Ek et al., 2003). Note that cu-
mulus parameterization is unnecessary at a 4 km convection permitting
resolution and is not used. Boundary conditions created from the oper-
ational GFS forecast initiated at 1200UTC 14Maywere applied at 3 hour
intervals through the duration of the nature run. The length of the na-
ture run is dictated by the need for the characteristics of the simulated
20 May event to be as independent from the initial conditions as possi-
ble, but still retain enough predictability to capture an event similar to
that which occurred in reality.

3. Synthetic observations

Conventional and hyperspectral IR observations are simulated as de-
scribed in the following. WSR-88D radar observations were not used in
this study since the primary goal of this study is to isolate the impacts of
assimilating high resolution satellite retrievals to the near storm envi-
ronment. The impacts of assimilating radar reflectivity and Doppler ra-
dial velocity into high resolution NWP models is well understood and
has been the focus of many studies. In particular, Wheatley et al.
(2015) provide an overview of radar data assimilation for the 20 May
event using a similar model configuration to the one being used here.

3.1. Conventional

Simulated observations are generated from the nature run for a va-
riety of conventional observation types including Automated Surface
Observing System (ASOS), Aircraft Communications Addressing and



Fig. 1. Geographical domains of the 4 km resolution nature run (NATURE), the 12 km horizontal resolution mesoscale experiments (EXP), and the 4 km nest (NEST) used for verification
against the nature run.
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Reporting System (ACARS) and radiosonde instruments. For each ASOS
location, 10 m wind speed and direction, 2 m temperature and humid-
ity, and surface pressure observations are generated from the nature
run at hourly intervals. Vertical profiles of temperature, humidity, and
wind speed and direction are created to simulate radiosonde locations.
Finally, simulated ACARS temperature, humidity, and wind observa-
tions are generated along realflight tracks. For all conventional observa-
tion types, location information reported in the Meteorological
Assimilation Data Ingest Files (MADIS) at a particular analysis time is
used. Observation measurement errors for each observation are drawn
from unbiased, uncorrelated Gaussian error distributions that are
based on a given sensor's accuracy. For conventional observations, ob-
servation errors are based off those used the real-data system described
by Wheatley et al. (2015) (Table 1).

3.2. Hyperspectral IR sounder

The synthetic atmospheric sounding retrievals are generated
through a two-step process. In the first step, synthetic geostationary
AIRS (GEO AIRS) radiances are simulated from the nature run
(Aumann et al., 2003; Goldberg et al., 2003, 2004; Susskind et al.,
2003, 2006). The GEO AIRS is assumed to replace the current GOES-
13, 36,000 km above the equator at the longitude of −75°. The spatial
Table 1
Conventional observation types and errors used during this experiment.

Sensor Observation type Error

METAR Temperature 1.75 K
METAR Dewpoint Lin and Hubbard (2004) model
METAR U, V wind components 1.75 ms−1

METAR Altimeter 1.0 hPa
Radisonde Temperature 0.8–1.5 K
Radisonde Dewpoint Lin and Hubbard (2004) model
Radisonde U, V wind components 1.4–3.0 ms−1

Radisonde Altimeter 1.0 hPa
ACARS Temperature 1.0–1.7 K
ACARS U, V wind components 2.5 ms−1
resolution of the GEO AIRS is assumed to be exactly the same as the
NR (4 km), but these data are thinned to 20 km to minimize the impact
of representativeness error on the experiments. Xu (2011) showed that
assimilating observations at a resolution of 2 times the model grid pro-
vides improved results and performance compared to assimilating ob-
servations at their full resolution. The temperature/moisture profiles,
the surface skin temperature along with a climatology ozone profile
and the UW Baseline Fit Emissivity database (Seemann et al., 2008)
are used as input for the clear sky radiative transfer calculation using
the Stand-Alone AIRS Radiative Transfer Algorithm (SARTA; Strow et
al., 2003). SARTA has been successfully used in previous studies
(Weisz et al., 2007; Li et al., 2009; Smith et al., 2012). The cloudy radi-
ances are simulated by coupling the clear sky SARTA transmittance
with a cloudy radiance model developed by Wei et al. (2004). This
model requires four parameters to calculate the cloud's transmittance
and scattering: the effective cloud particle size, the cloud optical thick-
ness (COT), the cloud top pressure (CTP), and the cloud phase. All of
this information can be determined from the nature run. This cloudy
model coupled with SARTA is extremely fast in simulating cloudy radi-
ances compared with the two other candidate radiative transfer
models—the Community Radiative Transfer Model (CRTM; Chen et al.,
2008) and the Radiative Transfer for TOVS (RTTOV; Saunders et al.,
1999). Similar to the conventional observations, uncorrelated Gaussian
errors are added to the simulated radiances based on real AIRS sensor
specifications. These observation error standard deviations are then
tuned to provide optimal ensemble data assimilation statistics such
that the ratio of the standard deviation of the background spread in ob-
servation space to the standard deviation of the errors added to the sim-
ulated observations is near 1.0 (Xu et al., 2008). This is often labeled the
consistency ratio (CR). Increasing the observation errors by a factor of
2.0 generated optimal CRs after the first few assimilation cycles. During
testing, results were relatively insensitive to increasing the observation
errors by factors from 1.5 to 2.5. The experiments described below all
use these optimized observation errors (increased by the factor of 2.0).

In the second step, a simple linear regression based retrieval algo-
rithm is used to retrieve the atmospheric sounding profiles from the na-
ture run radiances. A randomly selected small subset (5%) of all the data
is used as training to find the regression coefficients (Li et al., 2008,

Image of Fig. 1
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2009). In an operational environment, these regression coefficients
would be trained on sample of data from the previous days or weeks.
To ensure consistent retrieval quality, channels affected by solar con-
tamination aswell as those with large observational noise are excluded.
As a result, a subset of 1148 channels were selected for use. The
weighting functions of temperature and moisture for these channels
using a randomly selected profile from the dataset is shown in
Fig. 2(a,b). It is clear that the 1148 channels provide a high vertical sam-
pling density in the troposphere. In themid-troposphere, theweighting
functions are not only dense, but also display good sensitivity as
Fig. 2. Temperature (a) and dewpoint (b) vertical weighting functions for the simulated GEO_A
and (d) moisture (dewpoint) for simulated observations passing quality control.
depicted by the maximum absolute value of weighting functions. The
predictors used for the retrievals include the brightness temperature
(Tb), the brightness temperature squared (Tb2), thereby accounting
for non-linearity, and other know a priori variables such as the nature
run surface pressure, local zenith angle, latitude etc. The predictands in-
clude the profiles of temperature and moisture, and the surface skin
temperature. The logarithm of mixing ratio is used as the moisture
predictand because it is more nearly linearly related to Tb. For the
cloudy regression, the four nature run cloud parameters are also used
as predictands. Three sets of regression coefficients are generated, one
IRS instrument. The standard deviation (STDDEV) of the retrieval error of (c) temperature

Image of Fig. 2
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for clear sky, one forwater clouds, and one for ice clouds. In the retrieval,
clear sky coefficients are applied to clear sky scenes, and cloudy coeffi-
cients are applied to cloudy scenes. The cloud mask is determined
from the NR. This is likely to overestimate the impact from GEO AIRS.
In reality, the cloud mask would be estimated from the brightness tem-
peratures or by taking advantage of the high quality cloudmask product
from the IR Imager on the same platform.During the experiment period,
the cloudmask percentages for clear, water and ice clouds are 39%, 32%,
and 29% respectively. Since no phase information is known before the
retrieval in a real-world application, both sets of cloudy regression coef-
ficients are applied. Each retrieval is used to calculate radiances, the best
fit to the simulated observed radiances is chosen and the cloud phase is
assigned accordingly. For both clear sky and cloud retrievals, a threshold
of 0.8 K (explicitly determined as 2.5 times the instrument noise) is
used to remove retrievals that do not pass quality control checks; if
the spectrally averaged absolute difference between calculated and
the synthetic radiances is larger than this threshold, it is considered of
low quality and was abandoned for assimilation. As a result, only
22.2% of all the data are retained (15.7%, 5% and 1.5% for clear, water
and ice clouds). Fig. 2(c and d) shows the high retrieval quality of the
temperature and dewpoint as a function of height. Moreover, Fig.
3(a,b) shows these observations still have a very good coverage over
the Southern Plains domain at 1800 UTC.

While the simulated retrieved profiles have 101 levels, this number
far exceeds the amount of independent information present (Forsythe
et al., 2015). The 8 vertical levels assimilated into the model are 100,
250, 400, 500, 600, 700, 800, and 900 hPa, which are similar to the inde-
pendent levels reported in the standard AIRS retrieval product (Olsen et
al., 2007). Assimilating all levels retrieved below 500 hPa did not pro-
vide any significant advantages due to vertically correlated errors and
the lower sensitivity of the radiances themselves to near surface condi-
tions (not shown). The number of levels assimilated should be consis-
tent with the vertical resolution of the model itself. Assimilating
observations with near or better resolution than the model will not re-
sult in any benefit, and only acts to unnecessarily increase computation-
al costs (Migliorini, 2012). Prior to assimilation, mixing ratio
observations and observation errors are converted to dewpoint as in
Jones and Stensrud (2012), since dewpoint observation error has a
more Gaussian distribution.
Fig. 3. Synthetic temperature (a) and water vapor mixing ratio (b) retrievals at 800 hPa at 18
possible due to high clouds.
4. Experiment design

This research uses the ensemble data assimilation system described
in detail byWheatley et al. (2015). Themain components of this data as-
similation system are the WRF-ARW version 3.6.1 forecast model
(Skamarock et al., 2008) and the Data Assimilation Research Testbed
(DART) EAKF developed by NCAR (Anderson and Collins, 2007;
Anderson et al., 2009). The experimental setup follows the configura-
tion employed by Wheatley and Stensrud (2010), Yussouf et al.
(2013), and Jones et al. (2013b, 2015) with the following key details:
A 385 × 265 horizontal grid at 12-km resolution with 56 vertical levels
from approximately 20m above the surface to 10 hPa using a total of 36
members (Fig. 1). All ensemble members use Thompson cloud micro-
physics (Thompson et al., 2004, 2008). Physics diversity is used for the
remaining parameterization schemes to increase ensemble spread
(Stensrud et al. 2000; Wheatley et al., 2015). Physics options include
Kain-Fritsch, Grell, and Tiedtke cumulus parameterization schemes
(outer domain only), YSU, MYJ, and MYNN boundary layer parameteri-
zations, and Dudhia, RRTM, and RRTMG for the radiation (Table 2). The
nature run uses MYJ, but otherwise uses different radiation schemes
and since it is run at 4 km, no cumulus parameterization is used. One
similarity between both the NR and assimilation model is the use of
the 4-layer NOAH land surface model. Other potential land surface
models were considered, but were found not to perform well in the
real-data experiments of Wheatley et al. (2015) and Jones et al. (2016).

Using this model configuration, a “spin-up” experiment is initiated
from the 1800 UTC 18 May GFS analysis and integrated forward in
time 6 h with no data assimilation. At 0000 UTC 19 May, hourly cycling
begins, during which the simulated conventional observations de-
scribed in Section 3.1 are assimilated on the 12 km grid. Note that
radar, GPS/RO, and CTW observations were not included. Horizontal
and vertical localization radii of 100 km and 4 km are applied to all con-
ventional observations using the Gaspari and Cohn (1999) technique.
Prior adaptive inflation (0.6) is also applied at each analysis cycle. Cy-
cling continues until 1800 UTC 20 May, which represents the starting
point for the hyperspectral temperature and humidity profile experi-
ments described below.

Before undertaking these experiments, it is important to compare
the final analysis of the spin up experiment at 1800 UTC to the nature
00 UTC over the Southern Plains domain. White areas indicate where no retrievals were

Image of Fig. 3


Table 2
“Multi-physics” options applied to the ensemblemembers to initialize ensemblemembers
1–18. This set of physics options also is applied to the same GEFS ensemble members, in
reverse order, to initialize ensemble members 19–36 of the NEWS-e. All ensemble mem-
bers use Thompson cloudmicrophysics and the Noah land surfacemodel (Wheatley et al.,
2015).

Parameterizations

Member Cumulus PBL Radiation

SW LW

1 Kain-Fritsch YSU Dudhia RRTM
2 YSU RRTMG RRTMG
3 MYJ Dudhia RRTM
4 MYJ RRTMG RRTMG
5 MYNN Dudhia RRTM
6 MYNN RRTMG RRTMG
7 Grell YSU Dudhia RRTM
8 YSU RRTMG RRTMG
9 MYJ Dudhia RRTM
10 MYJ RRTMG RRTMG
11 MYNN Dudhia RRTM
12 MYNN RRTMG RRTMG
13 Tiedtke YSU Dudhia RRTM
14 YSU RRTMG RRTMG
15 MYJ Dudhia RRTM
16 MYJ RRTMG RRTMG
17 MYNN Dudhia RRTM
18 MYNN RRTMG RRTMG
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run at this time (Fig. 4). Here, and in the figures and discussion that fol-
low the analyses and forecasts are ensemble mean analyses and fore-
casts, unless otherwise specified. Overall, CNTL has a 1.0 K positive
(warm) bias compared to the nature run with a RMSE of 1.5 K. This cor-
responds to a slight (0.4 g kg−1) dry bias with a water vapor mixing
ratio RMSE of 1.4 g kg−1. At 1800 UTC, 20 May 2013, after 6.25 days of
model integration, the nature run generates a large-scale 500 hPa
trough over the central USwith a base in NewMexico (Fig. 4a). A strong
jet is evident with large areas of winds N50 kt present. The greatest
wind speeds (N60 kt) lie in eastern Kansas (KS) and western Missouri.
The 500 hPa flow is favorable for severe weather conditions over a
large area from Texas (TX) northward to the Great Lakes. This study fo-
cuses on severe weather generated in the Southern Plains, particularly
in Oklahoma (OK). The nature run surface temperature and wind anal-
ysis at this time shows an area of warm air in western TX and south-
western OK with cooler temperatures to the north and east (Fig. 4b).
The cooler air is associated with morning cloud cover in eastern OK
and precipitation in KS. A southwest–northeast oriented front is evident
in northwestern OKwith cool northerly winds behind andwarm south-
erly winds ahead. Further south, the surface moisture analysis indicates
the presence of a dryline in western OK corresponding to a sharp mois-
ture gradient (Fig. 4c).

The vertical profile of temperature, dewpoint, and wind speed at
1800 UTC were extracted from the nature run at −97.44°W and
35.18°N, the location of the Norman, OK observing station (Fig. 5a). A
strong capping inversion exists near 880 hPa preventing convection
from forming at this time, but the capping inversion weakens over the
next few hours. Surface-based CAPE is 3600 J kg−1, which is more
than enough to support severe convection. The vertical wind shear is
also favorable except for weak winds in the 800–900 hPa layer. Wind
speed in this layer increases as a function of time as the inversion
weakens, thereby increasing 0–1 km storm relative helicity to
N250 m2 s−2 and priming the atmosphere for severe convection to
develop.

The 500 hPa patterns in the spinup analysis valid at 1800 UTC are
broadly similar to that of the nature run with both depicting a large
scale trough and high wind speeds along its base. The spin up wind
speeds are generally ~10 kt less than the corresponding nature run
values for two reasons (Fig. 4a,c). First, the nature run is a 4 km
resolution model whereas the domain plotted from the spin up experi-
ment is a 12 km run; thus, it is not as likely to resolve the highest wind
speed values. Second, the ensemble mean averages out the highest
winds speeds in individual members since their exact location is not
constant from member to member. Overall surface conditions are also
similar between the nature run and spin up experiment. The boundaries
between surface warm and cool air are located in the same area of the
Southern Plains (Fig. 4b, d). The spin up experiment is slightly warmer
at the surface compared to the nature run. The surfacemoisture charac-
teristics are also consistent between the nature run and spin up exper-
iment (Fig. 4c, f). The vertical profiles of temperature, humidity and
windat the location of theNorman,OKobserving station are also similar
except that the weakness in wind near 800 hPa in the nature run is not
as evident in the experiment (Fig. 5b). The overall similarity between
the spin up experiment and nature run, while also containing several
detailed differences, indicates the data assimilation experiments are
also likely to be capable of representing severe convection and the envi-
ronmental conditions which could support severe convection, which is
a necessary requirement for this research to be successful.

Four experiments are conducted to assess the impacts of assimilat-
ing simulated hyperspectral temperature and humidity profiles into a
mesoscale model using the EAKF approach. The simulated profiles are
also assimilated on the 12 km grid and use horizontal and vertical local-
ization radii of 100 and 3 kmrespectively. All experiments are initialized
from the spin up run at 1800 UTC 20 May 2013 and cycled forward in
time at 15 minute intervals until 0000 UTC 21 May, with the exception
that the control (CNTL) experiment assimilates no additional data. The
CNTL experiment is still cycled since cycling itself can result in a some-
what different result than if an uninterrupted 6 hour forecast were run
from the 1800 UTC analyses. The CONV1H experiment assimilates sim-
ulated conventional observations at hourly intervals and is essentially a
continuation of the spin up experiment. Hourly simulated temperature
and humidity retrievals are added to form the PROF1H experiment. Fi-
nally, the PROF15M experiment assimilates 15 minute resolution re-
trievals along with the hourly conventional observations. Observations
are split into 15 minute chunks with a nominal ±7.5 minute window
around each 15 minute assimilation time use to determine valid obser-
vations. Thus, PROF15M assimilates approximately 4 times the number
of observations than does PROF1H. PROF15M is performed to determine
if the high temporal resolution of future geostationary satellite-based
hyperspectral sounder retrievals have a meaningful advantage over a
lower temporal resolution product for the case studied here. Forecasts
are generated from each experiment beginning at 2000 and 2100 UTC
and integrated out to 0000 UTC 21 May. Each forecast is run in a one-
way nested configuration with an inner 4 km domain centered over
the Southern Plains (Fig. 1). The model configuration remains the
same as the outer 12 km domain with the exception that cumulus pa-
rameterization is no longer applied. The higher resolution of the inner
grid allows for better representation of convection than possible at a
12 km resolution and is directly comparable to the 4 km resolution na-
ture run. No data assimilation occurs on the inner 4 km domain.

5. Results

5.1. Assimilation cycle difference statistics

The first step in determining the effectiveness of assimilating simu-
lated temperature and humidity profiles is to calculate the mean and
RMS of the innovation (observation minus background) and residual
(observation minus analysis) for each assimilation cycle to assess the
overall fit of the background and analysis compared to the observations
(Dowell et al., 2004; Dowell andWicker, 2009).When plotted as a time
series, these statistics often show a saw-tooth pattern in which mean
and RMS differences increase during the forecast cycle from analysis
to subsequent background only to be reduced again by thenext analysis.
Fig. 6 shows mean and RMS differences for temperature and dewpoint
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for the CNTL, PROF1H, and PFOH15M experiments. Approximately
70,000 temperature and dewpoint observations are assimilated during
each cycle. No assimilation occurs in CNTL; thus, the magnitude of the
Fig. 4. (a)Wind speed (knots) and direction at 500 hPa, (b) surface (2m) temperature and 10m
May. Panels d, e, and f are identical, but for the spin-up ensemble mean analysis. The black d
approximate locations of the front and dryline respectively.
differences either remain constant or increase as a function of time.
Mean CNTL temperature differences vary from −0.3 K to −0.5 K by
0000 UTC, indicating that the CNTL experiment becomes increasingly
winds, and (c) surface (2m)water vapor mixing ratio for the nature run at 1800 UTC 20
ot indicates the location of Norman, OK (OUN) and the black and red lines indicate the

Image of Fig. 4


Fig. 5. Temperature, dewpoint, and wind speed and direction profiles from (a) the Nature run and (b) the spin-up analysis located at Norman, OK (OUN) at 1800 UTC 20 May.

Fig. 6.Mean (left panels) andRMSE (right panels) innovations (observationsminusbackground) and residuals (observationminus analysis) for (top) temperature and (bottom)dewpoint
temperature for CNTL, PROF1H, and PROF15M experiments for each assimilation cycle between 1800 UTC 20 May and 0000 UTC 21 May.
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warmer than the observations as a function of time (Fig. 6a). The corre-
spondingRMSdifferences also increases inmagnitude, from1.0 to 1.2 K,
over the same time period (Fig. 6b). For dewpoint, CNTL generates a rel-
atively constantmeandifference of−1.7 K, indicating the experiment is
slightly moister than the observations (Fig. 6c). The corresponding RMS
differences for dewpoint range between 4.0 and 4.3 K (Fig. 6d). The
CONV1H experiment (not shown) is very similar to the CNTL experi-
ment since neither assimilates the simulated temperature and humidity
retrievals.

Assimilating simulated temperature and humidity profiles at hourly
intervals in PROF1H reduces themagnitude of themean and RMSdiffer-
ences for both parameters. At each analysis time, the magnitude of the
mean differences decreases by 0.05 K with a corresponding decrease
in RMS difference of 0.1 K. The cumulative impact of assimilating the
profile observations on temperature is an approximately 50% reduction
of the RMS innovation of 0.4 K by 2300 UTC compared to CNTL. Even
greater relative impacts were observed for dewpoint temperature. Dur-
ing the first analysis, the magnitude of the mean dewpoint difference
decreases by 85% from −1.7 K to only −0.26 K, though it increases
slightly in later assimilation cycles (Fig. 6c). Corresponding RMS differ-
ences stabilize near 2.0 K after 2000 UTC, which is b50% of the CNTL
Fig. 7. Potential temperature differences at 5 km and 2000 UTC 20 May with respect to the CN
PROF15M ensemble mean analyses.
RMS differences (Fig. 6d). Assimilating observations at 15-min intervals
(PROF15M) has an even greater positive impact. For temperature, the
mean differences are only−0.15 K by the end of the assimilation period
(a 70% reduction), while RMS innovation stabilizes near 0.6 K (Fig. 6a,
b). The dewpoint mean difference for PROF15M are approximately
0.2 K smaller in magnitude compared to PROF1H and the RMS innova-
tions are smaller by over 0.5 K after the first few assimilation cycles
(Fig. 6c, d). The greatest impacts from data assimilation occur during
the first hour of the assimilation period. Once the analysis has been
modified to better match the simulated observations, the data assimila-
tion appears to retain that information, reducing later analysis residuals.

5.2. Potential temperature and water vapor differences

The spatial distribution of the differences between perturbation po-
tential temperature (i.e. potential temperature minus 300 K) and water
vapor indicate where assimilating simulated temperature and humidity
profiles have their greatest impact. Fig. 7a shows the difference between
5 km AGL perturbation potential temperature difference computed as
the difference between the nature run and the corresponding ensemble
mean analysis temperature from CNTL over the Southern Plains domain
TL analysis for (a) the nature run (Nature), and for the (b) CONV1H, (c), PROF1H, and (d)

Image of Fig. 7
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at 2000 UTC (Nature minus CNTL). To calculate this difference, the 4 km
nature run is re-sampled to the 4 km nest domain of the experiments.
Over the northern portion of the domain, the nature run is generally
cooler than CNTL while it is somewhat warmer in southeastern OK. As-
similating simulated observations should adjust the model towards the
nature run through the appropriate warming and cooling increments.

To assess the impact of assimilating the simulated observations, the
difference between ensemble mean potential temperature between
CNTL and the other experiments (Experimentminus CNTL) are calculat-
ed in the same fashion. For CONV1H, the overall differences are small
given the limited number of simulated upper air observations being as-
similated. CONV1H is slightly cooler (~1 K) in northern OK with other
small-scale differences in central OK associated with the developing
convection (Fig. 7b). Assimilating temperature and humidity profiles
at hourly intervals generates far larger differences. PROF1H is cooler
compared to CNTL in KS while it is warmer in the western portion of
the domain (Fig. 7c). In addition, PROF1H is warmer in eastern OK.
The spatial patterns of the differences roughly correspond to those pres-
ent between the nature run and CNTL. PROF15M generates a similar
spatial pattern of potential temperature differences as does PROF1H,
but the magnitude of the differences are often higher (Fig. 7c, d).

Fig. 8 shows the corresponding5 kmwater vapormixing ratio differ-
ence at 2000 UTC between the nature run and CNTL (a) and CNTL and
Fig. 8. Water vapor mixing ratio difference at 5 and 2000 UTC 20 May with respect to the CNT
PROF15M ensemble mean analyses.
the experiments (b, c, d). The nature run is generally dryer than CNTL
overmuch of the domainwith the only exception occurring near the lo-
cation of early convection in north-central OK (Fig. 8a). Hourly assimila-
tion of conventional observations only (CONV1H) results in small
differences in water vapor compared to CNTL (Fig. 8b). Much larger dif-
ferences are generated by PROF1H and PROF15. Both are dryer than
CNTL in the same areas where the nature run is dryer than CNTL (Fig.
8c, d) indicating that assimilating the simulated temperature and hu-
midity profiles are adjusting the moisture in the experiment closer to
the nature run value. The magnitude of the drying is somewhat larger
in PROF15M compared to PROF1H, consistentwith the temperature dif-
ference results (Figs. 7d, 8d). This indicates thatmore frequent assimila-
tion has a larger impact, which is fully consistent with the lower
temperature and dewpoint differences and RMSEs shown previously.

5.3. Atmospheric impacts

The impact of assimilating temperature and humidity retrievals is
clearly evident from the vertical profile of ensemble mean temperature
and dewpoint at the OUN sounding site for the nature run and each of
the 4 experiments at 2000 UTC (Fig. 9). The impact on the temperature
profile is small since all the experiments, even CTRL perform quite well,
especially above 800 hPa. Much larger differences are present in the
L analysis for (a) the nature run (Nature), and for the (b) CONV1H, (c), PROF1H, and (d)

Image of Fig. 8


Fig. 9. Vertical profile of temperature, dewpoint, and wind speed (kt) for each ensemble mean analysis and for the nature run at 2000 UTC at Norman OK (OUN).
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moisture profiles. Between 600 and 400 hPa, CNTL and CONV1H both
overestimate humidity compared to the nature run. However, PROF1H
and PROF15M both closely match the nature run in this layer indicating
that assimilating moisture profiles in particular is effective at reducing
mid-level moisture errors in the model.

The vertical distribution of the analysis and forecast errors (i.e., Ex-
periment minus Nature) for the entire 4 km domain are calculated to
confirm the result shown above. The bias or mean error and root
mean square error (RMSE) for perturbation potential temperature and
water vapormixing ratio are calculated for each layer for each ensemble
member. In Figs. 10 and 11, the ensemble mean and standard deviation
of the layer statistics (bias and RMSE) are plotted as symbols and error
bars. These error bars provide an estimate of the overall ensemble spread
in layer bias and RMSE.

Fig. 10 shows bias and RMSE for temperature and water vapor
mixing ratio for the 2000 UTC analysis. First, regarding the temperature
impacts, below500hPa, all the experiments arewarmer than thenature
run, with the largest warm bias occurring near the surface (Fig. 10a).
CNTL has the largest bias while PROF15 has the lowest within this
layer. Below 850 hPa, most of the improvement over CNTL is due to as-
similation of conventional surface observations (CONV1H) and not pro-
filer observations. An experiment similar to PROF15, but without the
conventional observations, also resulted in little improvement com-
pared to CNTL at low levels (not shown). Above 850 hPa, the impact
of the temperature and humidity profiles is larger. In most cases, the
PROF15 lowers the bias relative to PROF1H, though the magnitude of
the difference is small. Between 500 and 200 hPa, both CNTL and
CONV1H have a cool bias, which is removed in PROF1H and PROF15M,
though the spread in bias is quite large in this layer. PROF1H and
PROF15M also decrease temperature RMSE over CNTL and CONV1H in
the 800–200 hPa layer (Fig. 10c). The magnitude of the improvement
is greatest near 450 hPa. Also note that the standard deviation in
RMSE for both PROF1H and PROF15M is quite small and lies outside
the standard deviation of RMSE from the other experiments throughout
most of the 800–200 hPa layer.

Next we examine the bias and RMSE for tropospheric water vapor.
These error statistics are both reduced by assimilating simulated
hyperspectral retrieved profiles. The improvement is most evident in

Image of Fig. 9


Fig. 10.Vertical profiles of temperature andwater vapormixing ratiomean errors (top) andRMSE (bottom) for the 4 kmnest for the 2000UTC analysis. Themean andRMSE are calculated
at each level for each ensemble member. Then the ensemble mean and standard deviations of these statistics are plotted as lines and error bars, respectively.
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the middle troposphere (600–400 hPa) where CNTL and CONV1H have
a moist bias, which is substantially reduced in PROF1H and PROF15M
(Fig. 10b). RMSE is improved over a deeper layer between 800 and
400 hPa (Fig. 10d). Recall that many of the peak weighting functions
for atmospheric temperature and moisture sensitivity generally occur
in the mid-to-upper troposphere (Fig. 2), which is similar to the level
where the maximum improvement in bias occurs. Thus, the greatest
positive impacts occur where the sensor is most sensitive to moisture,
which would be the expected and desirable result.

While assimilating temperature and humidity profiles have a signif-
icant impact on the analyses, whether or not these impacts are retained
in forecasts is evenmore important. If themodel quickly reverts back to
the pre-assimilation conditions, then assimilating the temperature and
humidity profiles would not be useful. Fortunately, the impacts are
still clearly evident in 4-h forecasts valid at 0000 UTC 21 May (Fig. 11)
initiated from the 2000 UTC analyses (Fig. 10). Both PROF1H and
PROF15M continue to reduce bias and RMSE for temperature compared
to CNTL though the ensemble spread is larger since this is a 4 h forecast
(Fig. 11a, d). Both these experiments cool the atmosphere compared to
CNTL and CONV1H at heights up to 300 hPa. The cooling impact is
slightly larger in PROF15M, which is due to the more frequent data as-
similation and consistent with the differences in the 2000 UTC analyses.
However, the additional cooling between 500 and 300 hPa actually re-
sults in a colder bias relative to PROF1H indicating that assimilating
more data is not always optimal. The reduction in moisture bias be-
tween 600 and 400 hPa also remains, but the improvement in RMSE be-
comes small (Fig. 11b, d). Conversely, the difference in bias between
CNTL and PROF1H / PROF15M for u-wind has decreased, but the reduc-
tion in RMSE remains (not shown). Overall, it is clear that at least some
information assimilated from the profiler data is being retained at least
4 h into the forecast which in turn should impact the forecast of severe
convection within themodel. The overall vertical bias and error profiles

Image of Fig. 10


Fig. 11. Same as Fig. 10, but for a 4 hour forecast valid at 0000 UTC 21 May.
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for temperature and humidity are broadly similar at 2000 UTC and the
4 hour forecast at 0000 UTC with one major exception. At 0000 UTC
all forecasts generate a dry bias relative to the nature run between
800 and 700 hPa indicating that the depth of the moisture is likely
being underestimated by these experiments. Assimilating simulated
profiles did little to alter this feature.

5.4. Reflectivity forecasts

To visualize the impact of the storm environment changes resulting
from assimilating simulated temperature and humidity profiles, the en-
semble mean 3 km AGL reflectivity analysis at 2000 UTC and hourly
forecasts for CONV1H, PROF1H, and PROF15M are compared to the na-
ture run reflectivity over the Southern Plains. The nature run reflectivity
shows the progression of convective development from around the
time of convective initiation to when convection becomes widespread
(Fig. 12). Convection begins to develop by 2000 UTC with two areas of
convection developing in central OK and north TX (Fig. 12a). The cover-
age and intensity of the convection in both regions increase further by
2100 UTC (Fig. 12b). Development of both areas continues over the
next 3 h with additional convection forming in between the original
two areas (Fig. 12c–e). The strongest convection in the nature run dur-
ing the 2100–0000 UTC time period appears to occur over central OK,
which is consistent the placement of the actual tornadic supercell that
occurred on 20 May 2013.

CONV1H generate two areas of convection, one in central OK, and
the other on the boarder of OK and TX at 2000 UTC (Fig. 12f), which is
broadly similar to the nature run analysis at this time (Fig. 12a). The de-
tailed characteristics of simulated radar reflectivity differ considerably,
but this is due to the much more complex cloud microphysics used in
the experiments fromwhichmore accurate representations of reflectiv-
ity can be derived and the fact that the ensemble averaging smears out

Image of Fig. 11


Fig. 12. Simulated radar reflectivity at 3 kmAGL from the nature run at 2000 (a), 2100 (b), 2200 (c, 2300 (d), and 0000 UTC (e) 20May. Ensemble mean radar reflectivity at 3 kmAGL for
the 2000 UTC analysis and following forecasts at 2100, 2200, 2300, and 0000 UTC for CONV1H, PROF1H, and PROF15 experiments (f–t).
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the storm structures in the individual ensemblemembers. This latter ef-
fect is particularly evident in the blue edges of the ensemble averages
due to the spread in the placement of the ensemble storm boundaries.
As forecast time increases, storm coverage increases with both areas
of stormsmaintained out to 0000 UTC, which is consistent with the na-
ture run. However, the coverage and location is not an exact match,
Fig. 13. Ensemble estimated probability of 2–5 kmupdraft helicity integrated over a 4 hour forec
experiments. In each panel the hatched areas indicate location of nature run helicity N50 m2 s
leaving room for improvement from assimilating temperature and hu-
midity profiles.

PROF1Hgenerates reflectivity analyses at 2000 and2100UTC similar
in appearance to the CONV1H with the exception of lower ensemble
mean reflectivity values associatedwith the southern area of convection
(Fig. 12f, g, k, l). Larger differences emerge by 2200 UTC, or 2 h into the
ast initiated at 2000 UTC 20May N50m2 s−2 for (a) CONV1H, (b) PROF1H, and (c) PROF15
−2 over the same time period.

Image of Fig. 12
Image of Fig. 13


Fig. 14. Same as Fig. 14, but a for 3 hour forecasts initiated at 2100 UTC.
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forecast, as PROF1H generates higher ensemblemean reflectivity values
in central OK,which indicate that this experiment is generating stronger
convection and lower overall ensemble spread (Fig. 12m). This differ-
ence remains throughout the remainder of the forecast period. Assimi-
lation of temperature and humidity profiles at 15 minute intervals
further impacts the model forecasts. At 2000 and 2100 UTC, PROF15M
generates weaker storms than either CONV1H or PROF1H (Fig. 12).
However, this changes by 2200 UTC, after which PROF15M generates
the highest reflectivity values. The reason PROF15M suppresses convec-
tion relative to the other experiments is due to 15 minute assimilation
of what are mostly cloud-free or at best partly cloudy observations. In
particular, all the humidity observations assimilated are sub-saturated.
The more frequent the assimilation, the greater the impact of these
sub-saturated observations have on nearby saturated areas. Thus,
while the environment is improved, convection initiation is inhibited.
(See further discussion in the Conclusions.)

5.5. Updraft helicity forecasts

One of the key goals of this research is to determine if assimilating
hyperspectral temperature and humidity profiles can improve the fore-
casts of rotating supercell storms. To examine this question, 2–5 kmup-
draft helicity is compared between the nature run and each experiment.
Updraft helicity (UH) is a diagnostic parameter designed for tracking ro-
tation in model-simulated storms that is computed by taking the inte-
gral of the vertical vorticity multiplied by the updraft velocity between
2 and 5 km AGL (Kain et al., 2008). The probability of UH N50 m2 s−2

is calculated for each experiment over the 0–4 hour forecast period be-
ginning at 2000 UTC and compared with the location of nature run UH
N50m2 s−2. Probability is calculated using the 3-by-3 grid point neigh-
borhood around a particular horizontal model grid point for eachmem-
ber at a given time in which UH exceeds the above threshold divided by
the total number of ensemble members. The maximum probability re-
corded at each horizontal grid point during the entire 4 hour forecast
period is shown (Figs. 13 and 14).

The nature run generates two areas of UH N50m2 s−2 between 2000
and 0000 UTC located in central OK and north TX (hatched areas in each
panel of Fig. 13). CONV1H generates UH probabilities N40% associated
with the central OK storm, and N60% for the southern storm during
this period (Fig. 13a). However, both UH tracks are displaced north
and east of the UH generated in the nature run. PROF1H reduces the
northern displacement bias for the central OK storm to some degree,
but is otherwise quite similar to PROF1H (Fig. 13b). PROF15M differs
from the other two experiments by generating N40% near the UH pres-
ent in the nature run for the central OK storm (Fig. 13c). Further south,
PROF15M appears to decrease UH probabilities compared to the other
two experiments. PFOF15M also generates a third area of UH just to
the southwest of the area in central OK corresponding to a signal also
present in the nature run.

Thedifferences between these experiments increase for 3 h forecasts
initiated at 2100 UTC. Both CONV1H and PROF1H again generate UH
probabilities N40% corresponding to the central OK storm, but theplace-
ment of the UH swaths is well to the north and east of the nature run
(Fig. 14). Conversely, PROF15M generates a large swath of UH probabil-
ities N60% very near to the corresponding nature run for the central OK
storm track, representing a significant improvement compared to
PROF1H. These results indicate that the changes to the near-storm envi-
ronment through assimilating simulated temperature and humidity
profiles can have a positive impact on their forecasts.

6. Conclusions

Assimilating synthetic hyperspectral temperature andhumidity pro-
files using an EAKF approach reduced mid-tropospheric temperature
and humidity misfits to the observations and errors compared to an ex-
periment that only assimilated conventional observations. The greatest
improvement occurs at the first assimilation cycle after which smaller
improvements occur as cycling continues. Assimilating synthetics pro-
files at hourly intervals proved successful, but 15 minute cycling gener-
ally produced somewhat smaller biases and errors compared to the
hourly cycling experiments. The improvements persist several hours
into the forecast period after data assimilation has ceased.

The impacts to the near-storm environment resulted in large differ-
ences in the forecast evolution of convection within the model. The
15 minute cycling experiments generally produced the most skillful
forecasts of reflectivity and updraft helicity in the 2–4 hour time period.
However, the 15 minute experiments did have difficulty spinning up
convection compared to the hourly and even conventional data only ex-
periments. It is likely that assimilating only data in cloud-free areas at
high temporal intervals has the unwanted impact of suppressing nearby
cloud cover and precipitation since the influence of clear-sky observa-
tions extends beyond the observation location. While this result is
concerning, this problem would be significantly reduced if information
relating to clouds and precipitation were also assimilated into these ex-
periments. Any real-time, operational NWP model designed for high
weather impact forecasts would likely include this information and
would likely reduce the negative impact to convective initiation caused
by the assimilation of large amounts of cloud-free data. The preliminary
experiments describe here suggest that as improved spatial and tempo-
ral resolution hyperspectral data become available, their importance in
improving forecasts of high weather impacts will increase.

This research only represents a preliminary study of the impact of
geostationary hyperspectral observations to severe weather forecasting
and significant additional research is required to fully understand and

Image of Fig. 14
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quantify the potential impact. Future experiments should utilize a
higher resolution OSSE run over an extended time period, or for several
cases, containingmultiple severe weather events. The newOSSE should
also use advanced cloud microphysics so that other high resolution ob-
servations of cloud and precipitation properties such as radar reflectiv-
ity can be simulated. Further improvements to the treatment of partly
cloudy radiances and retrievals is also required. Thus, while the results
shown for this example are indeed promising, much more work is re-
quired to determine their overall applicability to high impact weather
forecasting.
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