The ADDE GRIB server

Scott Lindstrom [Mr. Server] Dave Parker [Mr. MySQL] Kevin Baggett [Mr. XCD]

The ADDE GRIB Server

• Run in real time with XCD decode

• Run with archived data

• Run with and without a database to speed execution

ADDE GRIB Server Requirements

Requires up-to-date gbtbpds files
– Converts numbers in GRIB files to
• Generating Stations (NCEP, ECMWF,)

- Level
- Parameter
 - 4-character limitations
- etc.

ADDE GRIB Server Requirements

Problems:
GRIB files can number in the 1000s
Significantly slows searching times
Tables can become out of date
Values can also be defined within the GRIB file

GRIB Server with Database

• Run in real time with XCD

• Run with archived data

WHY?

 GRDLIST RTGRIDS/ALL DAY=#Y TIME=0 FHOUR=108 SRC=GFS
 LEVEL=1000 PAR=U GRIB=2526 33 94
 100 FORM=ALL took 3.5 minutes

 GRDLIST RTGRIBS/ALL DAY=#Y TIME=0 FHOUR=108 SRC=GFS LEVEL=1000 PAR=U GRIB=2526 33 94 100 FORM=ALL took 2 seconds

Step 0

 Have system administrator install MySQL and configure the root mysql user password

• Verify install using test scripts that come with MySQL

The 'gribadmin' Script

 /home/oper/bin/gribadmin Creates/removes the grib database • ./gribadmin makedb - [enter the mysql root password] to create database • ./gribadmin fields - [prints out the field names from the "grib" database] • ./gribadmin removedb - [enter the mysql root password] to delete database

What Does the Database Hold?

- Everything that is filed in the McIDAS grid header
 - GRIB file name, and byte offset to grid data - [used to speed access]
- Extended parameter/projection names
- GRIB version (1 vs. 2)

What Does the Database Hold?

- XCD must initially partially decode grid, but the directory server then just retrieves all the data from the database
- Get server still has to decode entire grid, but the stored GRIB file and offset speed the decoding

What Does the Database Hold?

grib_type | gen_proc_ID | j_day | runtime | forecast day | forecast hour | forecast time | geo_ID | level_ID | param_ID | ptr_to_grid | param_short | param_long | param_scale | param_units | level | level_scale | level_units | model_name | proj_short | proj_long | grib_file_name | grib_version | grid_size | num_rows | num_columns | num_points | nav1 | nav2 | nav3 | nav4 | nav5 | nav6 | type_mask | time_ave_diff | lev_ave_diff | period_1 | period_2 | modtime

Are There Any Issues?

 Because the number of bytes to be transmitted must be known, must know number of grids going; must know number of stitched grids, too

Each packet of stored information: ~3500 bytes

 If you are listing ALL -- >100000 grids -- you can bump up against a resource limit if your server machine is heavily used

Are There Any Issues?

 Comparisons with RTGRIDS datasets have been very favorable

Access via RTGRIBS is usually faster

• Real-time testing to begin in SSEC Data Center by end of December

Things to Consider with Archived Data

 Fully resolved pathname determined using Mcpathname -- make sure the path is in MCPATH (and watch the REDIRECTs)

 LD_LIBRARY_PATH must include link to mysql libraries in mcadde (.profile or .mcenv)
 LD_LIBRARY_PATH=/usr/local/mysql/lib/mysql:\$LD_LIBRARY_PATH

Things to Consider with Archived Data

• You can build a database to access archived data as well

 Running two databases on one machine has not yet been tested