## The EUMETSAT Polar System (EPS)



EPS Programme Scientist Dr. Dieter Klaes Presented by Marianne König marianne.koenig@eumetsat.int



#### Initial Joint Polar System (IJPS)

#### Fairbanks, Alaska

Wallops Island, MD

Suitland, MD

#### Metop

METOP-A (in orbit) METOP-B (2010) METOP-C (2014)

#### Svalbard, Norway

Darmstadt,
 Germany

#### POES

NOAA-18 (in orbit) NOAA-N' (2009)

- EUMETSAT-NOAA coordinated programmes

- Exchange of instruments (ATOVS from NOAA, MHS from EUMETSAT) Sun-synchronous
- Coordinated operations, data and services
- Extended agreement in 2003 to include Metop-C

Sun-synchronous Orbit of 102 minutes 14.1 orbits per day

# Ground Station in Svalbard







### Instruments





### And a Real Picture ...

IASI

**MHS** 

### ASCAT antennas

AVHRR/3

HIRS/4

AMSU-A1

#### ----- AMSU-A2 -GRAS antenna

**GOME-2** 





Derived geophysical quantity, e.g. profile, wind, ..., same spatial and temporal sampling as Level 1b



### **Product Delivery**

#### Summary of EUMETCast Level-1 and Level-2 EPS distribution formats for global products

|       | EUM          | ETCast                 | GTS     |               |  |  |
|-------|--------------|------------------------|---------|---------------|--|--|
|       | Level 1      | Level 2                | Level 1 | Level 2       |  |  |
| ASCAT | BUFR and PFS | BUFR from SAF          | BUFR    | BUFR from SAF |  |  |
| ATOVS | BUFR         | BUFR                   | BUFR    | BUFR          |  |  |
| AVHRR | PFS          | -                      | -       | -             |  |  |
| GOME  | PFS          | BUFR from SAF<br>(TBC) | -       | BUFR from SAF |  |  |
| GRAS  | BUFR and PFS | BUFR from SAF<br>(TBC) | -       | BUFR from SAF |  |  |
| IASI  | BUFR         | BUFR                   | BUFR    | BUFR          |  |  |



## Instruments AVHRR and ATOVS



# Provide continuity with the current system – imagery and soundings



### **AVHRR and ATOVS**

#### Level 1 NRT Products (2h15min) Level 2 NRT Products (3h)



NOAA17 26022905

Composite of 14 level-1b products of one day from HIRS covering the Earth twice



## **AVHRR since 25 Oct 2006 (VIS channels)**



MUG Meeting 2007

### **Global AVHRR**





## HIRS Channels 8 and 11 (11 µm and 7.3 µm)



MUG Meeting 2007

```
Slide 12
```



### Instruments switched on on 24 Oct 2006

#### **Nominal performance**

| Band 1 | Band 2 | Band 3 | Band 4  | Band 5 | Band 6 | Band 7 | Band 8 | Band 9 | Band 10 | Band 11 | Band 12 | Band 13 | Band 14 | Band 15 |
|--------|--------|--------|---------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|
|        |        |        | 4       |        | H.     |        |        |        | 10      | н.      | н.      | н.      |         |         |
| - 5    |        | 1      | and and |        | н      |        | н.     | а.     |         |         | 8       | 8       |         | 1.1     |
| 3      |        |        |         |        |        |        |        |        |         |         |         |         |         |         |
|        |        |        |         |        | н.     | н.     | н.     | н.     | а.      | 2       | 2       |         |         |         |
|        |        |        |         |        |        | а.     | Ξ.     | а.     | а.      | 2       | ÷.      |         |         |         |
| 5      | S      | 5      |         |        |        | 11     | н      | а.     | а.      |         |         |         |         | 5       |
| 4      | 1      | N.     | 1       | 1      |        |        |        |        |         | а.      | а.      | а.      |         | White a |
|        |        |        | -       | 10.0   |        |        |        | 1000   |         |         |         |         |         |         |

First AMSU-A Level 0 data (AMSU A2: Bands 1 and 2, AMSU A1: all other bands



MUG Meeting 2007

### AMSU and MHS Channels





## AMSU A2 Level 1 Product Example

AMSA\_xxx\_1A\_M02\_20061024164619Z\_20061024182523Z\_N\_C\_20061024182450Z





MUG Meeting 2007

## MHS Products (NOAA-18)

Measurements from the MHS instrument are critical for deriving profiles of moisture and quantifying precipitation

MHS can also provide information on low level moisture and surface features MUG Meeting 2007



©EUMETSAT, 2006

## MHS from Metop: First Data

#### Instrument in measurement mode on 31 October 2006 Nominal Performance





# First Level 1 Product (Calibrated & Navigated)









### **Global MHS**





### EUMETSAT has a global view now: Polar and Geostationary Orbits





## Collocation AVHRR, MHS, AMSU

Channel 1 (AVHR\_1B,AMSA\_1B,MHSX\_1B) M02\_20061102014625Z\_20061102033121Z\_N\_C\_20061102032919Z



## AVHRR / ATOVS / MHS Status

AVHRR imagery for scene interpretation and navigation HIRS, AMSU and MHS for temperature and humidity sounding, cloud information (water/ice, precipitation)

MHS declared ready for operation 07 Dec 2006 AVHRR declared ready for operation 14 Dec 2006 HIRS declared ready for operation 14 Dec 2006 AMSU-A declared ready for operation 18 Jan 2006

**Products (Level 1) available via EUMETCast Products (Level 2) available since June 2007** 



## IASI – Atmospheric Sounding



IASI = Infrared Atmospheric Sounding Interferometer (EUMETSAT/CNES Cooperation) (Michelson Interferometer with moving mirror)



### **IASI** Concept

The interferometer measures an interferogram, onboard processing (Fourier transform) derives an atmospheric spectrum from the interferogram





MUG Meeting 2007

## **IASI Compared to HIRS Spectral Resolution**



8461 "Channels", spectral resolution 0.25 cm<sup>-1</sup>



### IASI Geolocation: 4 IFOV in 1 AMSU Pixel



MUG Meeting 2007

Slide 26

# IASI Viewing Geometry





## First IASI Spectrum: 29 Nov 2006, 13:42:11





### **IASI Spectra**





## Channel Visualisation Example





## Channel Visualisation Example





### **IASI** Processing

Separation of cloud information from spectral information:

Use of AVHRR together with the internal IASI imager (64 by 64 pixel for 1 IASI FOV, IR window range) – same focal plane (AVHRR is then mapped to the correct IFOV and is then used for cloud detection)



### **IASI Products**

#### **IASI level 2 products**

| Parameter                     | Coverage | H. Sampling V. Sampling Frequency |           |                    |  |  |  |  |
|-------------------------------|----------|-----------------------------------|-----------|--------------------|--|--|--|--|
| <b>Temperature Sounding</b>   | Global   | IASI                              | 90 levels | orbit repeat cycle |  |  |  |  |
| Humidity Sounding             | Global   | IASI                              | 40 levels | orbit repeat cycle |  |  |  |  |
| <b>Ozone Profile</b>          | Global   | IASI                              | TBD       | orbit repeat cycle |  |  |  |  |
| N2O Total Column              | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| CO Total Column               | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| CH4 Total Column              | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| Surface Temperature           | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| Surface Emissivity            | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| <b>Fractional Cloud Cover</b> | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| <b>Cloud Top Temperature</b>  | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| <b>Cloud Top Pressure</b>     | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |
| Cloud Phase                   | Global   | IASI                              | N/A       | orbit repeat cycle |  |  |  |  |



### **IASI** Products

Vertical temperature and humidity soundings

Ozone and trace gas amounts



IASI Simulated Retrieval

©EUMETSAT, 2006



### **IASI** Products

#### Mt. Etna SO<sub>2</sub> Plume using AIRS 28 Oct 2002

IASI can map trace gases such as SO<sub>2</sub>

Volcanic plumes are a severe hazard to aviation

Sinking of low-level plumes can also be a serious health hazard

**SO<sub>2</sub> produces acid rain with long-term impact on vegetation and water supplies.**  AIRS minus ECMWF  $\Delta$ B(T) for 1284.9 - 1345.3 cm<sup>-1</sup>  $\Delta$ B(T) in K









CNES CAL/VAL Phase A finished (means: update onboard and on ground software)
24 May: all IASI 1c products available to users via EUMETCast

Subset of 300 channels on GTS two weeks later

Level 2 products (profiles) available end of July, via EUMETCast, subset on GTS



MUG Meeting 2007

# More Sounding: GRAS

### GRAS = GNSS Receiver for Atmospheric Sounding GNSS = Global Navigation Satellite System







# GRAS "Sees" the GPS Satellites Above



ESA - GPP SIOV 27 Oct 2006 ML



## First Good Bending Angle



The first PPF produced bending angle, fresh from the factory (on the morning of the 19 February 2007, 2:05 CET AM...)

#### Bending angles are then transformed to a temperature / humidity profile



# Example of Profile Retrieval (Level 2, Setting Occultation)



"No frills" measurement reconstruction & dry temperature retrieval No raw sampling Initialised with CIRA climatology **Compared with ECMWF** operational analysis on 21 standard pressure levels **Higher altitude biases** related to known CIRA biases



### **Rising Occultation**

GRAS (rising) at 39.8S, 131.6W GRAS 2006-10-31 08:25:22.54 ECMWF 2006-10-31 06:00:00.00 Geopotential Height [km] Temperature [K]

**Also works for GRAS!** 





PPF being debugged (geolocation, time stamp, ...)

Beginning of June: Trial dissemination (Level 1b, bending angles) via EUMETCast, later GTS

Level 2 by GRAS SAF



## ASCAT: Advanced Scatterometer

Aim: Derivation of near-surface winds over oceans





#### Two Beams of ASCAT







"Ocean surface winds modify the surface roughness, hence, the ocean surface backscatter properties"



ASCAT ocean observation in half a day Double coverage compared to ERS SCAT



MUG Meeting 2007

## 27 Oct 2006: ASCAT was switched on



#### **Backscatter signal sigma and noise**



MUG Meeting 2007

## Radar Reflectivities (Ifremer)



#### sea ice search area



## ASCAT Ocean Winds

#### ASCAT: 20061027 17:30Z lat lon: 20.00 -120.00



### Produced at KNMI (OSI SAF) (green: ECMWF forecast)





## First Comparisons at ECMWF



#### (Blue bias, red standard deviation)



MUG Meeting 2007

### **ASCAT: Soil Moisture Application**

Soil moisture from ASCAT for use in NWP and agrometeorological applications, and monitoring climatic change (University Vienna)

Soil Water Index from ERS 2 Jan 2000 55 50 45 40 -10 5 10 15 20 25 30 0 Longitude 100 Technische Universität Wien 0 %

Soil Moisture



### **ASCAT Status**

Trial dissemination of Level 1b via EUMETCast ongoing Level 2 by OSI SAF (ongoing, disseminated since 9 May)



### **GOME – Global Ozone Monitoring Experiment**

Ozone significantly affects Levels of UV at ground. Potential health hazard

At high concentrations near the ground regarded as a pollutant and health hazard and damages plants Time: 12:00:00.00000



Monitoring climate change

#### Total Ozone (DU) derived from GOME-1500



150

### **GOME Measurements**



GOME measures between 250 and 790 nm the solar irradiance and the backscattered signal by the earth/atmosphere. Products are profiles of ozone and other tracer gases and aerosol information. Measurements are also done in two polarisation directions.



MUG Meeting 2007

## SO<sub>2</sub> from GOME-1 (on ERS)





## GOME: First TOZ Retrievals (17 Jan 2007)



250 DU

500 DU



## GOME: First NO<sub>2</sub> Retrievals(17 Jan 2007)



 $10^{16}$  mol cm<sup>-2</sup>

 $10^{15}$  mol cm<sup>-2</sup>



MUG Meeting 2007

# GOME: NO<sub>2</sub> over East Asia





### **GOME Status**

Trial dissemination of Level 1 (radiances) ongoing via EUMETCast

**TOZ disseminated by SAF** 

**Further trial products under scientific evaluation** 



# Thank you – Merci - Danke



More info: www.eumetsat.int



MUG Meeting 2007