
Distribution of Environments in Formal Measures of Intelligence:
Extended Version

Bill Hibbard
December 2008

Abstract
This paper shows that a constraint on universal Turing
machines is necessary for Legg's and Hutter's formal
measure of intelligence to be unbiased. Their measure,
defined in terms of Turing machines, is adapted to finite
state machines. A No Free Lunch result is proved for the
finite version of the measure, and this motivates a less
abstract measure.

Introduction
Goertzel's keynote at AGI-08 described theory as one
useful direction for artificial intelligence research
(Goertzel 2008). Schmidhuber, Hutter and Legg have
produced a number of recent results to formally define
intelligence and idealized intelligent agents. In particular,
Legg and Hutter have developed a formal mathematical
model for defining and measuring the intelligence of
agents interacting with environments (Legg and Hutter
2006). Their model includes weighting distributions over
time and environments. The point of this paper is to
argue that a constraint on the weighting over
environments is required for the utility of the intelligence
measure.

The first section of this paper describes Legg's and
Hutter's measure and demonstrates the importance of the
weighting over environments. Their measure is defined
in terms of Turing machines and the second section
investigates how the measure can be adapted to a finite
model of computing. The third section proves an analog
of the No Free Lunch Theorem for this finite model. The
final section uses these results to argue for a less abstract
model for weighting over environments.

A Formal Measure of Intelligence
Legg and Hutter used reinforcement learning as a
framework for defining and measuring intelligence
(Legg and Hutter 2006). In their framework an agent
interacts with its environment at a sequence of discrete
times, sending action ai to the environment and receiving
observation oi and reward ri from the environment at
time i. These are members of finite sets A, O and R
respectively, where R is a set of rational numbers
between 0.0 and 1.0. The environment is defined by a
probability measure:

μ(okrk | o1r1a1 … ok-1r k-1a k-1)

and the agent is defined by a probability measure:

π(ak | o1r1a1 … ok-1r k-1a k-1).

The value of agent π in environment μ is defined by

the expected value of rewards:

Vμ

π = E(∑i=1
∞ wiri)

where the wi ≥ 0.0 are a sequence of weights for future
rewards subject to ∑i=1

∞ wi = 1 (Legg and Hutter
combined the wi into the ri). In reinforcement learning
the wi are often taken to be (1-γ)γi-1 for some 0.0 < γ <
1.0. Note 0.0 ≤ Vμ

π ≤ 1.0.
The intelligence of agent π is defined by a weighted

sum of its values over a set E of computable
environments. Environments are computed by programs,
finite binary strings, on some prefix universal Turing
machine (PUTM) U. The weight for μ ∈ E is defined in
terms of its Kolmogorov complexity:

K(μ) = min { |p| : U(p) computes μ }

where |p| denotes the length of program p. The
intelligence of agent π is:

Vπ = ∑μ∈E 2-K(μ) Vμ

π.

The value of this expression for Vπ is between 0.0

and 1.0 because of Kraft's Inequality for PUTMs (Li and
Vitányi 1997):

∑μ∈E 2-K(μ) ≤ 1.0.

Legg and Hutter state that because K(μ) is

independent of the choice of PUTM up to an additive
constant that is independent of μ, we can simply pick a
PUTM. They do caution that the choice of PUTM can
affect the relative intelligence of agents and discuss the
possibility of limiting PUTM complexity. But in fact a
constraint on PUTMs is necessary to avoid intelligence
measures biased toward specific environments:

Proposition 1. Given μ ∈ E and ε > 0 there exists a
PUTM Uμ such that for all agents π:

Vμ

π / 2 ≤ Vπ < Vμ
π / 2 + ε

where Vπ is computed using Uμ.

Proof. Fix a PUTM U0 that computes environments.
Given μ ∈ E and ε > 0, fix an integer n such that 2-n < ε.
Then construct a PUTM Uμ that computes μ given the
program "1", fails to halt (alternatively, computes μ)
given a program starting with between 1 and n 0's
followed by a 1, and computes U0(p) given a program of
n+1 0's followed by p. Now define K using Uμ. Clearly:

2-K(μ) = 1/2

And, applying Kraft's Inequality to U0:

∑μ' ≠ μ 2-K(μ') ≤ 2-n < ε.

So:

Vπ = Vμ
π / 2 + X

Where

X = ∑μ' ≠ μ 2-K(μ') Vμ'
π and 0 ≤ X < ε. �

In addition to the issue of weighting over

environments, there are other interesting issues for an
intelligence measure:

1. It is not clear what weighting of rewards over
time is best. Vμ

π is defined using the reinforcement
learning expression for the value of the state at the first
time step. But an intelligent agent generally needs time
to learn a novel environment, suggesting that Vμ

π should
be defined by the value of the state at a later time step, or
even its limit as time increases to infinity. On the other
hand, speed of learning is part of intelligence and the
expression for the value at the first time step rewards
agents that learn quickly.

2. The expression for Vπ combines weighting over
both environments and time, which can lead to
unintuitive results. Lucky choices of actions at early,
heavily weighted, time steps in simple, heavily weighted,
environments, may count more toward an agent's
intelligence than good choices of actions in very
difficult, but lightly weighted, environments. As
environment complexity increases, agents will require
longer times to learn good actions. Thus, given a
distribution of time weights that is constant over all
environments, even the best agents will be unable to get
any value as environment complexity increases to
infinity. It would make sense for different environments
to have different time weight distributions.

3. If PUTM programs were answers (as in
Solomonoff Induction, where an agent seeks programs
that match observed environment behavior) then
weighting short programs more heavily would make
sense, since shorter answers are better (according to
Occam's razor). But here they are being used as
questions and longer programs pose more difficult
questions so arguably should be weighted more heavily.
But if the total weight over environments is finite and the
number of environments is infinite, then it is inevitable
that environment weight must approach zero as
environment complexity increases to infinity. On the
other hand, shorter programs are more probable,
determined for example by frequency of occurrence as
substrings of sequences of random coin flips, and we
may wish to weight environments by probability of
occurrence.

4. Whatever PUTM is used to compute
environments, all but an arbitrarily small ε of an agent's
intelligence is determined by its value in a finite number
of environments.

5. As Legg and Hutter state, AIXI (Hutter 2004) has
maximal intelligence by their measure. However, given a
positive integer n, there exist an environment μn, based
on a finite table of AIXI's possible behaviors during the
first n time steps, and an agent πn, such that μn gives
AIXI reward 0 at each of those time steps and gives πn
reward 1 at each of those time steps. If most time weight
occurs during the first n time steps and we apply
Proposition 1 to μn (clearly resulting in a different PUTM
than used to define AIXI), then πn could have higher
measured intelligence than AIXI (only possible because
of the different PUTMs).

A Finite Model
Wang makes a convincing argument that finite and
limited resources are an essential component of a
definition of intelligence (Wang 1995). Lloyd estimates
that the universe contains no more than 1090 bits of
information and can have performed no more than 10120
elementary operations during its history (Lloyd 2002), in
which case our universe is a finite state machine (FSM)
with no more than 2^(1090) states. Adapting Legg's and
Hutter's intelligence measure to a finite computing model
would be consistent with finite physics, and can also
address several of the issues listed in the previous
section. Let's reject the notion that finite implies trivial
on the grounds that the finite universe is not trivial.

As before, assume the sets A, O and R of actions,
observations and rewards are finite and fixed. A FSM is
defined by a mapping:

f:S(n)×A→S(n)×O×R

where S(n)={1,2,3,…,n} is a set of states and "1" is the
start state (we assume deterministic FSMs so this
mapping is single-valued). Letting si denote the state at
time step i, the timing is such that f(si,ai) = (si+1,oi,ri).
Because the agent π may be nondeterministic its value in
this environment is defined by the expected value of
rewards:

Vf

π = E(∑i=1
M(n) wn,iri)

where the wn,i ≥ 0.0 are a sequence of weights for
future rewards subject to ∑i=1

 M(n) wn,i = 1 and M(n) is a
finite time limit depending on state set size. Note that
different state set sizes have different time weights,
possibly giving agents more time to learn more complex
environments.

Define F(n) as the set of all FSMs with the state set
S(n). Define:

F = Un=L

H F(n)

as the set of all FSMs with state set size between L and
H. Define weights Wn such that ∑ n=L

H Wn = 1, and for
f ∈ F(n) define W(f) = Wn / |F(n)|. Then ∑f∈F W(f) = 1
and we define the intelligence of agent π as:

 Vπ = ∑f∈F W(f) Vf

π.

The lower limit L on state set size is intended to avoid
domination of Vπ by the value of π in a small number of
environments, as in Proposition 1. The upper limit H on
state size means that intelligence is determined by an
agent's value in a finite number of environments. This
avoids the necessity for weights to tend toward zero as
environment complexity increases. In fact, the weights
Wn may be chosen so that more complex environments
actually have greater weight than simpler environments.

State is not directly observable so this model counts
multiple FSMs with identical behavior. This can be
regarded as implicitly weighting behaviors by counting
numbers of representations.

No Free Lunch
The No-Free-Lunch Theorem (NFLT) tells us that all
optimization algorithms have equal performance when
averaged over all finite environments (Wolpert and
Macready 1997). It is interesting to investigate what
relation this result has to intelligence measures that
average agent performance over environments.

The finite model in the previous section lacks an
important hypothesis of the NFLT: that the optimization
algorithm never makes the same action more than once.
This is necessary to conclude that the ensembles of
rewards are independent at different times. The
following constraint on the finite model achieves the
same result:

Definition. An environment FSM satisfies the No
Repeating State Condition (NRSC) if it can never repeat
the same state. Such environments must include one or
more final states (successor undefined) and a criterion of
the NRSC is that every path from the start state to a final
state has length ≥ M(n), the time limit in the sum for Vf

π
(this is only possible if M(n) ≤ n).

Although the NRSC may seem somewhat artificial,
it applies in the physical universe because of the second
law of thermodynamics (under the reasonable
assumption an irreversible process is always occurring
somewhere). Now we show a No Free Lunch result for
the finite model subject to the NRSC:

Proposition 2. In the finite model defined in the
previous section, assume that M(n) ≤ n and restrict F to
those FSMs satisfying the NRSC. Then for any agent π,
Vπ = (∑r∈R r) / |R|, the average reward. Thus all agents
have the same measured intelligence.

Proof. Given an agent π, calculate:

Vπ = ∑f∈F W(f) Vf

π =

∑n=L

H ∑f∈F(n) W(f) Vf
π =

∑n=L

H (Wn / |F(n)|) ∑f∈F(n) Vf
π =

∑n=L

H (Wn / |F(n)|) ∑f∈F(n) E(∑i=1
M(n) wn,i rf,i) =

∑n=L

H (Wn / |F(n)|) ∑i=1
M(n) wn,i ∑f∈F(n) E(rf,i).

where rf,i denotes the reward to the agent from
environment f at time step i.

To analyze ∑f∈F(n) E(rf,i), define P(s,a|i,f) as the
probability that in a time sequence of interactions
between agent π and environment f, π makes action a and
f is in state s at time step i. Also define P(r|i,f) as the
probability that f makes reward r at time step i. Note:

(1) ∑a∈A ∑s∈S P(s,a|i,f) = 1

Let fR denote the R-component of a map

f:S(n)×A→S(n)×O×R. For any s∈S and a∈A, partition
F(n) into the disjoint union F(n) = Ur∈R F(s,a,r) where
F(s,a,r) = { f∈F(n) | fR(s,a) = r}. Define a deterministic
probability:

P(r|f,s,a) = 1 if f∈F(s,a,r)

= 0 otherwise.

Given any two reward values r1,r2∈R (here these do

not denote the rewards at the first and second time steps)
there is a one-to-one correspondence between F(s,a,r1)
and F(s,a,r2) as follows: f1∈F(s,a,r1) corresponds with
f2∈F(s,a,r2) if f1 = f2 everywhere except:

f1

R(s,a) = r1 ≠ r2 = f2
R(s,a).

(Changing a reward value does not affect whether a FSM
satisfies the NRSC.) Given such f1 and f2 in
correspondence, because of the NRSC f1 and f2 can only
be in state s once, and because they are in
correspondence they will interact identically with the
agent π before reaching state s. Thus:

(2) P(s,a|i,f1) = P(s,a|i,f2)

Because of the one-to-one correspondence between

F(s,a,r1) and F(s,a,r2) for any r1,r2∈R, and because of
equation (2), the value of ∑f∈F(s,a,r) P(s,a|i,f) is
independent of r and we denote it by Q(i,s,a). We use
this and equation (1) as follows:

|F(n)| = ∑f∈F(n) 1 =

∑f∈F(n) ∑a∈A ∑s∈S P(s,a|i,f) =

∑a∈A ∑s∈S ∑f∈F(n) P(s,a|i,f) =

∑a∈A ∑s∈S ∑r∈R ∑f∈F(s,a,r) P(s,a|i,f) =

∑a∈A ∑s∈S ∑r∈R Q(i,s,a) =

∑a∈A ∑s∈S |R| Q(i,s,a).

So for any r∈R:

(3) ∑a∈A ∑s∈S ∑f∈F(s,a,r) P(s,a|i,f) =

∑a∈A ∑s∈S Q(i,s,a) =

|F(n)| / |R|.

Now we are ready to evaluate ∑f∈F(n) E(rf,i):

∑f∈F(n) E(rf,i) =

∑f∈F(n) ∑r∈R r P(r|i,f) =

∑f∈F(n) ∑r∈R r ∑a∈A ∑s∈S P(r|f,s,a) P(s,a|i,f) =

∑r∈R r ∑a∈A ∑s∈S ∑f∈F(n) P(r|f,s,a) P(s,a|i,f) =

∑r∈R r ∑a∈A ∑s∈S ∑f∈F(s,a,r) P(s,a|i,f) = (by 3)

∑r∈R r |F(n)| / |R| = |F(n)| (∑r∈R r) / |R|.

Plugging this back into the expression for Vπ:

Vπ = ∑n=L

H (Wn / |F(n)|) ∑i=1
M(n) wn,i ∑f∈F(n) E(rf,i) =

∑n=L

H (Wn / |F(n)|) ∑i=1
M(n) wn,i |F(n)| (∑r∈R r) / |R| =

∑n=L

H (Wn / |F(n)|) |F(n)| (∑r∈R r) / |R| =

(∑r∈R r) / |R|. �

By letting L = H in the finite model, Proposition 2

applies to a distribution of environments defined by
FSMs with the same state set size.

It would be interesting to construct a PUTM in
Legg's and Hutter's model for which all agents have the
same measured intelligence within an arbitrarily small ε.
It is not difficult to construct a PUTM, somewhat similar
to the one defined in the proof of Proposition 1, that
gives equal weight to a set of programs defining all
FSMs with state set size n satisfying the NRSC, and
gives arbitrarily small weight to all other programs. The
difficulty is that multiple FSMs will define the same
behavior and only one of those FSMs will be counted
toward agent intelligence, since Legg's and Hutter's
measure sums over environment behaviors rather than
over programs. But if their measure had summed over
programs, then a PUTM could be constructed for which
an analog of Proposition 2 could be proved.

A Revised Finite Model
According to current physics the universe is a FSM
satisfying the NRSC. If we measure agent intelligence
using a distribution of FSMs satisfying the NRSC in
which all FSMs with the same number of states have the
same weight, then Proposition 2 shows that all agents
have the same measured intelligence. This is a
distribution of environments in which past behavior of
environments provides no information about their future
behavior. For a useful measure of intelligence,
environments must be weighted to enable agents to
predict the future from the past.

It is easy to construct single environments against
which different agents have different performance, so
Proposition 1 implies that a weighting of environments
based on program length is capable of defining different
performance measures for different agents. However, we
want to constrain an intelligence measure to ensure that
it is based on performance against a large number of
environments rather than a single environment.

This suggests a distribution of environments based
on program length but less abstract than Kolmogorov
complexity, in order to avoid a distribution of
environments as constructed in the proof of Proposition
1. So revise the finite model of the previous sections to
specify environments in an ordinary programming
language, with static memory allocation and no recursion
so environments are FSMs. Lower and upper limits on
environment program length ensure that the model
includes only a finite number of environments. For
nondeterministic FSMs the language may include an
oracle for truly random numbers.

Because the physical world satisfies the NRSC its
behavior never repeats precisely (theoretically behavior
could repeat precisely in the part of the universe sensed
by a human, although in practice it doesn't). But human
agents learn to predict future behavior in the world by
recognizing current behavior as similar to previously
observed behaviors, and making predictions based on
those previous behaviors. Similarity can be recognized in
sequences of values from unstructured sets such as
{0, 1}, but there are more ways to recognize similarity in
sequences of values from sets with metric and algebraic
structures such as numerical sets. Our physical world is
described largely by numerical variables, and the best
human efforts to predict behaviors in the physical world
use numerical programming languages.

So revise the finite model to define the sets A and O
of actions and observations using numerical values
(finitely sampled in the form of floating point or integer
variables), just as rewards are taken from a numerical set
R. Short environment programs that mix numerical and
conditional operations will generally produce
observations and rewards as piecewise continuous
responses to agent actions, enabling agents to predict
based on similarity of behaviors. Including primitives for
numerical operations in environment programs has the
effect of skewing the distribution of environments
toward similarity with the physical world.

The revised finite model is a good candidate basis
for a formal measure of intelligence. But the real point of
this paper is that distributions over environments and
time pose complex issues for formal intelligence
measures. Ultimately our definition of intelligence
depends on the intuition we develop from using our
minds in the physical world, and the key to a useful
formal measure is the way its weighting distribution over
environments abstracts from our world.

References
Goertzel, B. Review of Past and Present AGI Research.
Keynote address to Artificial General Intelligence 2008.
http://www.agi-08.org/slides/goertzel.ppt

Hutter, M. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Springer,
Berlin. 2004. 300 pages.

Legg, S. and M. Hutter. Proc. A Formal Measure of
Machine Intelligence. 15th Annual Machine Learning
Conference of Belgium and The Netherlands (Benelearn
2006), pages 73-80.

http://www.idsia.ch/idsiareport/IDSIA-10-06.pdf

Li, M. and P. Vitányi, An Introduction to Kolmogorov
Complexity and Its Applications, 2nd ed.. Springer, New
York, 1997. 637 pages.

Lloyd, S. Computational Capacity of the Universe.
Phys.Rev.Lett. 88 (2002) 237901.
http://arxiv.org/abs/quant-ph/0110141

Wang, P. Non-Axiomatic Reasoning System ---
Exploring the essence of intelligence. PhD Dissertation,
Indiana University Comp. Sci. Dept. and the Cog. Sci.
Program, 1995.
http://www.cogsci.indiana.edu/farg/peiwang/
PUBLICATION/wang.thesis.ps

Wolpert, D. and W. Macready, No Free Lunch Theorems
for Optimization. IEEE Transactions on Evolutionary
Computation 1, 67. 1997.
http://ic.arc.nasa.gov/people/dhw/papers/78.pdf

