

Traceability of Absolute Radiometric Calibration for the Atmospheric Emitted Radiance Interferometer (AERI)

Fred A. Best, Henry E. Revercomb, Robert O. Knuteson, Dave C. Tobin, Ralph G. Dedecker, Tim P. Dirkx, Mark P. Mulligan, Nick N. Ciganovich, Yao Te

University of Wisconsin Space Science and Engineering Center

fred.best@ssec.wisc.edu

USU/SDL CALCON 2003

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based spectroradiometer that was developed at the University of Wisconsin for the DOE Atmospheric Radiation Measurement (ARM) program to measure the downwelling infrared emission from CO2, H2O, and clouds. Twelve continuously operating AERIs are deployed throughout the world, including three marine-based instruments (MAERIs) that are configured to measure sea surface temperature. The AERI instruments are used to improve our understanding of atmospheric radiation transfer and cloud properties for climate studies, and for boundary level temperature and water vapor retrieval and water vapor transport for weather applications.

During operation, the AERI uses two high emissivity blackbody sources to provide instrument absolute calibration accuracies to better than 1% of the ambient radiance. A calibration methodology with traceability to NIST has been successfully implemented for the blackbodies. Absolute radiometric performance of the AERI was verified using the 3^{rd} generation water-bath based NIST blackbody source, with agreement better than 0.065 K over the temperature range from 293 K to 333 K. Instrument repeatability has been demonstrated during a 14 day cruise where two MAERI instruments operating side-by-side measuring sea surface temperature showed agreement to within 0.02 K.

An uncertainty analysis based on the instrument calibration equation was used to allocate the allowable blackbody temperature and emissivity uncertainties. A detailed budget was developed to account for all contributions to both temperature and emissivity uncertainty, including contributions from the instrument spectral calibration. Both temperature and emissivity measurements have traceability to NIST.

Slide 2

Topics

- Overview of AERI and Top Level Radiometric Performance Requirements
- Instrument Calibration Model and Predicted Radiometric Performance
- Blackbody Design and Calibration
- Instrument End-to-end Performance
- Summary

AERI Overview and Radiometric Performance Specification

Slide 4

Atmospheric Emitted Radiance Interferometer (AERI)

Operational at DOE ARM

AERI Provides Continuous Accurate High Resolution Radiometry in the Infrared

AERI is used to improve our understanding of atmospheric radiation transfer and cloud properties for climate studies, and for weather applications.

Slide 5

AERI Provides Continuous Atmospheric Profiling of Temperature and Water Vapor

AERI Systems Around The World

AERI Interferometer Assembly

Slide 8

AERI Front-end Assembly

Interferometer Assembly with Blackbodies

Front-end Port for Scene Mirror Assembly

Detector with Stirling Cooler

Scene Mirror Assembly

Slide 9

Slide 10

Radiometric Calibration of AERI

AERI Radiometric Accuracy Requirements

Absolute Accuracy:

Reproducibility:

better than 1%* better than 0.2%*

*expressed as % of ambient radiance

Slide 11

Radiance Uncertainty Requirements and Budget

D Top Level Requirements

- Absolute Accuracy: < 1.0% of ambient radiance</p>
- Reproducibility: < 0.2% of ambient radiance</p>

□ Budget Goals for Key Contributors

	Absolute	Reprod.
Detector Non-linearity Correction	0.2%	0.05%
(addressed briefly here)		
Blackbody Calibration	0.9%	0.18%
(main topic of this talk)		
Spectral Calibration	0.2%	0.05%
(material in Dave Tobin's talk applies)		
	0.95%	0.20%

All numbers are 3σ ("not to exceed")

AERI Non-linearity Correction and Uncertainty

The non-linearity correction is physically based with one adjustable and one modeled parameter

Instrument Calibration Model and Predicted Radiometric Performance

Slide 14

AERI Instrument Calibration Equation

$$N = (B_H - B_A) \operatorname{Re} \left(\frac{C_S - C_A}{C_H - C_A} \right) + B_A$$

- *N* is the calibrated spectral radiance
- B_H is the effective Planck emission for the hot blackbody
- B_A is the effective Planck emission for the ambient blackbody
- C_S is the complex spectrum for the sky view
- C_H is the complex spectrum for the hot blackbody view
- C_A is the complex spectrum for the ambient blackbody view
- Re() is the real part of the complex ratio

AERI Calibration Error Estimates

Radiometric Requirement is 0.9% of Ambient Radiance

Input Param	eters		Uncertainties	(3 sigma	<u>)</u>
wn	770	Wavenumber, [cm-1]			
Thbb	333	Temp. of Hot Blackbody, [K]	ΔThbb	0.10	[K]
Tcbb	300	Temp. of Cold Blackbody, [K]	ΔTcbb	0.10	[K]
Tstr	305	Temp. of Structure Reflecting into BB's, [K]	ΔTstr	5	[K]
Ehbb	0.999	Emissivity of HBB, [-]	ΔEhbb	0.001	[-]
Ecbb	0.999	Emissivity of CBB, [-]	ΔEhbb	0.001	[-]

Input Parameters			Uncertainties (3 sigma)		
wn	2200	Wavenumber, [cm-1]			
Thbb	333	Temp. of Hot Blackbody, [K]	ΔThbb	0.10	[K]
Tcbb	300	Temp. of Cold Blackbody, [K]	ΔTcbb	0.10	[K]
Tstr	305	Temp. of Structure Reflecting into BB's, [K]	ΔTstr	5	[K]
Ehbb	0.999	Emissivity of HBB, [-]	ΔEhbb	0.001	[-]
Ecbb	0.999	Emissivity of CBB, [-]	ΔEhbb	0.001	[-]

Longwave: 770 cm-1

Shortwave: 2200 cm-1

Slide 16

AERI Reproducibility Error Estimates

Radiometric Requirement is 0.18% of Ambient Radiance

Input Parame	1put Parameters Uncertainties (3 sign			<u>(3 sigma)</u>	1
wn	2200	Wavenumber, [cm-1]			
Thbb	333	Temp. of Hot Blackbody, [K]	ΔThbb	0.02	[K]
Tcbb	300	Temp. of Cold Blackbody, [K]	ΔTcbb	0.02	[K]
Tstr	305	Temp. of Structure Reflecting into BB's, [K]	ΔTstr	5	[K]
Ehbb	0.999	Emissivity of HBB, [-]	ΔEhbb	0.0005	[-]
Ecbb	0.999	Emissivity of CBB, [-]	ΔEhbb	0.0005	[-]

Longwave: 770 cm-1

Shortwave: 2200 cm-1

Blackbody Design and Calibration

Slide 18

Blackbody Requirements

Blackbody System Requirements

Temperature knowledge: ± 0.10 K Temp. gradient knowledge: better than 0.10 K \succ Emissivity: > 0.998

Emissivity knowledge:

better than $\pm 0.1\%$

Instrument Imposed Requirements

- ➢ BB Aperture:
- \succ Envelope:

6.9 cm

18 cm dia. X 30 cm long

- Operating Temperature: 213 K to 333 K
- \triangleright Period between cal. views: < 10 minutes

Top-level Design Choices

Cavity Approach

- Provides high emissivity (cavity factor near 40)
- Emissivity enhancement due to cavity is well characterized
- Cavity walls provide good conduction (low gradients)
- Easy to manufacture

□ Chemglaze Z306 Black Paint

- > Provides high emissivity that is well characterized and stable
- Provides a hardy diffuse surface

□ YSI 46041 Super-stable Thermistors

- Very stable (< 0.01°C drift after 100 months at 70°C)</p>
- Easy to couple thermally to blackbody cavity
- Reasonably rugged

AERI Blackbody

Slide 21

AERI Blackbody

Slide 22

AERI Blackbody Calibration Roadmap

AERI Blackbody Temperature Calibration Overview

Temperature Uncertainty Budget

Temperature and Resistance Reference Uncertainty	± peak error [K]	RSS [K]				
26 Temperature Calibration Standard (Guildline PRT)	0.030					
32 Calibration Resistors	0.007					
33 Resistor Readout Electronics Residual Error	0.007					
RSS	0.032	0.032				
Thermistor Temperature Transfer Uncertainty						
26 Temperature Gradient Between PRT and Thermistors	0.020					
28 Calibration Fitting Equation Residual Error	0.003					
RSS	0.020	0.020				
Cavity Temperature Non-uniformity Uncertainty						
37 Azumuthal Gradients Due to Free Convection						
37 Longitudinal Gradients Due Primarily to Conduction						
37 Radial Gradients Due to Conduction, Convection, and Radiation	0.050					
29 Paint Gradient	0.030					
RSS	0.058	0.058				
Long-term Stability						
30 Thermistor	0.050					
34 Resistance Measurement Electronics	0.030					
RSS	0.058	0.058				
Effective Radiometric Temperature Weighting Factor Uncertainty						
36 Monte Carlo Ray Trace Model Uncertainty in Determining Teff	0.030	0.030				
		0.095				
XX Indicates slide number where more detailed information is presented						

AERI Blackbody Temperature Calibration-Probe Traceability & Configuration

Insures Excellent Thermal Coupling Between PRT and Blackbody Thermistors

UW SSEC Guildline 9540 PRT is calibrated (with an uncertainty of 30 mK) at the factory using a Rosemont 162CE SPRT Primary Standard Traceable to NIST.

Standard Configuration

Calibration Configuration

Slide 26

AERI Thermistor Calibrations Reduce Uncertainty From YSI Nominal Specification

Data from AERI Blackbody S/N 34

Slide 27

Thermistor Calibration Residual Errors From Regression Fit of Steinhart and Hart Equations

Residual Error From Fitting Equations < 3 mK

$$\left(\frac{1}{T}\right) = A + B\ln(R) + C(\ln(R))^3$$

Data from BB S/N 24

Slide 28

Temperature Gradient Due to Paint Thickness

Radiometric Calibration of AERI

MADISON

Typical Long-term Blackbody Thermistor Drift

Radiometric Calibration of AERI

MADISON

AERI Thermistor Resistance **Measurement Electronics**

MADISON

Calibration Resistor Traceability & Uncertainty

Uncertainty in Calibration Resistor Measurements Expressed as Equivalent Temperature Errors

Calibration of AERI thermistor resistance measurement electronics uses precision resistors

Temperature error associated with calibration resistor uncertainty is <7 mK

UW SSEC 8842A Fluke Meter Calibrated at Factory using a Fluke 5700A-W/03 Calibrator Primary Standard Traceable to NIST

AERI Electronics Post Calibration Residuals

Equivalent temperature error following AERI electronics calibration is < 7 mK

Residuals arise from linear fit in the Count Domain Transformed to the Temperature Domain

Slide 33

AERI Electronics Long-term Drift

Equivalent Temp of 336 K

Equivalent Temp of 249 K

Fixed Resistor Reported Temperature History Since Deployment 2500 Ohm Resistor

Fixed Resistor Reported Temperature History Since Deployment 97 Kohm Resistor

Temperature Error Associated With Long-term Drift of the Electronics is < 0.030 K

Slide 34

Emissivity Uncertainty Budget

		Uncertainty (3 sigma)	Note	for Ep=0.94 f=39	ΔΕς	ΔEc (3 sigma)
36	Paint Witness Sample Measurement	1.5% Ep	[1]	ΔEp=0.0141	(1/f)*∆Ep	0.00036
36	Paint Application Variation	1.0% Ep	[2]	ΔEp=0.0094	(1/f)*∆Ep	0.00024
36	Long-term Paint Stability	2.0% Ep	[3]	ΔEp=0.0188	(1/f)*∆Ep	0.00048
39	Cavity Factor	30% f	[4]	Δf=11.7	(1-Ep)/f^2*∆f	0.00046

Notes:

- [1] Factor of 4 higher than NIST* for 2 sigma. Another factor of 1.5 to get to 3 sigma.
- [2] Worst case difference between 1 and 3 coats
- [3] 2 x above
- [4] Accounts of Cavity Model Uncertainty

* NIST Stated accuracy is 4% of Reflectivity (2 sigma)

Indicates slide number where more detailed information is presented

f=(1-Ep)/(1-Ec)

f=Cavity Factor Ep=Emissivity of Paint Ec=Emissivity of Cavity

RSS

XX

Slide 35

CALCON 2003 Radiometric Calibration of AERI

0.00080

Paint Emissivity Measurement

Blackbody Paint Witness Sample

*Labsphere does not state accuracy for high emissivity samples. Stated value is conservative. By comparison, NIST stated accuracy for this measurement is < 0.004.

Witness Sample Holder "Mimics" Blackbody Cone Geometry

Emissivity Characterization From Monte Carlo Modeling

- Emissivity better than 0.998
- Emissivity knowledge: better than 0.001

$$\mathbf{R} = \mathbf{\varepsilon} * \mathbf{B}(\mathbf{T}_{eff}) + (1 - \mathbf{\varepsilon}) * \mathbf{B}(\mathbf{T}_{refl})$$

$$\mathbf{T}_{\mathrm{eff}} = \mathbf{w}_1 * \mathbf{T}_{\mathrm{A}} + \mathbf{w}_2 * \mathbf{T}_{\mathrm{B}}$$

$$R$$

B(T) = Planck radiance at T

 ε , w₁, and w₂ are computed using a Monte Carlo based cavity model

Model of Thermal Gradients in Blackbody

trace

of Teff

Slide 38

Monte Carlo Predictions of AERI Blackbody Cavity Emissivity (Diffuse Paint)

Deviations from the diffuse paint assumption equivalent to 20% specularity are within the cavity factor uncertainty of 30%.

AERI Radiometric FOV at Blackbody

Radiometric Field-of-view is verified at the position of the blackbody aperture

Slide 40

Instrument End-to-end Performance

Slide 41

AERI / NIST 3rd Generation Water-bath Based Blackbody Intercomparison - LW

AERI / NIST 3rd Generation Water-bath Based Blackbody Intercomparison - SW

AERI Instrument End-to-end Radiometric Calibration Configuration

Slide 44

AERI Instrument End-to-end Radiometric Calibration

General Agreement Better Than 0.1 K

Slide 45

Calibration Variability Among 6 AERIs

AERI Radiometric Model Accurately Predicts Performance

AERI Short Term Reproducability

AERI stability better than 5 mK over a period of 4 hours

AERI Spectra Showing Reproducibility

Brightness Temp Overlay of 2 Observations

CALCON 2003 Radiometric Calibration of AERI

Intercomparison of Two MAERIs Measuring Sea Surface Temperature

Track of the R/V Roger Revelle 28 Sept. - 14 Oct. 1997

16 Day Cruise

Largest Daily Mean Difference:0.020 KTen Day Mean Difference:0.005 K

Slide 49

Slide 50

Summary

- The AERI is a robust well calibrated spectroradiometer with a demonstrated absolute radiometric accuracy better than 1% of ambient radiance, making it an especially valuable tool for climate and remote sensing applications.
- The AERI Calibration Blackbody performance and calibration methodology with Traceability to NIST have been verified.
- Success of the AERI has led to the use of the same concept for aircraft instruments (S-HIS and NAST) and for the advanced geostationary sounder (GIFTS). [see Dave Tobin and John Elwell, CALCON 2003]

