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Outline of the Presentation

1. Requirements on radiative transfer model for physical inversion

2. Overview of radiative transfer calculation in inhomogeneous
atmosphere

3. Calculation of Analytical Jacobians

4. Transformation of variables using EOFs before physical
inversion

5. Overview of how to model channel radiances

6. Application of OSS forward model to CrlS and NAST-I
instruments

7. Conclusions
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| What is an idea Fast Radiative Transfer

Model for Physical Inversion

* Accurate
— ldea if the accuracy relative to LBL is controllable

* Physical parameterization
— Accuracy and physical parameterization is closely coupled
— Use least non-physical assumption

 Fast

— Modern computer technology can accommodate large model
parameters

— ILS (SFR) convolution should be done during the training
* Perform RT calculation monochromatically

— Calculates Jacobian efficiently

— Calculates downwelling radiances efficiently

— Be able to handle multiple scattering
« Treat Planck function and surface properties properly

— Be able to model non-localized instrument line shape function
efficiently

« Train the forward model under variety of conditions
— Be able to handle variable observation altitude for aircraft instrument
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Radiative Transfer Equation for

Infrared Spectral Region

8Tv(p,t9u)d
P

dp
aTv*(paed)
dp

0
R, =£,B,(0,)T,, + | B,((p))
pS

dp + pVTS,VTV (psﬂe )FO,V Cosesun

sun

+(1_€V)TS,V fBV(Q(p))

* The first term is the surface emission

 The second term is the upwelling thermal emssion

* The third term is the reflected downwelling radiation
 The last term is the reflected solar radiation
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| Defining Atmospheric Layering
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« Schematic for atmospheric layer convention
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| Recursive Radiative Transfer
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Calculation of Analytical Jacobians
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Calculation of Jacobians
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Temperature and Moisture Jacobians

Band 1
LK1 20— Band 1
10—
1.6
2.9
1.0
{
1.2
ié.. . .7
=
= E
£ 100 e
a =]
g ]
= =
-10.6
100.0
-14.4
1000.0! -y -18.3
700 800 900 1000 800
Frequency (cm”) Frequency (cm™)
Band 1 Band 1
0.1 1.3 100
10 1.8
1.0
200
2.4
0.8 =
5 E
E =
@ F
5 o0 2
o o
£ 400 6.6
0.5
s00 Mk
100.0 -10.8
0.3
800
ool I R e — -15.0
700 BOO 900 1000
1000.0 0.0 Frequency (cm )}

900
Frequency (cm)



aer
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Transformation of variables

Atmospheric and
Environmental Research, Inc.

 The layer derivative can be converted to level derivative by:

aR aR aX above aR aX below

lay lay
X 0X " 0X

a X above a X

lev lay

lev lev

* The truncted EOF (U) obtained from background covariance
can be used compress 4AX and K:

A A= UTSxU Ax,, = (EiTS;IIZi +A)_1EiTSy_l(yo — Vi +[ZiMi)
U

* If the full correlation of noise covariance S, can be compressed
using truncated EOF obtained from PCA of radiance spectra

— The inversion of the transformed matrix will be more efficient
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Difficulties of Modeling Channel
Radiances or Transmittance

R, (V)= j O —vRWV)AV' T, (V)= j O —v)T(V)dV'

 where @ is normalized ILS (SFR)

« LBL calculation of monochromatic layer transmittances or
TOA radiances is very time consuming

« Convolving monochromatic radiances or transmittances
with ILS (SRF) is also time consuming

« The Beer’s Law is no longer valid
— It’s difficult to handle inhomogeneous path and multiple gases

|, 9T TndAV'% [ 90T, dAV' [ $O0)T,, . dAV

j ¢(V) layer1 layeFZdAV # j ¢(V) l&tyerlalA V' JAV¢(V) ];ayeFZdAV
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Model Type Characterisitic Limitations
Band Model Simple parameterization Limited accuracy
Fast Curtis Not accurate to extend to multiple
Godson approximation can be used to handle gases
inhomogeneous atmos.
Neural net Simple Jacobian calculations?
Fast Non-physical parameterization

Correlated k
Distributions
(CKD)

Monochromatic (g-v mapping)
Level to level k correlation is approximate
Overlapping gases treatment is approximate

Not perfect for inhomogeneous path
and overlapping gases

Exponential Sum
Fitting
Transmissions (
ESFT)

Monochromatic (select few k terms or v points)

Level to level k correlation is approximate
(methods exist to handle it)

Overlapping gases treatment is approximate

Standard method is perfect for
inhomogeneous path and overlapping
gases

Optran, RTTOV
,SARTA,Gastropd

Polychromatic
Smart way to treat overlapping gases
Teat inhomogeneous path

Effective layer optical depth depends
on layer above it

Optimal Spectral
Sampling (OSS)

Monochromatic

Treat inhomogeneous path and overlapping
gases well

Parameterization is physical

Very good treatment of
inhomogeneous path and overlapping
gases
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Overview of Different Fast RT Models
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« Kdistribution (KD)

T(Av,0) = [ 9= )T 0)dv'= Y Ag, expl—k, (g,)0

R(Av,0) =Y Ag,{B,(0,8)+[R,, - B(0,g)]exp[—k, (g)®]

. i=1
D Ag =1
i=1

Ag; and k; obtained by grouping k(v)
« Correlated-K distribution (CKD)

— Correlation between the spectral shape and positions is different
layers is approximate

KD made for a set of T,P, independently
 Methods exist to correct this approximation
« Use same g-v mapping for all layers (e.g Mlayer et al....)
» Reference layer add-subtract method (e.g. Oinas, Edward ....)
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Overview of Different Fast RT Models
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Correlated-K distribution (Continued)

— Treatment of overlapping gases is approximate
« Assume gases are uncorrelated:

I'(Av,0,,w,) = J.¢(v—v’)T(v,a)l)T(v,a)z)dv'

N M
=T(Av,0)T(Av,m,) = ZAgu eXp[_kl,i(gl,i)wl]Z Ag2,j eXp[_kZ,j (g2,j)w2]
i=1

j=1

* Introduce o, (or functions of w, i=gas1, gas2....) as additional
factor when generating k

k(g,p,T,w)
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Overview of Different Fast RT Models
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- Exponential Sum Fitting of Transmissions (ESFT)

T(Av,0) = [ §(v—v)T (v, w)dv'= ﬁ w. exp[—k.(v,) @]

R(Av, ) = ﬁ: wiB,(0,v) +[R,; = B,(0,v)]exp[~k,(g) @]

i=1

— w; and the spectral location of k, obtained by a selection/regression process

 Treatment of inhomogeneous atmosphere

— Use w; and v, obtained for a reference layer and scale exponential term with
appropriate functionof Pand T

— Include all layers in the regression and selection process (Armbruster and
fisher 1996)

T (Av, pp,@) = 3 w,(v)expl- 2, k(v p)o(p)]

i=1 /=1
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 ESFT (continued)
— Treatment of mixing gases
« Similar to CKD (assume uncorrelated)

T(Av,0,,0,) = [ 90 =T, + ST (v, @[T, + T (v, @, )V

N
=TT, + Z Wi&{,i (v, wl)&;,i (v, 0)2)

i=1

T = [ (v =)L (v.0)dv' [ §(v =T (v, 0,)dV

« Equivalent extinction (Ritter and Geleyn, Edwards...)

- Additional interpolation variable as a function of ®, (or functions of o,
i=gas1, gas2....)

* Frequency sampling method or radiance sampling method (Sneden et
al. 1975, Tjemkes and Schmetz, 1997)



Overview of the OSS forward model
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» Optimal Spectral Sampling (OSS) approximates channel radiances (or
transmittances ) according to:

R,,(v)= jd)(v—v')R(v )dV':ZWiRv,. + &

Channel radiances are a linear combination of monochromatic radiances at
pre-selected frequencies

Spectral locations/weighting coefficients are obtained through a
selection/regression process

The computational gain is more than 3 orders of magnitude relative to the
line-by-line calculations
RT is done monochromatically

— Monochromatic lookup table is used to calculate the transmittance for various
gases and different atmospheric layers (no approximates need to be made)

— Calculates Jacobian analytically (very efficient)
— Treats reflected radiance accurately
— Can be easily coupled with multiple scattering codes
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Application of OSS to NAST-I

Top Panel: A Typical Simulated NAST—| Spectrum
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Brightness Temperature (K)
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Number of Points Per Channel
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®* Average of 2.59 monochromatic spectral calculations are needed for
each NAST-l channel

NAST-I Number of Number of Average
Monochromatic Points per
Spectral Band Channels :
Points Channel
LWIR 2718 7464 2.75
MWIR 2946 7283 247
SWIR 2968 7569 2.55
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Validation of OSS Forward Model
.. ...= ________ Accuracy

Training set, VVariable Emissivity fram 0.85 to 0.98
L Independent profies: Variable Emissivity from 0.85 to 0.98 -
0.25— -

« The radiance errors derived
from independent profile set
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Observed and Modeled NAST-I
—=iwese - Radiances for 7/14/01 CLAM Campaign

Comparison of Observed Masi-1 Radiances vs OS5
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Expanded View of the Observed and
Calculated NAST-I Radiances

Comparison of Observed Nast-| Radiances vs OS5
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Observed vs. Calculated NAST

Radiance for Crystal-Face AIRS
Underflight

Observed Vs Calculated (Miami, 7/26/02, 18 GMT)
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CrlS

Retrieval
Algorithm
was used

- ——
Retrieved Profiles For the CAMEXIII

Campaign Near Andros Island
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ger Retrieved Temperature Profiles from

omiccr el NAST-l Instrument
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Conclusions

Atmospheric and

nvironmental Research, Inc.

Jacobian provides sensitivity of radiance with respect to the
retrieved parameters

— Recursive RT calculation gives insights

— Most terms needed for the radiances calculation can be used for
Jacobian calculation (time saving)

Transformation of variable accelerate inversion process

— It also provides stability to the inversion
The fast radiative transfer model is best done at monochromatic
frequencies

— Physical parameterization

— Efficient in calculating Jabcobian matrix needed for inversion

— Can include multiple scattering calculations
It’s best to train all atmospheric layers and all major gases
simultaneous

OSS model has been developed to model NAST-I radiances and
was incorporated into NASA's retrieval algorithm

OSS has been used to simulate the CrIS EDR retrieval performance
and the retrieval algorithm has been validated using NAST-I data



