McIDAS-X Software Development and Demonstration

Rick Kohrs and Jay Heinzelman

7 May 2012

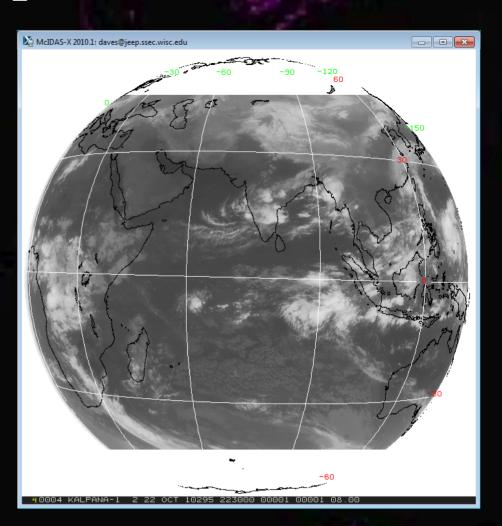
Overview

- McIDAS-X 2010.2, 2011.1
- McIDAS-XRD 2010.2, 2011.1
- McIDAS-XCD 2010.2, 2011.1, 2012.1
- Software development and plans for version 2012.1 and beyond...

McIDAS-X 2010.2 and 2011.1

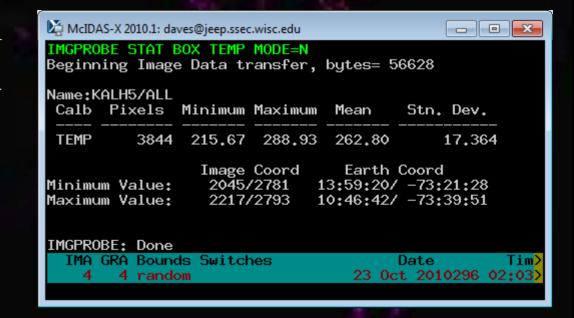
- POES server LINELE= with TIME=
- Radar
- Kalpana updates
- IMGPROBE enhancements
- EU TAB expanded listing
- Specify sigma levels with grids
- IMGRGB BASETHRESHOLD=

POES Server


- Previously: The real-time POES server would use TIME= to search all files for that scanline time within. It did not have to correspond to the start time of the file.
- Now: LINELE= can be used with TIME=. In this case, the time specified is matched to the start time of a file; beginning line from file extracted based on LINELE= value.

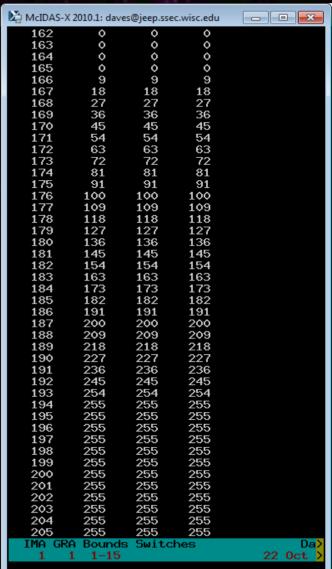
Radar

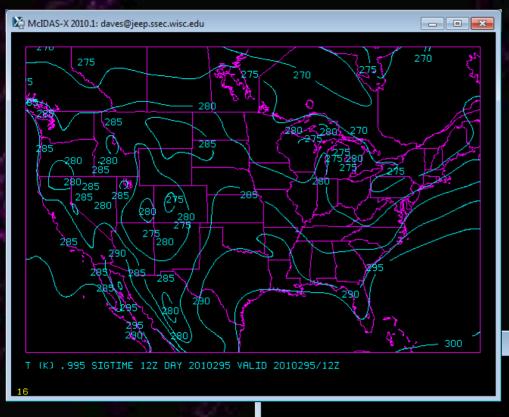
- NEXRAD dataset went away in December 2010
- Replaced by WSR and TDWR datasets
 - Higher bit depth and geographic resolution for some products
 - 45 new TDWR sites
 - Sites continue to be updated.

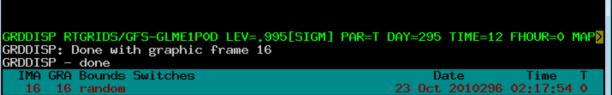

Kalpana

- HDF5 ADDE server
- Uses grid of latitude/longitude for navigation
- Updated for multibanded data

IMGPROBE


- Provide more information from STAT, HIST and PLOT options
- Corrected scan line time for MTSAT and added for MSG


EU TAB


- RGB values for each brightness value
- Portable to other software packages - AWIPS

Sigma Levels with Grids

- - X

IMGRGB

• New keyword BASETHRESHOLD= specifies a brightness threshold for pixels to be considered a map outline. Transparency of satellite image decreased by 50%.

Before

After

McIDAS-XCD 2010.1

- Added support for WSR-88D and TDWR radar products
- Updated the station database, STNDB.CORE
 - 20 new METAR stations
 - 18 oil platforms in the Gulf of Mexico
- Updated the Ship/Buoy/CMAN decoder: Properly decode MISSING wind direction

McIDAS-XCD 2011.1

- Added support for the NAM Fire Weather / IMET nest GRIB files (CONDUIT only)
- Updated the GRIB decoder for NDFD grids
- Updated the SAO/METAR decoder for wind gusts with VRB (variable) designation
- Update the Pilot Report (PIREP) decoder for errors with icing reports
- Updated the station database, STNDB.CORE:
 - 11 new TAF stations
 - Corrected errors in database

McIDAS-XCD 2012.1

- NWS has renamed the Rapid Update Cycle (RUC) forecast model to the Rapid Refresh (RAP)

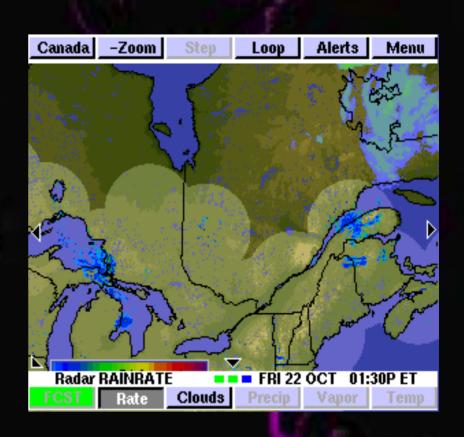
 Analysis and Forecast System
- Since RAP and RUC have same model ID numbers, current versions of –XCD will continue to work
- There is an update to the navigation parameters to allow data to be correctly filed into the RTGRIB2/RAP-USLC20KM dataset

McIDAS-XRD Current and Future

- IMGPARM
- COMP_ALLBAND
- Canada radar decoder
- TAFLIST
- ADDE Servers

IMGPARM

Multi-banded file containing quantities at each pixel:


- 1. Gray scale values
- 2. Time difference from a nominal time (sec)
- 3. Distance from satellite subpoint (km)
- 4. Pixel area (km*km)
- 5. Satellite Sensor (SS)
- 6. Wavelength
- 7. Parallax distance (km*10)
- 8. Parallax direction (degrees)

COMP_ALLBAND

- Composite satellite image of the highest resolution pixels
- Retains all eight bands from IMGPARM

Canada Radar Decoder

- Decode text data on the ldm
- Converted to McIDAS Area format served via ADDE

TAFLIST

- Decodes Terminal
 Aerodrome Forecast
 (TAF)
- Graphical depiction of expected conditions
- PDA Animated Weather

ADDE Servers

- Clouds from AVHRR Extended (CLAVR-x) products
 - Cloud type
 - SST
 - Volcanic Ash
- GEOCAT products
 - Cloud type
 - Fog mask, probability, and depth

ADDE Servers

- Additional MODIS products from GEOCAT
 - Fog product
 - Volcanic ash

McIDAS-X 2012.1

- Tracking real-time satellite data
- Access pre-KLM AVHRR Level 1b files
- NAV=LALO for AVHRR Level 1b files
- MODIS with bow tie correction
- Updates for COMS data

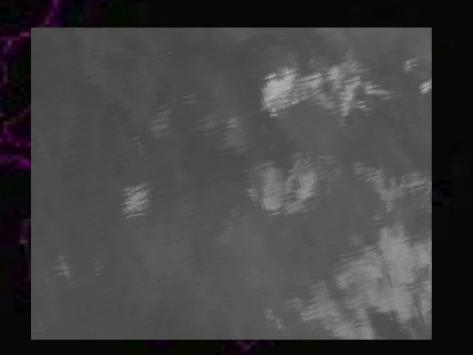
McIDAS-X 2012.1

- ADDE with ssh tunneling
- Updated map files
- Dual polarization radar

Tracking

- User configurable for GVAR and MTSAT
 - Only from SDI-104 ingestor or when reading raw files locally
 - TRACKING= YES/NO; default is set by server administrator with MCTRACK environment variable
 - Initially done for McIDAS-V

Pre-KLM AVHRR Level 1b

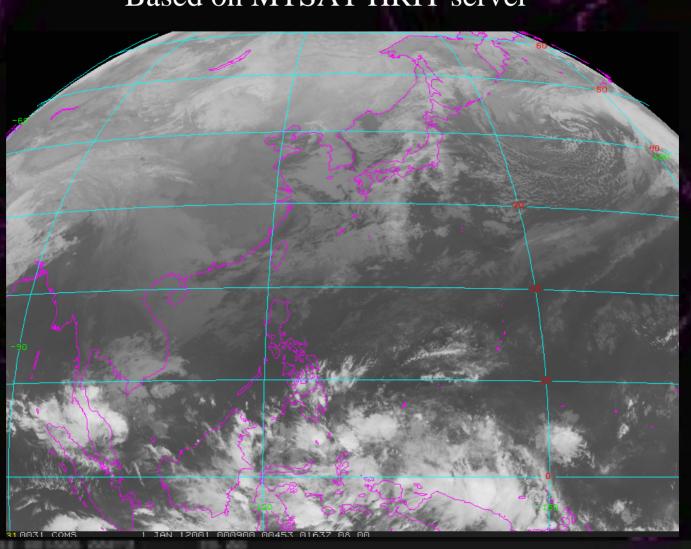

NOAA-11 3 January 1989

NAV=LALO for Level 1b files

• NAV=LALO keyword will be valid in IMG* commands to access the lat/lon navigation of AVHRR Level 1b files

Bow Tie Correction

(correction for MODIS scanning using MRTswath)

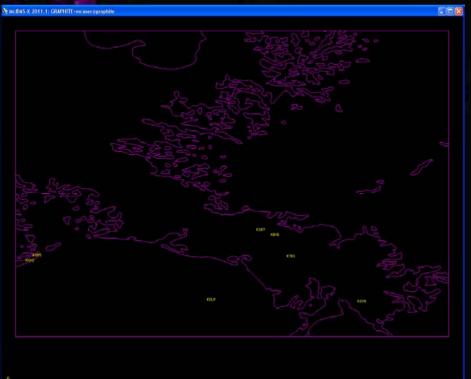


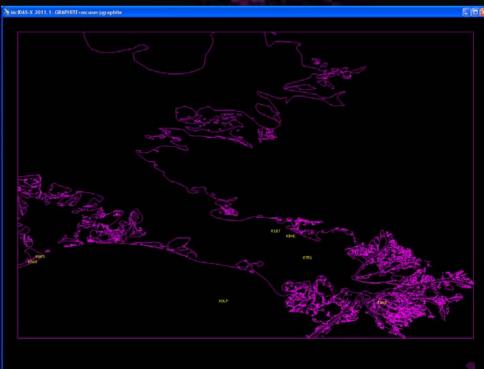
IMGREMAP

Bow tie corrected

COMS

Based on MTSAT HRIT server

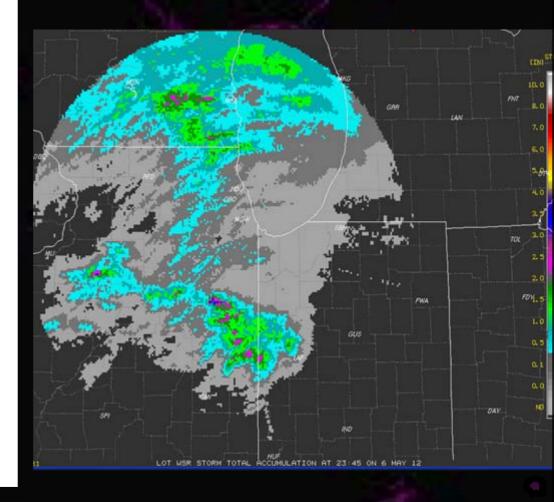



SSH Tunneling with ADDE

- User configurable through DATALOC
 - Keywords SSHADD, SSHLIST, SSHDEL used when servers are in a secure environment
 - Funded by JSC who has a two factor authentication requirement

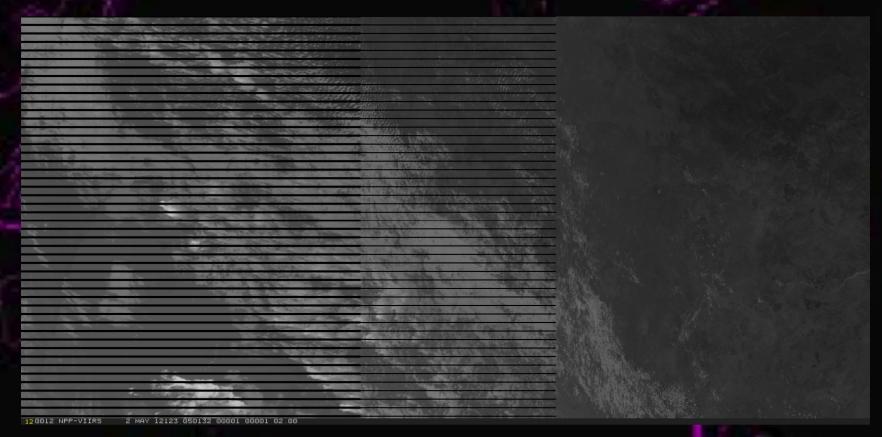
Updated Map Files

- USCOUNTY.MAP, USZONE.MAP, USSTATE.MAP
 - Better WWDISP & WWLIST performance



NEXRAD Level III Dual Polarization

TABLE 1: MMO HEADINGS FOR MSR-88D RADAR PRODUCT ADDITIONS


I			
#		PRODUCT DESCRIPTION	DIRECTORY
			DS.159XO
2	SDUS8I NAX	DIFFERENTIAL REFLECTIVITY 159/DZD 0.9DEG	DS.159XA
3	SDUS8I N1X	DIFFERENTIAL REFLECTIVITY 159/DZD 1.5DEG	DS.159X1
4	SDUS8I NBX	DIFFERENTIAL REFLECTIVITY 159/DZD 1.8DEG	DS.159XB
5	SDUS8I N2X	DIFFERENTIAL REFLECTIVITY 159/DZD 2.4DEG	DS.159X2
6	SDUS8I N3X	DIFFERENTIAL REFLECTIVITY 159/DZD 3.4DEG	DS.159X3
7	SDUS8I NOC	CORRELATION COEFFICIENT 161/DCC 0.5DEG	DS.161CO
		CORRELATION COEFFICIENT 161/DCC 0.9DEG	
9	SDUS8I N1C	CORRELATION COEFFICIENT 161/DCC 1.5DEG	DS.161C1
10	O SDUSBI NBC	CORRELATION COEFFICIENT 161/DCC 1.8DEG	DS.161CB
11	ı sdus81 N2C	CORRELATION COEFFICIENT 161/DCC 2.4DEG	DS.161C2
12	2 SDUS8I N3C	CORRELATION COEFFICIENT 161/DCC 3.4DEG	DS.161C3
13	3 SDUS8I NOK	SPECIFIC DIFFERENTIAL PHASE 163/DKD 0.5DEG	DS.163KO
14	a sdusei nak	SPECIFIC DIFFERENTIAL PHASE 163/DKD 0.9DEG	DS.163KA
15	5 SDUS8I N1K	SPECIFIC DIFFERENTIAL PHASE 163/DKD 1.5DEG	DS.163K1
16	5 SDUS8I NBK	SPECIFIC DIFFERENTIAL PHASE 163/DKD 1.8DEG	DS.163KB
17	7 SDUS8I N2K	SPECIFIC DIFFERENTIAL PHASE 163/DKD 2.4DEG	DS.163K2
18	B SDUSBI N3K	SPECIFIC DIFFERENTIAL PHASE 163/DKD 3.4DEG	DS.163K3
19	9 SDUS8I NOH	HYDROMETEOR CLASSIFICATION 165/DHC 0.5DEG	DS.165HO
20	D SDUSBI NAH	HYDROMETEOR CLASSIFICATION 165/DHC 0.9DEG	DS.165HA
21	ı sdus8ı N1H	HYDROMETEOR CLASSIFICATION 165/DHC 1.5DEG	DS.165H1
22	2 SDUS8I NBH	HYDROMETEOR CLASSIFICATION 165/DHC 1.8DEG	DS.165HB
23	B SDUSBI N2H	HYDROMETEOR CLASSIFICATION 165/DHC 2.4DEG	DS.165H2
24	a sdusei N3H	HYDROMETEOR CLASSIFICATION 165/DHC 3.4DEG	DS.165H3
25	5 SDUS8I NOM	MELTING LAYER 166/ML O.5DEG	DS.166MO
26	5 SDUS8I NAM	MELTING LAYER 166/ML 0.9DEG	DS.166MA
27	7 SDUS8I N1M	MELTING LAYER 166/ML 1.5DEG	DS.166M1
28	8 SDUS8I NBM	MELTING LAYER 166/ML 1.8DEG	DS.166MB
29	9 SDUS8I N2M	MELTING LAYER 166/ML 2.4DEG	DS.166M2
30	o sdusei nam	MELTING LAYER 166/ML 3.4DEG	DS.166M3
ı			
		HYBRID SCAN HYDROMETEOR CLASSIFIC. 177/HHC	
33	B SDUSBI OHA	ONE HOUR ACCUMULATION 169/OHA	DS.1690H
34	a sdusei daa	DIGITAL ACCUMULATION ARRAY 170/DAA	DS.170AA
35	5 SDUS3I PTA	ONE HOUR ACCUMULATION 169/OHA DIGITAL ACCUMULATION ARRAY 170/DAA STORM TOTAL ACCUMULATION 171/STA	DS.171ST
36	5 SDUS8I DTA	DIGITAL STORM TOTAL ACCUMULATION 172/DSA	DS.172DT
ı			
39	9 SDUS8I DOD	DIGITAL ONE HOUR DIFFERENCE 175/DOD	DS.1740D
40		DIGITAL STORM TOTAL DIFFERENCE 175/DSD	

....and beyond

- VIIRS ADDE Server
 - Prototype: very limited functionality
 - MS2GT (3rd party package) will be used to remove bow tie and store in a reprojected Area file.
- Next generation ADDE servers

VIIRS ADDE Server

Left half of VIIRS granule with bowtie deletion

Next Generation ADDE

- Still in the planning stage
- Expecting the servers to based on Java:
 - Make use of McIDAS-V file adapters
 - Interface to the netCDF 4 library
 - All data formats that McIDAS-V can read locally, will also work remotely