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Outline

= Bulk scattering properties of ice clouds

= What determines the bulk scattering properties of ice clouds?
= What is our current understanding of those factors?

s The importance of scattering and a simple IR RT
model for cloudy conditions

s Is scattering important in IR RT models?

s How is scattering treated in I1o,=(1-9)l,,+B(T,); e=1-exp(-(1-w)/u)?
Where/Why does it do a good/bad job?

s Rigorous fast IR RT model for cloudy conditions

= Why the adding-doubling method is suitable for hyperspectral
RT model?

= FIRTM-AD (Fast Infrared RT model based on the adding-
doubling principle)
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What controls the

:L scattering of ice clouds?

= |f a photon hits an ice crystal, how many things
must we know about the ice crystal to determine
the next state of the photon?

»How large is the ice crystal? '\ /
eParticle size distribution ‘

»What does the crystal look like? /
e|ce crystal habit/habit distribution

»How do ice crystals interact with the photon?
«Single scattering properties of ice crystals
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Particle Size Distribution (PSD)

How much chance for a photon to hit
An ice crystals with certain size?
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BACS

Ice crystal habits/shapes

= |ce crystal habits

= In reality “no two snowflakes are alike”

Replicator Particle Habits Simulated Particle Habits
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Small cryatals near

In practice, 6 habits
are widely used
eDroxtal
eHexagonal column
eHollow column
eHexagonal plate
<Bullet rosette

e Aggregate



Ice crystal
habit distribution

An on-going research topic

Baum et al. 2005
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An extensive database of

single-scattering properties of ice
i crystals in IR region

= Scattering properties

Q. @w P U

= The shape of ice crystals:

== ok
= Wavelength:

= 49 wavelengths from 3.08- to 100 um
= Size bin:

= 45 Size bins from 2 um to 10000 um
(iIn maximum dimension of ice crystal)




i How do they work together?

Single scattering properties: the ice crystal actually has
Bulk scattering properties:the ice crystal would most likely
have.
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Cloud bulk albedo



extinction efficiency

Bulk scattering properties of ice clouds In IR region

(Baum et al. J. Appl. Meteor. 2005)
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Summary of Partl

= PSD, HD and single-scattering properties
together determine the bulk scattering
properties of ice clouds.

= INn-situ observations have substantially
Improved our understanding of the
microphysics and bulk scattering properties of
Ice clouds



Is scattering important for

:L IR RT computations?

of - @
dr

source termJ =@
@ ~ 0.5 for most v and D,

effective size (um}
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T. and T__ are comparable toT_

term has the same
order of magnitude as emission.
It can NOT be ignored in IR RT!



A simplification of the

i scattering In IR region

w(scattering) = w% J._ll P(u, ) (')d ut!

Interestf:d scattering direction Interest‘ed scattering direction

/ /

\\; L,A’/ 2D problem \\s L,A’/ 1D problem
@ > e

/ \ \ncidence / X \ncidence

The scattering 1s concentrated mainly In
the “forward direction”



A simplification o T the

:Lscattering IN IR region -
Inte;,@sted scattering direction

/
/

From the RTE point of view, ¢
The simplification means /
P(,u,y') — 25(/1_ ,U') Incidence
di(z, 1, v)
I d” = (7, 1, 0) — 1 (7, 11, 0) — (1— @)B[T (7)]

T *
For a homogenous and isothermal cloud layer with 7

T T
Itop =1~ g)lbase + EB(TC) Isn’t it familiar!

e=1- exp[—(l— @)T /,u}




A simple IR RT model for

:| cloudy conditions

—If the atmosphere above an ice clouds
can be ignored

—If an ice cloud layer iIs homogenous and
Isothermal

lon = (@ — &)1y, +&B(T,)
e=1- exp[—(l— w)r/y]

It Is NOT because scattering is ignored(or non-scattering)
but a result of the “forward-scattering”simplification



lion = Q= &)ly, +€B(T,)
Problems g=1-exp[-1-a@)r/ 4]

forward-scattering — no cloud reflection
|, tends to be overestimated
particularly for ice clouds with small D,.

because g Is relatively small and @ is realtively
large when D, is small.



Errors: How good IS 1t?

contour |:|f the RMS BT errar (K
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contour of the realtive radiance error {35
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RMS BT error generally >2K;~5K for small D,
Relative radiance difference generally >8%;~15% for small D,



i Summary of Part?2

= Scattering term in IR RTE has the same
magnitude as the thermal emission term

s loa=(1-9I,,+B(T,) Is a result of the “forward
scattering” simplification. It does a reasonably
good jobh, except for small D..

= To achieve higher accuracy, a rigorous RT model
with iIs needed.



Challenge for RT model from
hyperspectral remote sensing

= Speed
= Thousands of wavelengths
= global observations
= Accuracy
= At least more accurate than l;o, = (1— &)1, + €B(T,)

= Clear sky accuracy < 0.1K

= General applicability
= Both TOA(space-borne) and
user-defined-levels (air-borne & ground)
= Multiple-layered and
vertically inhomogenous clouds



Current fast IR RT models

i for cloudy conditions

= RTTOV

= Eyre and Woolf(1988), Saunders et al.(1999)
= CHARTS

= Moncet and Clough (1997)
= OSS

= Moncet et al. (2001,2003)
= SHDOMPPDA

= Evans (2006)
= FIRTM-1,2, and -AD

= Wei et al. (2004), Niu et al. (2006), Zhang et al. (2006)
= Many others



FIRTM-AD (Fast IR RT model

based on adding-doubling
i(_)rinciple)
why adding-doubling?
= Stable and accurate

= easy to understand

= Applicable to multiple-layered or
vertically inhomogenous clouds

= Applicable to computations at
different user-level




FIRTM-AD (Fast IR RT model

based on adding-doubling
rinciple)

= Why is it fast?
= Extensive pre-computed look-up library
=« Efficient interpolation scheme

pre-computed R, T, library

Clear Layer A
Cloud Layer \
[u k]
Clear L Q
ear Layer :% \E r
Clear Layer qq‘ I I
Cloud Layer 71 In FIRTM-AD,
Clear Layer the R, T and ¢ of the whole
cloud layer is directly extracted
[/ 77777777777 7777777

Suface Layer

. space From the pre-computed library



FIRTM-AD errors

BT spectrum @ TOA
single-layered & isothermal

“on-grid” accuracy <0.1K

on gird of the library No interpolation is needed)
250 times faster than DISORT
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FIRTM-AD errors

BT spectrum @ TOA

single-layered & isothermal

“off-grid” accuracy <0.4K

(both D and t off gird of the library, interpolation is needed)

cortour of the FIRTM-AD errors (RS &ET (k)

—10.25

~10.2
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04

The resolution of the
library is still being
tested to achieve
better accuracy and
smaller size of the
library.



Summary

= The adding-doubling method seems a

proper approach for a fast hyperspectral RT
model

= The time-consuming initialization step In
the adding-doubling computation can be
replaced by pre-computed look-up libraries

= Current FIRTM-AD has 0.1K “on-grid”
accuracy and 0.4K *“off-grid” accuracy, and
IS 250 times faster than DISORT
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