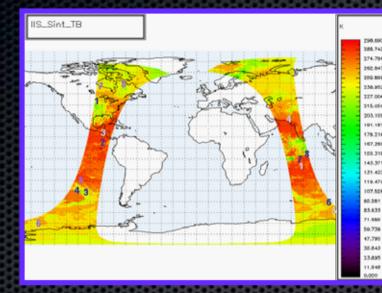
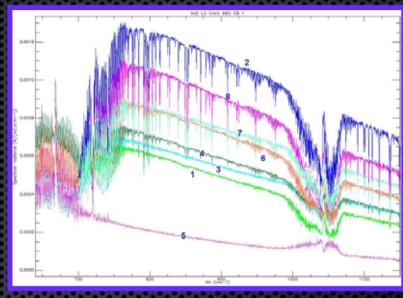
Origami: Scientific Distributed Workflow in McIDAS-V Maciek Smuga-Otto, Bruce Flynn (also Bob Knuteson, Ray Garcia) **SSEC**


1. Motivation and Concepts



- new remote sensing instruments
- new computing resources
- need for science workflow
- dealing with data

New Remote Sensing Instruments

- higher spatial, temporal, spectral resolutions
- enormous data volume
- complex calibration procedures
- Example: IASI hyperspectral sounder

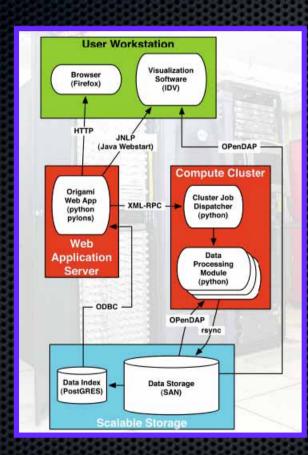
New Computing Resources

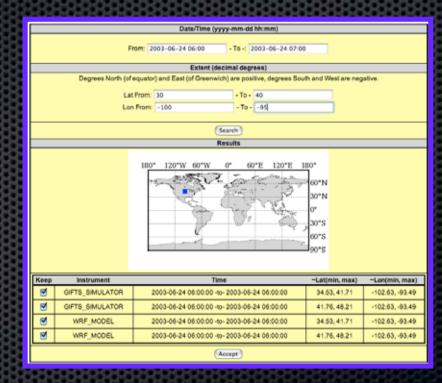
- compute clusters
- distributed storage of large data volumes
 - SAN (Storage Area Network)
 - cluster file systems (such as LUSTRE)
 - SRB (Storage Resource Broker)
- emerging computational grids

Dealing with Data

Desired actions with data:

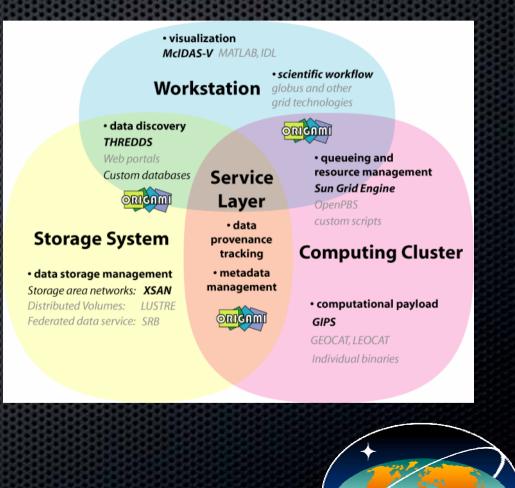
- search for data by time/location
- search for data by feature
- share results with community
- data volumes too unwieldy to store locally




Need for Science Workflow Management

- solving the same problem over and over
 - search for relevant data
 - run time-intensive computation (perhaps in parallel)
 - collect/visualize results
 - repeat with different data/parameters
 - publish

First Impulse: "Do it all Yourself"

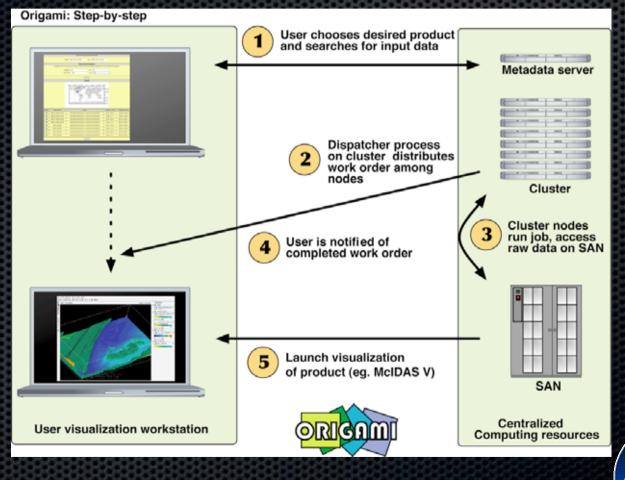


A New Architecture

 integrate existing components

 build where necessary

glue with flexible scripts



2. Origami

- use lightweight scripting environment (python)
 - to prototype distributed scientific workflow
 - make capabilities accessible from McIDAS-V
- manage the workflow relying on existing tools
 - develop metadata standards as "glue"
 - develop tools to manipulate and use the metadata

The Origami Workflow

McIDAS-V and Origami

- Part of the power of McIDAS-V lies in the external resources it can harness:
 - access to large remote data volumes
 - access to remote computation farms
- potential to control this environment from the desktop

Demo of Origami on McIDAS-V

today: demonstrating mockup of functionality

- concentrating on McIDAS-V integration
- previous web interface version ran a simple example algorithm to calculate relative humidity from T WV fields.

Step 0: Register Algorithm

user registers algorithm with system

either a standalone executable

- or as a library within a deployment framework (GEOCAT, LEOCAT)
- or as python source code relying on common numerical/science libraries
- attach description of algorithm interface in XML format

Step 1: Get Data

user selects registered algorithm, searches for data

- data search constrained by algorithm interface (so irrelevant data are automatically excluded)
- currently, only search by time/location
- interactive interface: "rubber band box selection"
- can also browse data manually

Step 1a: Create Work Order

- user specifies how the job is to run (which data on what executables)
- McIDAS-V front-end to a generic web service
 - can be accessed by other applications
 - or can submit a XML description file

Steps 2, 3: Compute!

- in background:
 - 2. job is dispatched to compute nodes
 - 3. data is delivered to nodes as needed

Step 4: Track Progress

user queries progress of jobs

- system notifies user of completed job
- user can browse description of current and past jobs

Step 5: Gather data, Visualize, Etc.

- system routes product to desktop visualization environment
 - using OPeNDAP for the data
- registers product along with metadata for future searches and downstream processing

Questions, comments

- Team: Bob Knuteson, Ray Garcia, Bruce Flynn, Maciek Smuga-Otto
- contact: <u>maciek@smuga-otto.com</u>
- Thanks!

