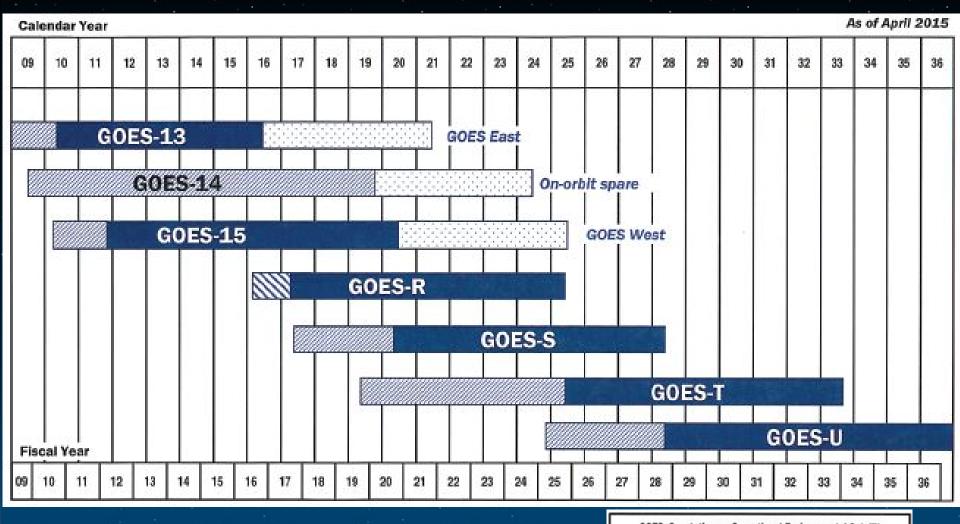
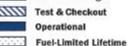
USING MCIDAS TO PREPARE USERS FOR THE ABI

Mat Gunshor¹ With help from: Tim Schmit² Joleen Feltz¹ Kaba Bah¹ Tom Whittaker³ 1. CIMSS/SSEC 2. NOAA/NESDIS/ASPB Retired! Formerly CIMSS/SSEC


Overview

- GOES-R ABI represents a major shift in geostationary environmental satellite capability.
 We have developed some ABI "Webapps" tools that anyone can use to educate users and students on a host of topics.
 - Spatial, Spectral, & Temporal Improvements of ABI.
 - RGB Generation
 - Uses of GOES data and Products.
 - Fires, hurricanes, convection, fog, winds, etc.

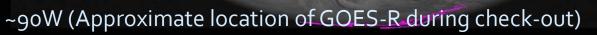
 We are prolific McIDAS users both "operationally" but also for image generation going into educational applications and as a hands-on tool.



GOES Flyout Chart

4212015 Approved: Assistant Administrator for Satellite and Information Services

Validation and Availability for GOES-R Baseline Products


Milestone:	GOES-R to 89.5		- 18 - 18 -	ns Handover s Products)		East/West ations
	Ļ			Extended	Validation	
Program Phase:	Pre-Launch	PLT (6 n	nonths)		Post-Hando	over

L1b Product Activities

- L1b Validation Products recertified against pre-launch instrument performance
- 'First Light' Data captures shared from Instruments
- Insertion of L1b products into GRB service is controlled by ground system and will occur as products are certified

(Figure from Matt Seybold from NOAA Satellite Conference)

The Advanced Baseline Imager:

ABI

Spectral Coverage

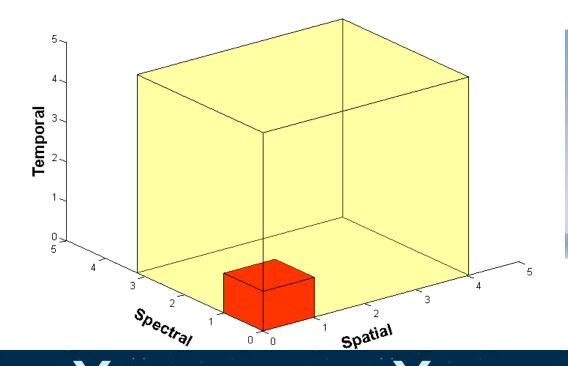
Spatial Resolution 0.64 μm Visible Other Visible/near-IR Bands (>2 μm) 16 bands 6 VIS/NIR & 10 IR

0.5 km 1.0 km 2 km 5 bands R 1 VIS & 4 IR

Current

Approx. 1 km n/a Approx. 4 km

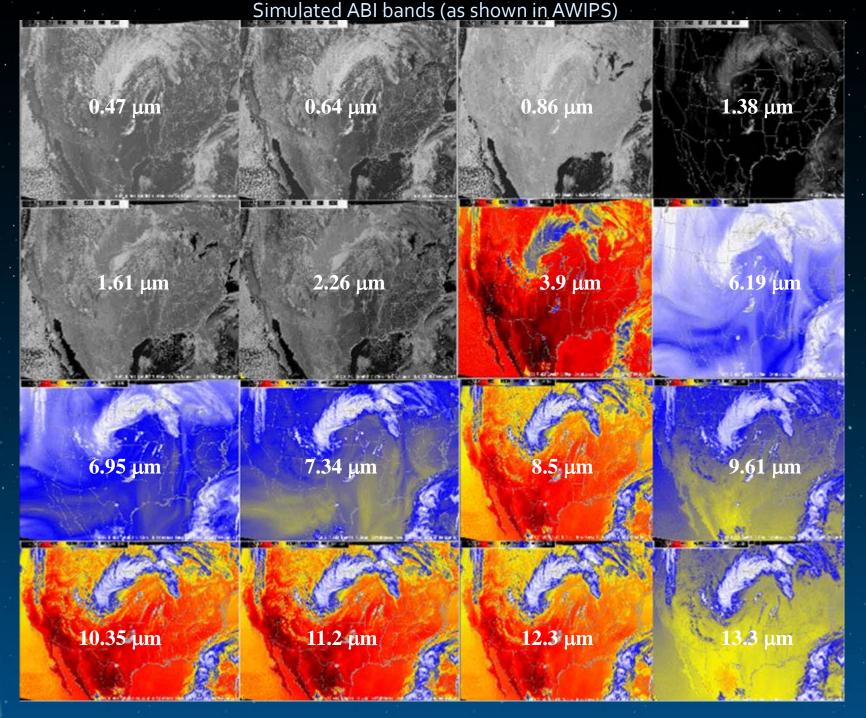
Spatial/Temporal Coverage Full disk CONUS Mesoscale

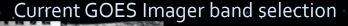

Visible (reflective bands) On-orbit calibration Every 15 min Every 5 min Every 30 sec

Yes

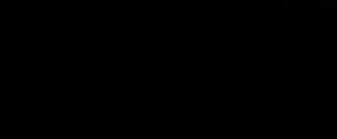
Scheduled (3 hrly) ~4 per hour n/a

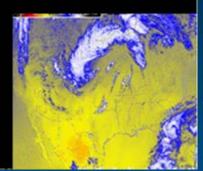
No

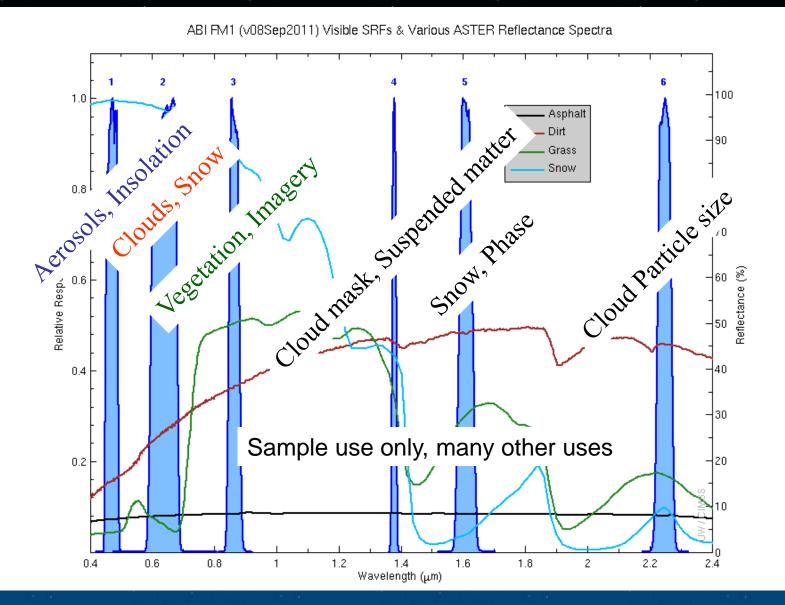

Advanced Baseline Imager



Faster coverage (5-minute full disk vs. 25-minute) Improved spatial resolution (2 km IR vs. 4 km) More spectral bands (16 on ABI vs. 5 on the current imager)







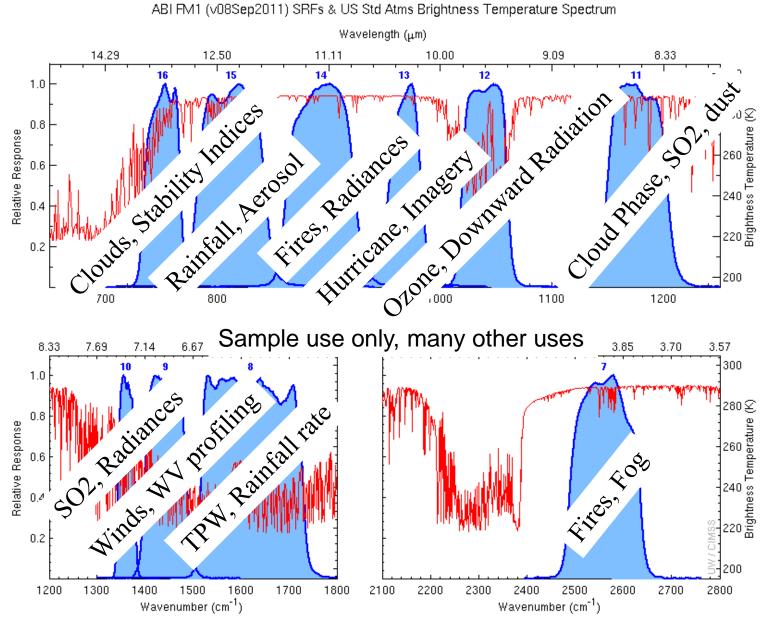
ABI bands 1-6

	Approx	kimate:			
Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use	Heritage instrument(s)
	0.45–0.49	0.47	I	Daytime aerosol over land, coastal water mapping	MODIS
2	0.59-0.69	0.64	0.5	Daytime clouds fog, inso- lation, winds	Current GOES imager/ sounder
3	0.846–0.885	0.865	I	Daytime vegetation/burn scar and aerosol over water, winds	VIIRS, spectrally modified AVHRR
4	1.371-1.386	1.378	2	Daytime cirrus cloud	VIIRS, MODIS
5	1.58–1.64	1.61	I	Daytime cloud-top phase and particle size, snow	VIIRS, spectrally modified AVHRR
6	2.225–2.275	2.25	2	Daytime land/cloud properties, particle size, vegetation, snow	VIIRS, similar to MODIS

2 visible bands and 4 near infrared bands on the ABI, compared to only one on today's imager

Visible and near-IR channels on the ABI

11


ABI bands 7-16

7	3.80-4.00	3.90	2	Surface and cloud, fog at night, fire, winds	Current GOES imager
8	5.77–6.6	6.19	2	High-level atmospheric water vapor, winds, rainfall	Current GOES imager
9	6.75–7.15	6.95	2	Midlevel atmospheric water vapor, winds, rainfall	Current GOES sounder
10	7.24–7.44	7.34	2	Lower-level water vapor, winds, and SO ₂	Spectrally modified cur- rent GOES sounder
Ш	8.3-8.7	8.5	2	Total water for stability, cloud phase, dust, SO ₂ rainfall	MAS
12	9.42–9.8	9.61	2	Total ozone, turbulence, and winds	Spectrally modified cur- rent sounder
13	10.1-10.6	10.35	2	Surface and cloud	MAS
14	10.8-11.6	11.2	2	lmagery, SST, clouds, rainfall	Current GOES sounder
15	11.8-12.8	12.3	2	Total water, ash, and SST	Current GOES sounder
16	13.0-13.6	13.3	2	Air temperature, cloud heights and amounts	Current GOES sounder/ GOES-12+ imager
Future GOES imager (ABI) band	Approx Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use	Heritage instrument(s)

10 infrared bands on the ABI, compared to four on today's imager

CIM

The IR channels on the ABI

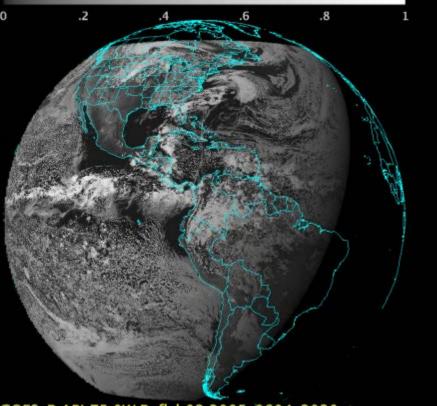
ABI has many more bands than the current operational GOES imagers.

Future vs. Current Spectral Bands

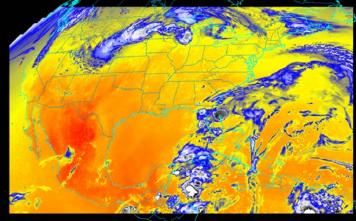
Future (Simulated)

ABI/0.47 µm

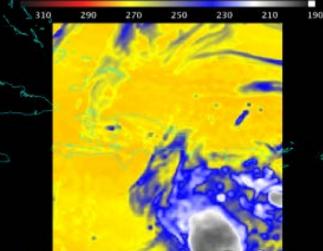
Current (Observed)


GOÉS 0.65 µm

The current GOES (right) has 5 spectral bands, while the GOES-R series ABI (left) will have 16 spectral bands.


SSE

Baseline ABI Scan Modes

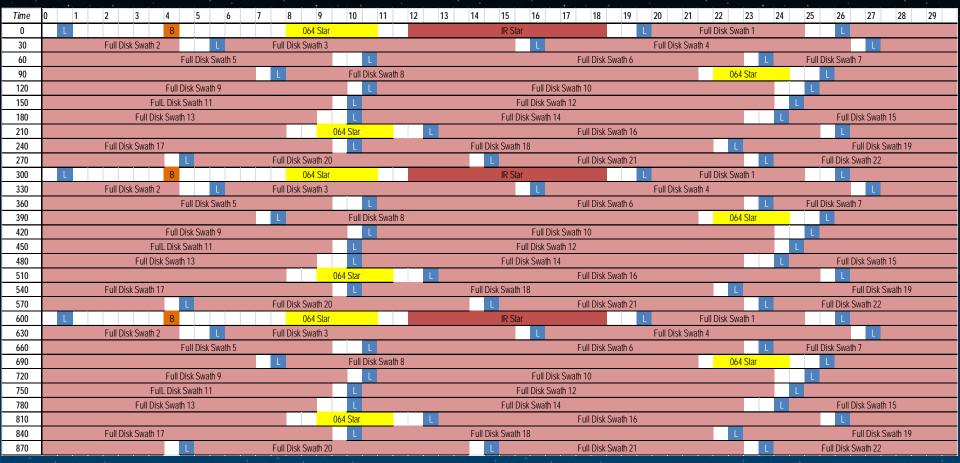


GOES-R ABI 75.0W Refl b02 2005 0604 2030utc

Scan mode (3) or 'flex mode' for the ABI: - Full disk every 15 minutes + 5 min CONUS + 1-min mesoscales (2 locations). [Scan mode (4) or 'Continuous Full Disk' (CFD) is a full disk every 5 min]

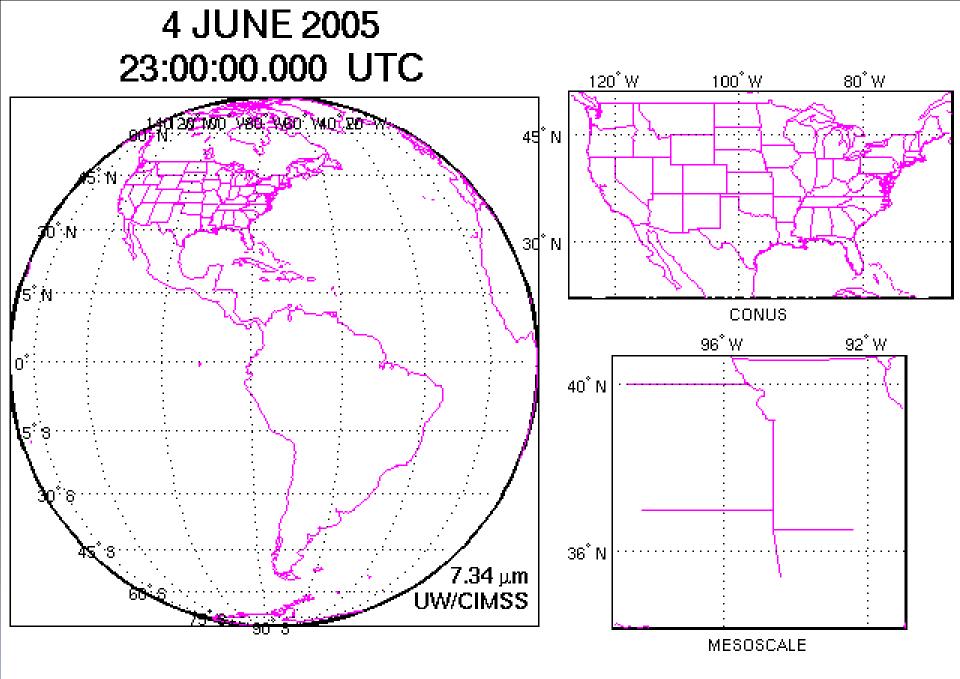
ABI 75W TBB 616 2005 0604 2000UTC

GOES-R ABI 75W TBB_b16 2005_0604_2030UTC


Recent Mode 3 (Flex mode) "Time-Time" chart

Time	0	1		2	3		4		5	(6	7	8		9	10	11	12	1	3	14		15	1	16	17	18	1	19	20		21	22	23	24	25		26	2	7	28	29
0		L						В						064	Star			0)64 S	tar								I	R Star							Me	so 1	-1			Mes)1-2
30									L			Full Di	sk Sw	ath 1																						Me	so 2	-1			Mes	02-2
60						L						Full Di	isk Sw	ath 2											I	R Star										Me	so 3	-1			Mes	03-2
90					L							Full Di	sk Sw	ath 3								064	4 Star				(064 S	Star							Me	so 4	-1			Mes	04-2
120				l	-							Full Di	sk Sw	ath 4													(CON	US1-	Swath	1					Me	so 5	-1			Mes	5-2
150				L								Full Di	sk Sw	ath 5													(CON	US1-	Swath	2					Me	so 6	-1			Mes	06-2
180			L									Full Di	sk Sw	ath 6													(CON	US1-	Swath	3					Me	so 7	-1			Mes	07-2
210			L									Full Di	sk Sw	ath 7													(CON	US1-	Swath	4					Me	so 8	-1			Meso	08-2
240		L										Full Di	sk Sw	ath 8													(CON	US1-	Swath	5					Me	so 9	-1			Meso	9-2
270		L										Full Di	sk Sw	ath 9													(CON	US1-	Swath	6					Me	so 10	-1			Meso	0 10 -2
300		L										Full Di	sk Sw	ath 10											0)64 Star					064 \$	Star				Me	so 11	-1			Meso	011-2
330		L										Full Di	sk Sw	ath 11											0)64 Star					064 \$	Star				Me	so 12	-1			Meso) 12 -2
360		L										Full Di	sk Sw	ath 12														1	R Star							Me	so 13	-1			Meso	013-2
390		L										Full Di	sk Sw	ath 13											0)64 Star					064	Star				Me	so 14	-1			Meso	014-2
420		L										Full Di					 	 												Swath						Me	so 15	-1				0 15 -2
450		L										 		ath 15													(CON	US 2 -	Swath	2					Me	so 16	-1				0 16 -2
480			L									Full Di	sk Sw	ath 16			 	 							_		(CON	US 2 -	Swath	3					Me	so 17	-1			Meso	0 17 -2
510			L									Full Di					 	 							_		 (CON	US 2 -	Swath	4					Me	so 18	-1			Meso	0 18 -2
540				L										ath 18																Swath	-						so 19					0 19 -2
570				l										ath 19													 			Swath	6			 		1	so 20					0 20 -2
600					L							-		ath 20									4 Star					064 S	Star								so 21					21 -2
630		_			_	L						Full Di									064	4 Sta					064 S	Star		_							so 22) 22 -2
660									L			Full Di	sk Sw	ath 22									IR St	ar													so 23					023-2
690		L								IR Sta	ar					_			R Sta	Ir																	so 24					24 -2
720		L			064	4 Star						064 St	ar																	Swath							so 25					25 -2
750		L																												Swath						1	so 26					0 26 -2
780		L																												Swath							so 27					27 -2
810		L			064	4 Star						064 St	ar																	Swath							so 28					28 -2
840		L																							_					Swath	-						so 29) 29 -2
870		L																									(CON	US 3 -	Swath	6					Me	so 30	-1			Meso	0 30 -2

Note the 'white' space is instrument idle time.


Baseline Time-Time Mode 4 (Continuous Full Disk)

This is the Continuous Full Disk (every 5 min) mode

This is the highest data rate.

Draft Scan Mode "6" with 10-min FD

- In **10**-min:
 - 1 Full Disk +
 - 2 CONUS +
 - 20 Meso-scale
- The 10-min Full Disk would offer synergy with other geos and improved AMVs outside of CONUS, plus still allow for meso-scale observations.
- This draft mode 6 ideally could be tested during PLPT (Post Launch Products Test).
- This mode should be easier to implement at the Ground System, sense the scan sectors are the same size/locations as in mode 3.

Draft Scan Mode "6" with 10-min FD

NOTE : This depiciton of the timeline is only to 1/10 sec. resolution.

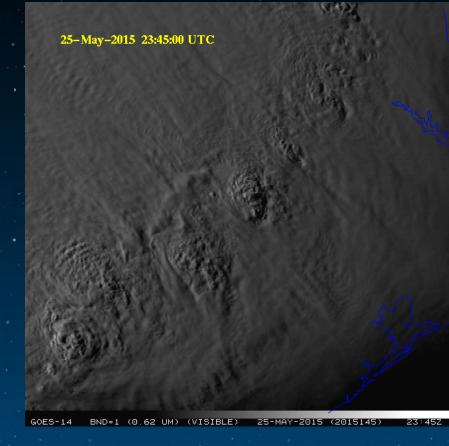
Sec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
0					ľ						5	<u> </u>				- 6								7					8	
30		9				- 22 - 20		1	0									1	1	<u>.</u>						12			13	3
60			14							3	15										16					17			18	3
90	1	-								19											20					21			22	2
120										23											24					25			28	5
150									- 2	27											28					29			30)
180									3	31											32					33			34	4
210									3	35											36					37			38	3
240									1	39									40			4	1			42			43	3
270	_									44									45				46			47			48	3
300									4	49											10					- 51			52	2
330										53									54				55			- 56			57	7
360									Ę	58											59					60			61	
390										52											63					64	-		66	
420									6	66											67					68			69	3
450										70											71					72			73	3
480										74								75								76			77	
510										78					_						79	_				80	-		81	
540										82							83			8	34					85			88	6
570					-				1	87								88				-				89			90)

Figure 1 Scan Mode 6 Time-Time Diagram

Note less 'white space' than scan mode 3 (flex mode) Matches EUMETSAT, JMA, and others for full disk cadence

Time-time diagram from Exelis

GOES-14 Super Rapid Scan Operations to Prepare for GOES-R (SRSOR)


SRSOR for 2015 include May 18-June 12, and August 10-22:

http://cimss.ssec.wisc.edu/goes/srsor2015/GOES-14_SRSOR.html

Data during parts of 2012 (Hurricane Sandy, convection), 2013 (CA Rim Fire, convection) and 2014 (Hurricane Marie, convection):

- <u>http://cimss.ssec.wisc.edu/goes/srsor/GOES-</u> <u>14_SRSOR.html</u>
 - http://cimss.ssec.wisc.edu/goes/srsor2013/GOES-14_SRSOR.html
 - http://cimss.ssec.wisc.edu/goes/srsor2014/GOES-14_SRSOR.html

GOES-14 provided very unique data and offered a glimpse into the possibilities that will be provided by the ABI on GOES-R in one minute mesoscale imagery

GOES-14 visible image showing rapid convection (loops over just half an hour)

SRSOR vs Meso

S K

GOES-R ABI (Meso) 1 per minute for 2 locations Operational (with FD + CONUS)

ዮፍ

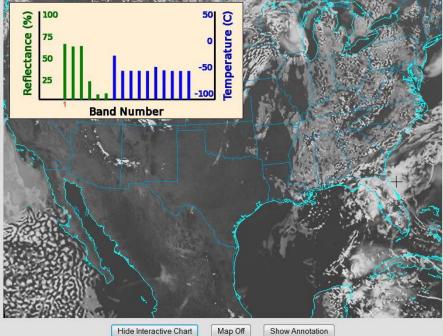
GOES (SRSOR) ~1 per minute Experimental (no other imagery)

Educational Webapps Developed

NOAA NESDIS ASPB teamed up with CIMSS researchers to develop three educational WebApps to explore space, time and spectral resolutions of satellite imagery.

Part of the GOES-R Educational Proving Ground at CIMSS:

http://cimss.ssec.wisc.edu/ed
ucation/goesr


Teacher feedback:

".... Wow!! This is awesome!! This is impressive. Thank you for sharing. This is great. Thanks for all your hard work and help!!!!

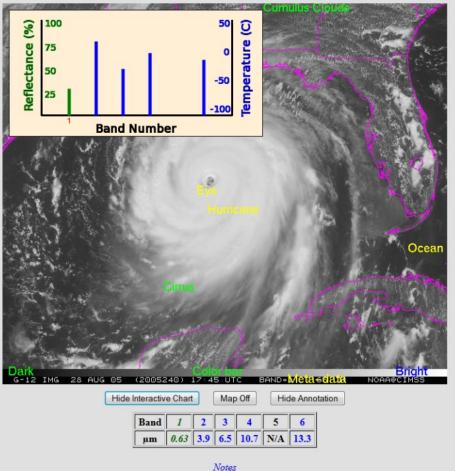
We are honored and will use it next week ... Earth SySTEM Teacher Academy"

Simulated GOES-R Advanced Baseline Imager Bands

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 Visible (0.47 μm): 'Blue' band, Cloud and surface features during the day, smoke, etc.

Band	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
μm	0.47	0.64	0.86	1.37	1.6	2.2	3.9	6.2	7.0	7.4	8.4	9.6	10.33	11.2	12.3	13.3

Notes


Sample interactive "Bandapp" educational webapp using simulated ABI images: <u>http://cimss.ssec.wisc.edu/goes/webapps/band</u> <u>app/</u>

GOES Imager Bands

◎1 **○**2 **○**3 **○**4 **○**6

Visible band (0.63 µm): Cloud cover and surface features during the day, smoke, etc.

Controls:

- · To step through the bands click on the image, click one of the radio buttons, or use the arrow keys
- To activate the Interactive Chart: click the show button
- · To move the Interactive Chart: drag to other positions within or touching the main image

Band=val at x=15, y=70 1=138/29 2=92/11 3=152/-34 4=130/-8 6=152/-19

This webapp is Copyright © 2014 by Tom Whittaker. The images were generated by Tim Schmit, NOAA NESDIS.

There are also several case studies using current GOES imagery (5 spectral bands) with the option to add descriptive annotations, or add map outlines.

Mouse over

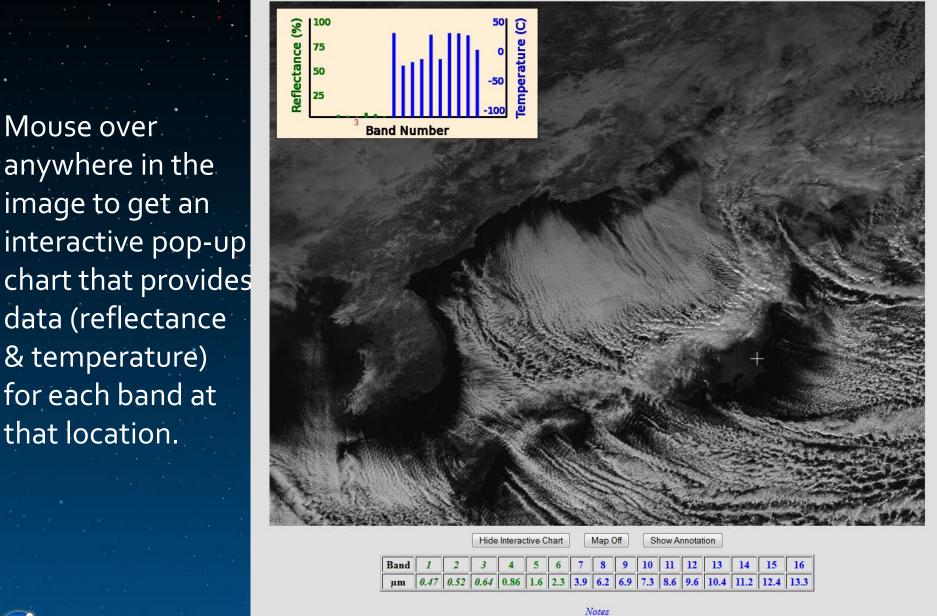
anywhere in the

image to get an

interactive pop-up

data (reflectance

& temperature)

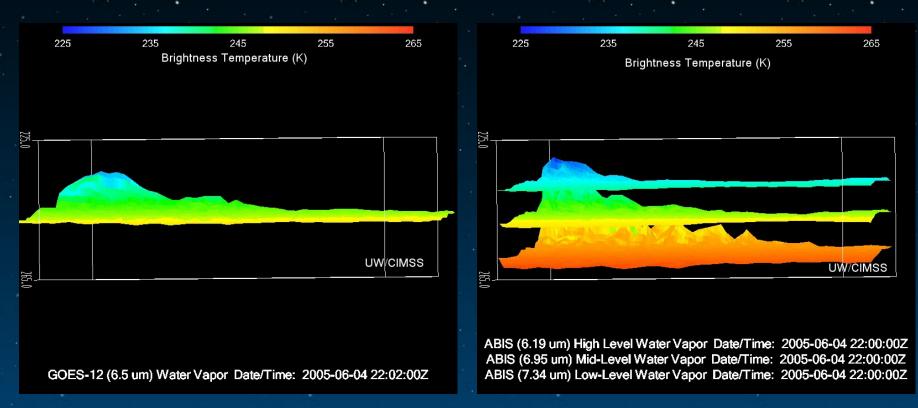

for each band at

that location.

First Light: JMA's AHI

01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 016

Visible (0.64 µm): 'Red', band, Cloud and surface features during the day, etc.


Hands-on...Spectral

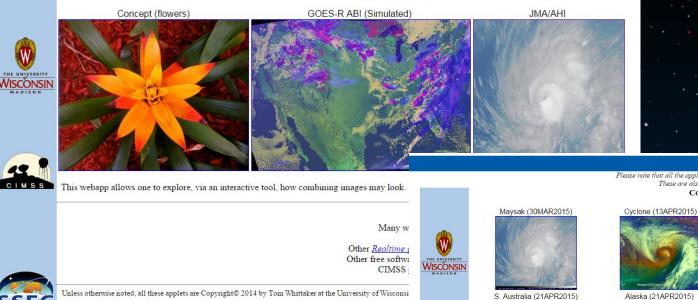
- Step through the ABI spectral bands (and turn on the interactive chart)
 - One of the simulated cases
 - http://cimss.ssec.wisc.edu/education/apps/bandapp/overview_goes-r.html
 - or

- http://cimss.ssec.wisc.edu/goes/webapps/bandapp/
- Or step through the AHI spectral bands (and turn on the interactive chart)
 - One of the observed cases
 - http://cimss.ssec.wisc.edu/education/apps/bandapp/overview_ahi_first_images.html
 - or o
 - http://cimss.ssec.wisc.edu/goes/webapps/bandapp/overview_ahi_first_images.html

Three ABI water vapor bands

Current GOES

Images from J. Feltz



Future GOES

Satellite RGB Webapp

Please note that all the applets on these pages use HTML5 and require an up-to-date browser! These are also "touch-friendly" and should run on mobile devices.

Combine components to build a RGB image

RGBWEBAPP

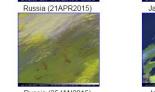
Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

AHI Satellite RGB Webapp Please note that all the applets on these pages use HTML5 and require an up-to-date browser! These are also "touch-friendly" and should run on mobile devices.

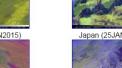
Combine images from JMA's AHI to make an RGB

Guam (21APR2015)

Hawaii (21APR2015)



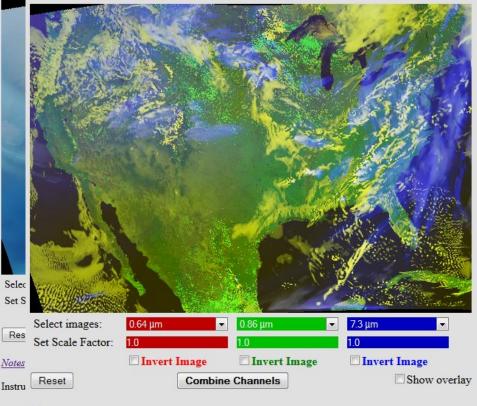
Japan (21APR2015)


Japan (25JAN2015

American Samoa (21APR2015)

Southern Hemisphere (25JAN2015)

rue Color (25JAN2015

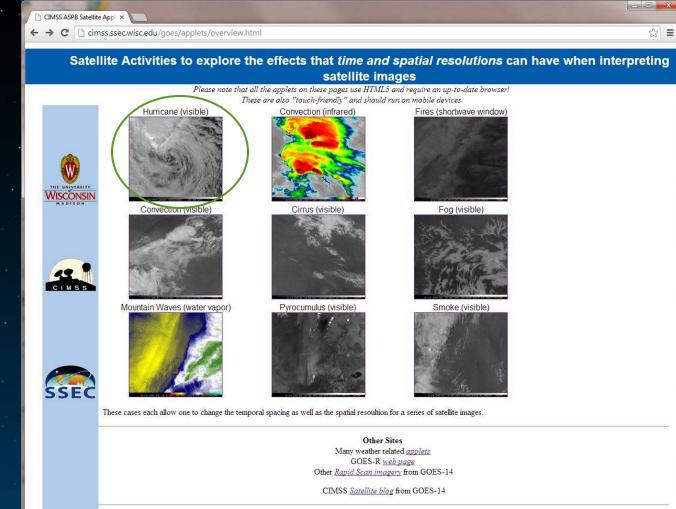

CIMS

Sat RGB

Cor Combine Three Images into One Red-Green-Blue (Simulated ABI) Image

Notes

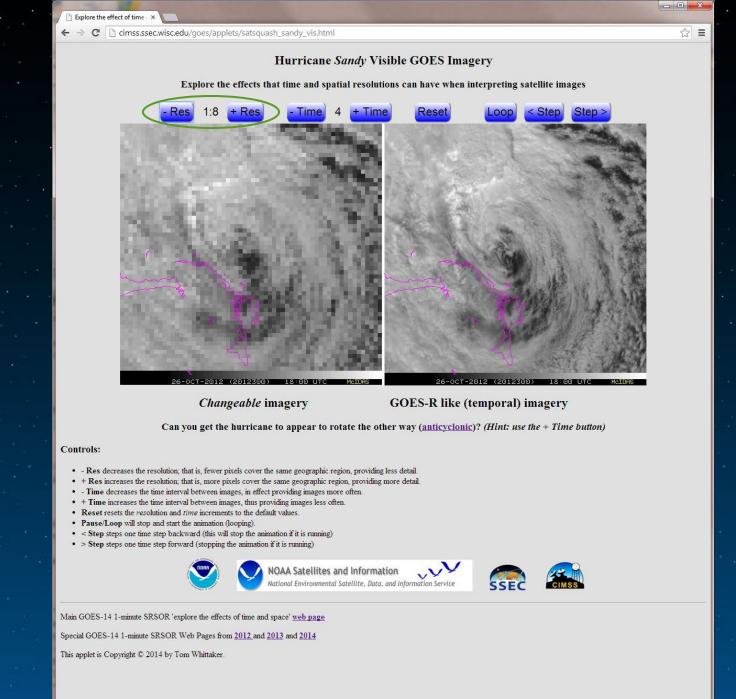
This v


- Instructions
 - Select an input (file) for each color component, then click "Combine Channels" button
 - Modify the scale factors (Brightness), values between 0.0 and 1.0
 - Not making an image selection is equivalent to a Scale Factor of 0.0
 - Enjoy!

i) Select an input for each bandii) Click "Combine Channels"

Hands-on....Red-Green-Blue


- Combine the bands to bring out a feature of interest
 - <u>http://cimss.ssec.wisc.edu/goes/webapps/satrgb/overview.html</u>
 - One of the simulated ABI cases
 - <u>http://cimss.ssec.wisc.edu/education/apps/bandapp/overview_goes-r.html</u>
 - One of the observed AHI cases
 - http://cimss.ssec.wisc.edu/goes/webapps/satrgb/overview_ahi.html



Unless otherwise noted, all these applets are Copyright 2013 by Tom Whittaker at the University of Wisconsin-Madison. Many animations provided by Tim Schmit, NOAA NESDIS.

http://cimss.ssec.wisc.edu/goes/applets/overview.html

Hands-on....Temporal/Spatial

- Choose a case to example the temporal and/or spatial resolutions:
 - <u>http://cimss.ssec.wisc.edu/goes/applets/overview.html</u>
 - or
 - http://cimss.ssec.wisc.edu/education/apps/abi/
- Via temporal sampling, can you get Hurricane Sandy to appear to rotate backwards?

Can you observe an enhanced v signature in the IR case over MN?

Summary

- GOES-R ABI represents a major shift in capability that users need to be preparing for.
 - Currently focused on Broadcast Meteorologists
- Tim Schmit, Scott Lindstrom, Chris Schmidt and others are in Raleigh, NC at the AMS Broadcaster's Conference giving an all-day Short Course.
- ABI "Webapps" are terrific "hands-on" tools that anyone can use to educate users and students on a host of topics.
 - Spatial, Spectral, & Temporal Improvements of ABI.
 RGB
 - Uses of GOES data and Products.
 - Fires, hurricanes, convection, fog, winds, etc.
 - Educational imagery produced with McIDAS-X and –V.

