Observations of the far-IR Spectrum from the Ground, the Air, and from Space

Marty Mlynczak
NASA Langley Research Center
Outline

• Acknowledgements

• Measuring the Far-IR, Radiances and Fluxes
 – FIRST Instrument
 – INFLAME Instrument

• The Far-Infrared Explorer – FIREX – Mission
 – A proposal to the NASA Earth Venture – 2 Opportunity

• Summary
Acknowledgements

• NASA Earth Science Technology Office
 – IIP, ACT, QRS awards

• NASA Science Mission Directorate
 – Radiation Sciences Program

• NASA Langley Research Center
 – Science Directorate
 – Engineering Directorate
 – Research and Technology Directorate

• CLARREO Science Definition Team
• FIREX Science Team

• And a host of others….
Far-Infrared Spectrometry Team Members

Government

- NASA
 - Langley, GSFC
- COLUMBIA SCIENTIFIC BALLOON FACILITY
- NIST
 - National Institute of Standards and Technology
 - U.S. Department of Commerce
- JPL
- GFDL
 - Geophysical Fluid Dynamics Laboratory

Academia

- NCAR
 - National Center for Atmospheric Research
- Texas A&M University
 - AT\&T
- University of Wisconsin
 - W
- IFAC
- SSAI
- THE FLORIDA STATE UNIVERSITY

Industry

- DRS Technologies
- ITT
 - Engineered for life
- Raytheon
 - Customer Success Is Our Mission
- Space Dynamics Laboratory
 - Utah State University Research Foundation
- Ball
- ABB

International
Michelson Interferometer

- 6 to 100 μm on a single focal plane
- 0.625 cm⁻¹ unapodized (0.8 cm OPD)
- Germanium on polypropylene beamsplitter
- Bolometer detectors @ 4 K

- Demonstrated on a high-altitude balloon flight June 7 2005
- Second balloon flight September 18 2006
- Ground-based capability demonstrated March 2007
- FORGE Ground Campaign Atacama Desert Chile 2009
- Recalibration now underway at SDL and deployment 2012
FIRST Thermal Infrared Spectrum - TOA

Mlynczak et al., GRL, 2006
FIRST Performance Summary

- FIRST underwent ground calibration in the lab at SDL in 2005

- Systematic Uncertainty: < 1 K for 190 to 310 K

- Precision (Random Uncertainty): < 1 K per spectrum

- Radiance accuracy @ Cerro Toco: ~ 1 K (~ 1% in radiance)
 - Averaging of spectra reduces random noise substantially
 - This is the best we know it today – it is likely a lot better!

- FIRST is now being recalibrated at SDL with standards transferred from NIST (LWIRCS in NIST LBIR)
FIRST Operations at 17,600 Feet
Cerro Toco, Atacama Desert, Chile
Summary of FIRST Data from RHUBC-II

- Campaign yielded 105 raw datafiles (~350 Mbytes) that are analyzable (1 hour each)

- 67 have been processed with corresponding data uploaded to the DOE Atmospheric Research Measurement (ARM) ftp site

- 38 files indicate some kind of problem in the file itself (e.g., first file of day)

- Good data for 25 days of the campaign

- 399 spectra have been released, each is a 6 minute average (about 31 individual spectra)

- Spectral range 80–800 cm\(^{-1}\)

- Average precision is +/- 0.002 W / (m\(^2\) sr cm\(^{-1}\)) [2 “radiance units”]
FIRST Radiance from Cerro Toco

Blue —— FIRST Data
Red —— LBL Calculation

PWV = 0.75 millimeter ("wet" day)
Radiance Difference – 09/05/2009

FIRST Radiance from Cerro Toco

Difference FIRST – LBL

Radiance (W m^{-2} sr^{-1} cm)

Wavenumber (cm^{-1})

5 RU
NeDT = 2 RU
T, H2O ~ 3 RU
September 5 2009 – PWV = 0.75 mm

FIRST Radiance from Cerro Toco

Blue -- FIRST Data

Red -- LBL Calculation
September 5 2009 – PWV = 0.75 mm

FIRST Radiance from Cerro Toco

Blue -- FIRST Data

Red -- LBL Calculation

Radiance (W m\(^{-2}\) sr\(^{-1}\) cm\(^{-1}\))

Wavenumber (cm\(^{-1}\))
September 5 2009 – PWV = 0.75 mm
September 19 2009 – PWV = 0.4 mm
FIRST Radiance from Cerro Toco – Sept. 19 2009

Blue — FIRST Data

Red — LBL Calculation

Radiance (W m\(^{-2}\) sr\(^{-1}\) cm\(^{-1}\))

Wavenumber (cm\(^{-1}\))

September 19 2009 – PWV = 0.4 mm
FIRST Radiance from Cerro Toco – Sept. 19 2009

Blue -- FIRST Data
Red -- LBL Calculation

Radiance (W m\(^{-2}\) sr\(^{-1}\) cm\(^{-1}\))

Wavenumber (cm\(^{-1}\))

September 19 2009 – PWV = 0.4 mm
September 19 2009 – PWV = 0.4 mm

FIRST Radiance from Cerro Toco – Sept. 19 2009

Blue — FIRST Data
Red — LBL Calculation

Radiance (W m^-2 sr^-1 cm^-1)

Wavenumber (cm^-1)
Impact of 1.6 meter path on radiance @ Cerro Toco

Effect typically less than 2% in the far-IR
FIRST Radiance at Cerro Toco September 5 2009

Blue -- FIRST Data
Red -- LBL Calculation

FIRST Radiance at Cerro Toco September 7 2009

Blue -- FIRST Data
Red -- LBL Calculation

FIRST Data 200 – 300 cm⁻¹; September 5, 7, 19, 24

FIRST Radiance at Cerro Toco September 19 2009

Blue -- FIRST Data
Red -- LBL Calculation

FIRST Radiance at Cerro Toco September 24 2009

Blue -- FIRST Data
Red -- LBL Calculation
FIRST Data 300 – 400 cm\(^{-1}\); September 5, 7, 19, 24
FIRST Data 400 – 500 cm\(^{-1}\); September 5, 7, 19, 24
FIRST Data 500 – 600 cm\(^{-1}\); September 5, 7, 19, 24
Summary of Results from Cerro Toco and Future Plans

- Instrument operated nominally – recorded data on every day we went up the mountain
- Measured far-IR spectrum 80 to 800 cm\(^{-1}\)
 - Observed spectral structure down to 240 cm\(^{-1}\)
- Measured spectra show no substantive differences with two different radiative transfer codes, LBLRTM/LBLDIS and MRTA
 - This is at the < 1-2% level. Finer differences may exist
- FIRST undergoing recalibration now at SDL
 - Will reprocess Cerro Toco data and also remove “1.6 m path” radiance
- Deploy newly calibrated FIRST to Table Mountain or MLO in 2012
INFLAME

- INFLAME -

In-Situ Net Flux within the Atmosphere of the Earth

INFLAME Goal: Measure the rates of heating & cooling of the atmosphere by visible and infrared radiation

Developed under Instrument Incubator Program

Successful Demo Flight on LearJet January 2010
Net Flux Measurement – At the Beginning

The Suomi “Economical Net Flux Radiometer”

Circa 1960

\[\frac{\partial T}{\partial t} = f(T_b, T_i, T_a, r, a, d_i, d_a, k_i, k_a) \]
In-Situ Net Flux within the Atmosphere of the Earth

Atmospheric Heating and Cooling Rates

\[F^\uparrow(z) = \int_0^1 I(z) \mu \, d\Omega \]

\[F^\downarrow(z) = \int_{-1}^0 I(z) \mu \, d\Omega \]

\[F_{net}(z) = F^\uparrow(z) - F^\downarrow(z) \]

\[\frac{\partial T}{\partial t} = \frac{1}{\rho \, C_p} \frac{\partial F_{net}(z)}{\partial z} \]

Require an instrument to directly measure the net flux
Measuring Net Flux Divergence

- From an airborne platform:
 - Measure Net Flux at Z_1
 - Measure Net Flux at Z_2

- Approximate Heating Rate by:

$$\frac{\partial T}{\partial t} = \frac{1}{\rho C_p} \frac{F_{net}(z_2) - F_{net}(z_1)}{(z_2 - z_1)}$$
INFLAME Approach: F+ and F-

- Most instruments measure radiance, not flux.
- Measuring flux requires collecting light over a full hemisphere.
- We use a non-imaging Winston cone to collect radiation and collimate it into an f/6.8 beam.
 - Input aperture is 1 mm diameter.
 - Output aperture is 13.6 mm diameter.
Learjet

INFLAME mounted in wingtip fuel tanks
Fuel Tank Integration

- Tip Tank Instrument Access Door
- Instrument Assembly
- Instrument Mounting Bulkheads
- Instrument Electronics Enclosures
- Tip Tank Nose Cone
- Tip Tank Wet Section
- Wet/Dry Bulkheads FS 83.85
- Existing Bulkhead FS 46.00
- Tip Tank Electronics Access Doors
INFLAME LW Net Flux

Measured LW Net Flux

1/5/2010

Calculated LW Net Flux

1/5/2010
INFLAME Derived LW Cooling Rates

Measured LW Cooling mK/Day/cm\(^{-1}\)
1/5/2010 flight.

Calculated LW Cooling mK/Day/cm\(^{-1}\)
1/5/2010 flight
Summary

- **IR FTS (LW)** Successfully demonstrated during flight
 - First direct measurement of net fluxes and spectral cooling rates within the atmosphere
 - Analysis is ongoing

- **UV-NIR FTS (SW)**: No useful flight spectra obtained.
 - Commercial controller failed due to excessive drift with temperature before takeoff.
FIREX
The Far-Infrared Explorer

A Proposal to the NASA Earth Venture-2 A/O
Submitted September 2011
FIREX – The Far-Infrared Explorer
A Proposal to the NASA Earth Venture-2 Opportunity

Science Objectives
• Determine Earth’s spectral greenhouse effect across the entire IR spectrum, including the far-IR
• Determine spectral cloud radiative forcing across the entire IR spectrum, including the far-IR
• Determine the radiative cooling rate profile consistent with entire IR spectrum, including the far-IR
• Enable the first verification of climate model performance across the entire IR spectrum

Mission and Instrument Parameters
• Spectral Range: 200 to 1800 cm\(^{-1}\)
• Spectral Resolution: 1 cm\(^{-1}\)
• Accuracy: 0.5%
• Instrument: Fourier Transform Spectrometer
• Platform: International Space Station
• Local time sampling: Every 30 days
• Mission Duration: 2 years
• Launch Readiness Date: FY 2017
• All instrument components at TRL 6 or higher
• Builds on decade of NASA investment at Langley in far-IR science and technology

Science Team
NASA Langley (M. Mlynczak, PI)
NASA GSFC
U. C. Berkeley
U. Michigan
Imperial College, London
Applied Physics Institute, Italy
U. Quebec Montreal, Canada

Industry Team
Ball Aerospace, Boulder, CO
Space Dynamics Laboratory, Logan, UT
ABB, Quebec City, Canada
3 potential locations on JEM: Bays 3, 4, and 6.
• Figure shows FIREX payload in all 3 locations with clear FOV’s

FIREX Instrument in Payload Interface Unit
Backups
• **FIREX observations will enable fundamental improvements of climate and general circulation models in the far-IR where only calculations exist**
 – Expect improvements in calculations of thermal structure and dynamics of atmosphere

• **FIREX data will enable basic radiative transfer processes within Earth’s atmosphere to be validated**
 – Define just how large the natural water vapor greenhouse effect is relative to carbon dioxide and other greenhouse gases

• **Anticipated advances in understanding of atmospheric physics will enable improvement in climate model physics and parameterizations, improving climate model predictions**
 – Improve knowledge needed to tie down water vapor feedbacks
FIRST Spectrometer Overview

- Interferometer Cube
- Aft Optics
- LN2 Volume
- Beamsplitter
- Remote Alignment Assembly
- Passive LN2 Heat Exchanger
- Active LN2 Heat Exchanger
- LN2 Volume
- Scene Select Mirror
- Scatter Filter
- Polypropylene Vacuum Window
- Scene Select Motor
- Interdewar Window

~ 4 ft
TIMELINE of Far-IR Projects at Langley

• FIRST Instrument
 – IIP 2001
• INFLAME Instruments
 – IIP 2004
• FIDTAP (Detector Technology)
 – ATI 2006
• FORGE (NASA component of RHUBC-II)
 – Radiation Sciences Program
• CORSAIR
 – IIP 2007
• FIREBIB (Detector Technology)
 – ACT 2008
• FIRST Recalibration & Deployment
 – QRS 2011