Fine atmospheric structure retrieved from IASI and AIRS under all weather conditions

Daniel K. Zhou¹, William L. Smith²⁻³, Allen M. Larar¹, Xu Liu¹, Jonathan P. Taylor⁴, Peter Schlüssel⁵, L. Larrabee Strow⁶, and Stephen A. Mango⁷

¹NASA Langley Research Center, Hampton, VA, USA
²Hampton University, Hampton, VA, USA
³University of Wisconsin-Madison, Madison, WI, USA
⁴Met Office, Exeter, Devon, UK
⁵EUMETSAT, Darmstadt, Germany
⁶University of Maryland Baltimore County, Baltimore, MD, USA
⁷NPOESS Integrated Program Office, Silver Spring, MD, USA
1. IR-only Retrieval Algorithm Introduction
2. Retrieval Simulation Analysis
3. Retrieval Demonstration
4. Validation with Radiosondes and Dropsondes (JAIVEx)
5. IASI, AIRS, and NAST-I Inter-comparison (JAIVEx)
6. Summary
PART A: REGRESSION RETRIEVAL (Zhou et al., GRL 2005)
Using an all-seasonal-globally representative training database to diagnose 0-2 cloud layers from training relative humidity profile:
A single cloud layer is inserted into the input training profile. Approximate lower level cloud using opaque cloud representation.

Use parameterization of balloon and aircraft cloud microphysical data base to specify cloud effective particle diameter and cloud optical depth:
Different cloud microphysical properties are simulated for same training profile using random number generator to specify visible cloud optical depth within a reasonable range. Different habitats can be specified (Hexagonal columns assumed here).

Use LBLRTM/DISORT “lookup table” to specify cloud radiative properties:
Spectral transmittance and reflectance for ice and liquid clouds interpolated from multi-dimensional look-up table based on DISORT multiple scattering calculations.

Compute EOFs and Regressions from clear, cloudy, and mixed radiance data base:
Regress cloud, surface properties & atmospheric profile parameters against radiance EOFs.

PART B: 1-D VAR. PHYSICAL RETRIEVAL (Zhou et al., JAS 2007)
A one-dimensional (1-d) variational solution with the regularization algorithm (i.e., the minimum information method) is chosen for physical retrieval methodology which uses the regression solution as the initial guess.

Cloud optical/microphysical parameters, namely effective particle diameter and visible optical thickness, are further refined with the radiances observed within the 10.4 µm to 12.5 µm window region.
LaRC Algorithm Flowchart

HYBRID RETRIEVAL ALGORITHM FLOWCHART

- **Measured raw data**
 - Calibration
 - Total noise level
 - Calibrated spectral radiances

- **Regression retrievals of atmospheric \& cloud properties**
 - Regression retrieval using “clear” coefficients
 - Regression retrieval using “cloud height grouped” coefficients for ice to iterate and finalize the retrieval
 - Regression retrieval using “cloud height grouped” coefficients for water to iterate and finalize the retrieval
 - Regression retrieval using “all cloud” coefficients category to predetermine cloud height

- **Historical training data with cloud parameters for radiance simulation including a realistic cloud radiative transfer calculation**

- **Regression retrieval using “clear” coefficients**
 - Optical Depth < 0.2
 - H_{clld} < 0.2 km

- **Regression retrieval using “cloud height grouped” coefficients for ice**
 - Temp. at H_{clld} < 273 K
 - Yes
 - No

- **Regression retrieval using “cloud height grouped” coefficients for water**
 - Yes
 - Optical Depth < 0.2
 - Temp. at H_{clld} < 0.2 km

- **Regression retrieval using “all cloud” coefficients category to predetermine cloud height**
 - Cloud optical thickness and particle size are refined with cloud effective micro-window radiances: 11.1 \(\mu \)m to retrieve cloud optical depth, and 11.1 \(\mu \)m \& 12.5 \(\mu \)m windows to retrieve cloud particle size.

- **Cloud parameter fixed for refining thermal properties.**

- **Cloud parameter refined for GO \& O3**
 - CO \& O3 Phy. Rtv.

- **General Matrix Inversion Solution:**
 \[\delta R = A\delta Q, \text{ where } A_{ij} = \frac{\partial R_i}{\partial Q_j} \]
 \[\delta Q = (A^T E A + \gamma I)^{-1} A^T E^{-1} (\delta R + A \delta Q) \]
 \[I = I + 1 \]
 \[I = 0 \]

- **Statistical EOF Physical Regressions**

- **Simultaneous 1-D Var. Iterative Matrix Inversion**

4th Annual Advanced High Spectral Resolution Infrared Observations Workshop; EUMETSAT, Darmstadt, Germany; 9.15.2008
Globally Representative Training

4th Annual Advanced High Spectral Resolution Infrared Observations Workshop; EUMETSAT, Darmstadt, Germany; 9.15.2008
Channel Used in LaRC Retrieval Algorithm

Uniformly mixed gas weighting function

Water vapor weighting function

IASI: 5008 channels for regression, 1697 channels for physical retrieval
Synthetic analysis: the truth profile (i.e., the radiosonde observation) is known and the retrieval can be directly compared with the truth to define retrieval accuracy due to (1) instrumental noise and (2) retrieval error introduced mainly by so-called “ill-posed” retrieval model. The disadvantage of this approach is that forward radiative transfer model error is not included.

Under Clear Conditions over Water:
- No. of Samples: 5210
- Ts Bias: 0.14 K
- Ts STDE: 0.57 K

Under Clear Conditions over Land:
- No. of Samples: 5300
- Ts Bias: 0.58
- Ts STDE: 1.51

Emissivity retrieval
Under Cloudy Conditions:

- No. of Samples: 2337
- Hc Bias: 0.29 km
- Hc STDE: 1.67 km
- COT Bias: 0.21
- COT STDE: 0.73
- De Bias: -1.98 μm
- De STDE: 11.21 μm
Variance of Test Dataset and IASI Retrievals

Under Clear Conditions

Under Cloudy Conditions
Retrieval Parameters from this System

Retrievals under clear conditions:
- Surface properties (skin temp and emissivity).
- Atmospheric temperature and moisture profiles.
- Atmospheric CO and O₃ abundances.

Retrievals under cloudy conditions:
- Atmospheric profile through optically thin cirrus clouds and above optically thick clouds.
- Effective cloud parameters (i.e., cloud top pressure, particle size, and optical depth).

Brightness Temperature or Radiance Spectrum

Geophysical Parameters

T: temp. prof.
Surf: surf. prop.
Cld: cloud prop.
IASI vs. GOES-12: Cloud

Cloud Top Height (km)

20 Aug. 2007
IASI Retrieval Demo: Cloud Top Height

Cloud Top Height (km)

20 Aug. 2007
IASI Retrieval Demo: Cloud Particle Size

20 Aug. 2007

Cloud Particle Diameter (μm)

Latitude (deg.)

Longitude (deg.)

10 20 30 40 50 60 70 80 90 100 110
Location/dates:
Ellington Field (EFD), Houston, TX, 14 Apr – 4 May, 2007.

Aircraft:
NASA WB-57 (NAST-I, NAST-M, S-HIS);
UK FAAM BAe146-301 (ARIES, MARSS, SWS; dropsondes; in-situ cloud phys. & trace species; etc.).

Satellites:
Metop (IASI, AMSU, MHS, AVHRR, HIRS).
A-train (Aqua AIRS, AMSU, HSB, MODIS; Aura TES; CloudSat; and Calipso).

Ground-sites:
DOE ARM CART ground site (radiosondes, lidar, etc.)

Participants:
include NASA, UW, MIT, IPO, NOAA, UKMO, EUMETSAT, ECMWF, …
GOES-12 IR image

GOES-12 visible image
Fitting Residual: STD of the difference between measured and retrieval simulated brightness temperature over physical retrieval channels.
Consistency Check: Fitting Samples & Statistics

Clear fitting sample (35.36N, 93.67W)

Cloudy fitting sample (27.51N, 96.18W)

Clear fitting statistics over 4786 samples

Cloudy fitting statistics over 483 samples
IASI Retrieval: Cloud Parameters

GOES-12 IR image

Eff. cloud top height (km)

Cloud eff. Optical depth

Cloud eff. particle diameter (μm)
IASI Retrieval: Surface Parameters

Surface Skin Temperature (K)

Water Emissivity Sample

Land Emissivity Sample

Surface Emissivity @ 12 μm

Surface Emissivity @ 11 μm
IASI Retrieval: ΔTemp and RH Fields
IASI Retrievals vs. Radiosondes

Radiosonde and IASI retrieval comparison and statistical profiles over 20 radiosondes

Note:
12:00 UTC = 07:00 Local
15:48 UTC = 10:48 Local
1. The retrieval improvement based on the EOF statistical regression through physical iterative retrieval is only contributed by IASI measurements as the minimum information methodology used.

2. A high-vertically-resolved atmospheric structure is captured very well by IASI measurements and/or retrievals; not only in the troposphere, but also in the boundary layer.
IASI (15:48 UTC) vs. AIRS (19:30 UTC)

IASI Retrieval

Temp Deviation from the Mean (K)

Relative Humidity (%)

AIRS Retrieval Interpolated to IASI FOV

Temp Deviation from the Mean (K)

Relative Humidity (%)

4th Annual Advanced High Spectral Resolution Infrared Observations Workshop; EUMETSAT, Darmstadt, Germany; 9.15.2008
NAST-I: Connection between IASI and AIRS

Difference is mainly due to
- instrument difference between IASI and AIRS,
- spatial resolution difference between NAST-I and IASI (or AIRS), and
- retrieval uncertainty including radiative transfer models difference.
1. A state-of-the-art IR-only retrieval algorithm has been developed with an all-seasonal globally representative EOF physical regression and followed by 1-D Var. physical iterative retrieval for IASI, AIRS, and NAST-I.

2. The benefits of this retrieval are to produce atmospheric structure with a single FOV horizontal resolution (12 km for IASI and 14 km for AIRS), accurate profiles above the cloud (at least) or down to the surface, surface parameters, and/or cloud microphysical parameters.

3. Initial case validation indicates that surface, cloud, and atmospheric structure (include TBL) are well captured by IASI and AIRS measurements. Coincident dropsondes during the IASI and AIRS overpasses are used to validate atmospheric conditions, and accurate retrievals are obtained with an expected vertical resolution.

4. JAIvEx has provided the data needed to validated retrieval algorithm and its products which allows us to assess the instrument ability and/or performance.

5. Retrievals with global coverage are under investigation for detailed retrieval assessment. It is greatly desired that these products be used for testing the impact on Atmospheric Data Assimilation and/or Numerical Weather Prediction.
Fine-scale atmospheric horizontal features with high vertical resolution from satellite global observations are first achieved with advanced hyperspectral instruments.