
Design Studies for the GIFTS
Information Processing System

Raymond K. Garcia*, Maciej J. Smuga-Otto
Space Science and Engineering Center, University of Wisconsin Madison

P 2.22

Objective

* corresponding author: rayg@ssec.wisc.edu

• AERI: 1.1Kbps

• S-HIS: 1.0Mbps

• AIRS: 1.4Mbps

• MODIS: 10Mbps

• GIFTS in 10 seconds..

• 16 bits / optical path

• ~6144 paths / pixel

• 128x128 pixels / image

• 161Mbps raw data

• 60Mbps downlink

GIFTS

MODIS

AIRS

S-HISAERI

Faced with the challenge
of enormous data
volumes specified by
forthcoming imaging
infrared interferometers,
and the necessity of
processing this data in a
timely fashion, we have
conducted design studies
and built prototypes of a
distributed data processing system capable of meeting
throughput and latency requirements.

Presented here are architectural concepts and design
elements of data processing software leveraging existing
expertise and lessons learned from ground-based and
aircraft interferometer systems researched, constructed
and maintained by the UW Space Science & Engineering
Center.

To meet this performance demand at reasonable cost, the
system will be designed to operate on a cluster of commodity
computers networked together with a high speed interconnect.

Implementation notes:

First iteration was proof of concept throughput simulation
on cluster:

- Emulates larger cluster on small test installation by use of
virtual nodes and simulated workloads.

- Written in C/C++ with MPI

- Worker code parallelizes
computation, communication.

- simulated workloads were based on profile measurements
from existing aircraft instrument pipeline.
- Used Jumpshot visualizer and custom timers to evaluate
performance
- Demonstrated fundamental tractability of parallel
processing approach on cluster, and the utility of modeling
the target system using simulated workloads
- Characterized MPI implementation-specific factors and
limitations applicable to a design of this type

- per-run startup/shutdown
overhead mitigated by
increasing size of each run

- overcame limitation of MPI
on number of simultaneous
asynchronous sends from
controller by increasing the
amount of data to send in
each message - which in turn
imposed a minimum value for
latency of the system.

Second iteration will focus on interfacing pipeline stages to a
candidate framework architecture.

The choice of computing platform drove a design process
whose first goal was to separate the functional
components and communication channels into discrete,
individually testable units.
This decomposition enables technology to be chosen per
component, and simplifies eventual maintenance
procedures.

Requirements and Design:
Performance, cluster computing, component approach

The main challenge lies in running 16384 (128x128) pipelines with sufficient concurrency to ensure that the processing
system keeps up with data inflow (one GIFTS "cube" every 11 seconds) and with low enough latency to meet downstream
needs.

Worker Node
Worker Node

Worker Node
Worker Node

Worker Node
Worker Node
Worker Nodes

Master Node

Audit
Database

Input Delivery Output Delivery

Control Channel

Data Channel

Monitoring Channel

Monitoring
Interface

Unprocessed
Level 0

Data

Processed
Level 1

Data

Science
Pipeline
Software

Reference
Database

System Component Diagram

Peak Data Rates

For a deployed production system, redundancy
mechanisms are required so that a failure of any
single component does not lead to a failure of the
overall system.

Design implications of this, while fairly extensive,
do not undermine the fundamental decomposition
presented here.

Executable
Processing
Component

Executable
Processing
Component

Executable
Processing
Component

Executable
Processing
Component

reference data is served to components as shared memory buffers

audit records of algorithms used on data units are generated from XML-formatted pipes

time

status and quality data from algorithms are monitored through XML-formatted pipes

algorithm components are sequenced by control logic through command/response pipes

instrument data moves between processing stages as shared memory buffers

recorded test command script

testing harness
provides test pattern

buffers

status log file

audit log file

response log file

Executable
Processing
Component

?

Special concern:

Reliability
Special concern:

Audit trails
Data must be annotated with information on which software mix it
was processed with, and using what hardware. This helps with:

product reliability- should a hardware instance prove suspect,
reprocessing can be scheduled on related data.

algorithm improvement- easy comparison of data re-processed
using different versions of refinery stages.

contain the complexity of the task
by incremental design and implementation.

LEGEND

UPDATE PERIOD:
MONTHS

UPDATE PERIOD:
HOURS

UPDATE PERIOD:
SECONDS

ALGORITHM
MODULE

DATABASE
S

Selected by

DETECTOR
NONLINEARITY

COEFFS

S

FIELD OF VIEW
COEFFS

S

detector
index

raw
earth
spectra

time

NON-
LINEARITY

CORRECTION

LINEAR
CALIBRATION

calibrated
earth
spectra

quality metrics
and
performance data

SPECTRAL
RENORMALIZATION

raw
blackbody
spectra

CALIBRATION
COEFFS

CONTEXT

CALIBRATION
MODEL

QUALITY
ASSESSMENT

FINITE FIELD
OF VIEW

CORRECTION

S

The Science: Data Refinery

Since the algorithms required for the production of L1
GIFTS data (calibrated radiance spectra) are acyclic, the
chosen metaphor for the conceptual architecture is that of a
data refinery. The data is successively "refined" in a series
of stages in a numerical pipeline - the stages being the
individual science algorithms which act upon the data.

Example of a set of refinery components is the linear
calibration stage. The purpose of this numerical operator
assembly is to assign physically referenced radiances to the
instrument measured intensity values.

Each spectrum enters the calibration stage as an array of
(wavenumber, value) pairs prior to the conversion, and
leaves it as an array of (wavenumber, radiance) pairs.

Calibration pipeline diagram

Worker Pipeline Software
Design Candidate

Component
Unit Testing Harness

Sim Data

Master+
Input

Worker Worker Worker Worker Sink 1..N

Sim Results

Output

Simulation data flow

send
completed
(previous)
data from
filled out

buffer

apply
science

algorithms
on data in

active
buffers

receive
new (next)
data into
free in
buffer

switch
active and
filled out
buffers

switch free
and active
in buffers

[wait until
both buffers

settled]

[Start nonblocking
send]

[Start nonblocking
receive]

Worker Activity Diagram

Efficiency gains when processing multiple data cubesPerformance vs number of simulated cluster nodes

time

worker
nodes

input node
output node

good node behavior - processor time principally devoted to
science algorithm processing (in red)

undesirable node behavior - idle or spent waiting
on data from master (non-red "cavities" in timeline)

Jumpshot visualization of a simulation run

