

University of Wisconsin SSEC Datacenter

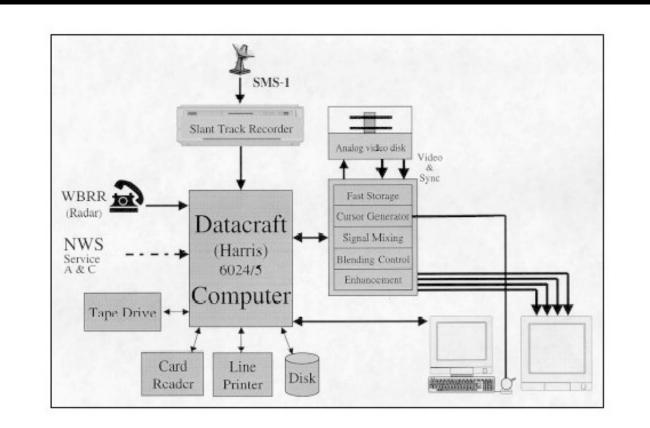
2015 McIDAS Users Group Meeting

June 8, 2015

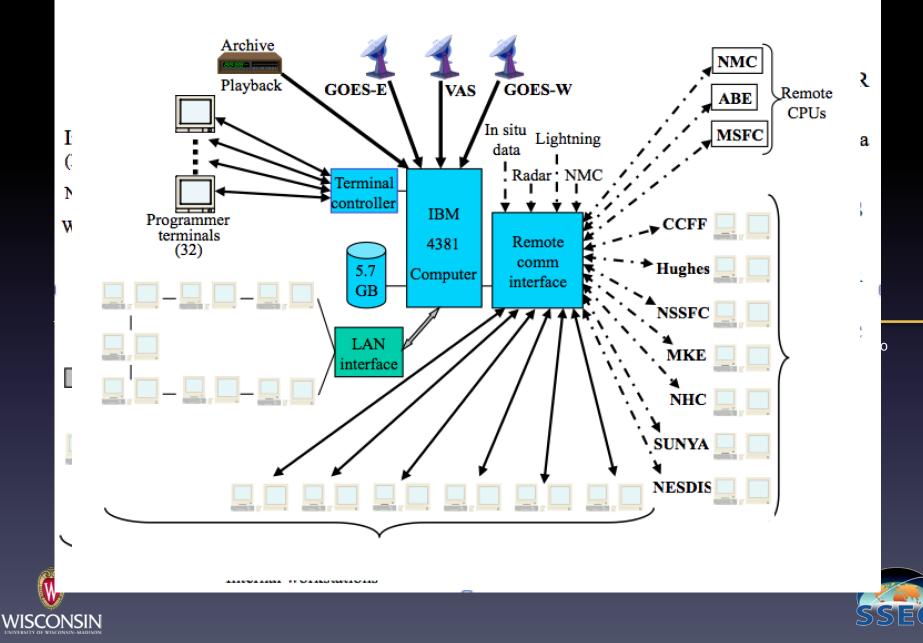
SSEC Data Center Mission Statement

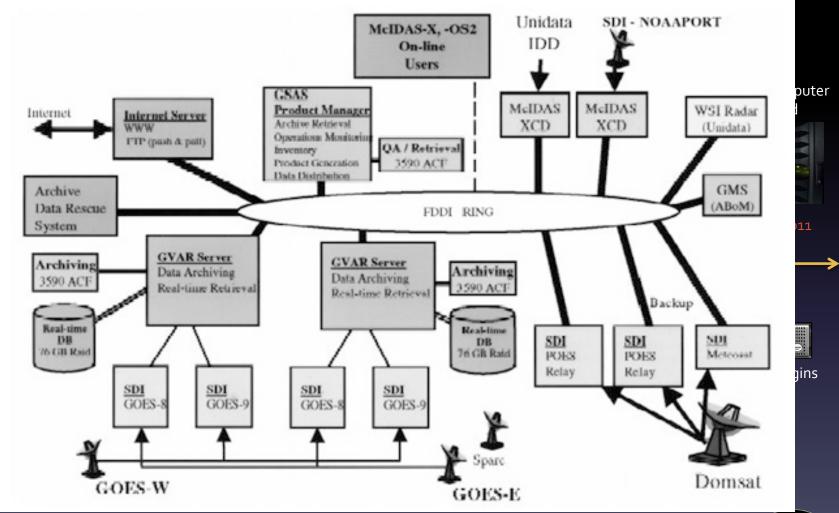
 The SSEC Data Center mission is to create and maintain the facilities, human expertise and technology necessary to provide SSEC scientists and collaborators with the highest quality geophysical data in a timely fashion and to provide real-time data access, archive and retrieval services as necessary to support SSEC's scientific programs.

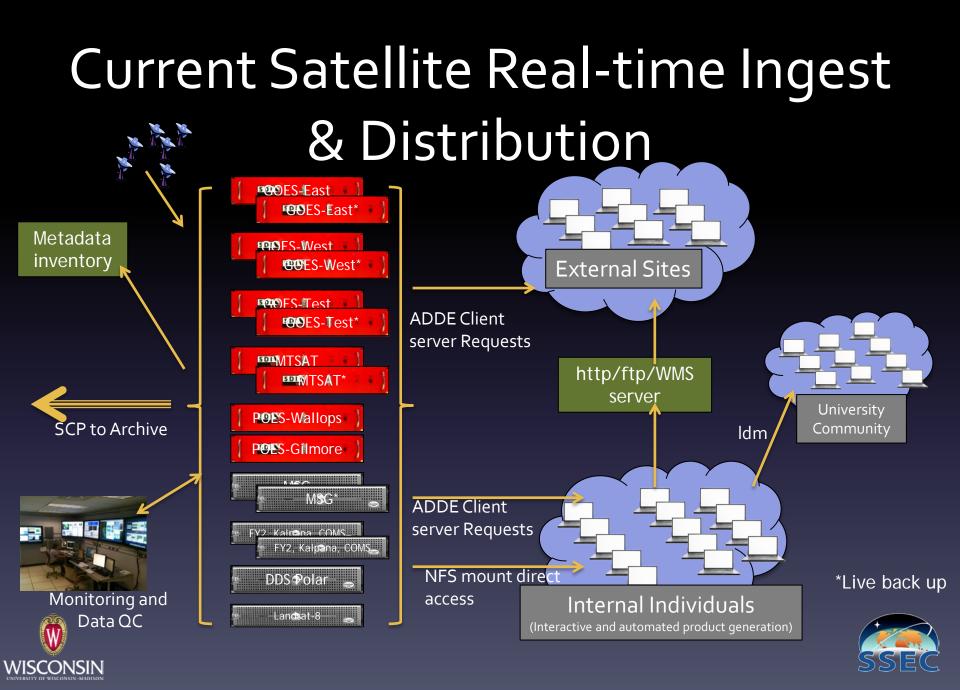
SSEC Data Center


Provide timely, high quality real-time and archive data, reliably to SSEC scientists and collaborators.

Data Center History





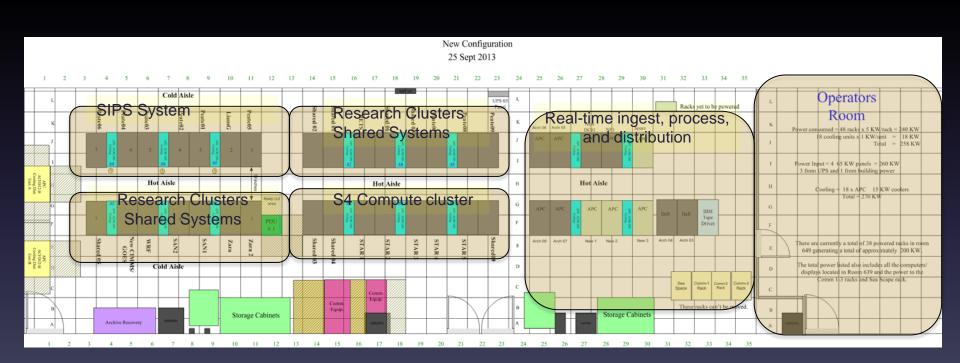


SSEC Data Center

Staffed M-F , 7:30 AM - 11:00 pm Central time.

- 3 FTE ~100% time
 - Computer Operator (1st shift)
 - Computer Operator (1st shift)
 - Research Intern
- 5 FTE ~portions of their time
 - Program Manager
 - System Programmer
 - Data Base Programmer
 - Research Specialist (PM assistant)
 - Antenna/Communication technician

- 2 Student programmers
- 2 student QC assistants (2nd shift)


Data Center Facilities

- Over 2100 ft.
- Currently the Data Center has 44 racks representing over 1840 rack units of space.
- The Data Center's disk storage exceed 8 PBs.
- The entire room is on three 72 KW UPSs, of which, about 155 KW are in use. Non UPS power usage is ~17 KW. An additional 72 KW UPS for a smaller 5 th floor computer room
- Cooling provided by campus chilled water and outside air in the winter. Racks are cooled by 16 in row APC coolers.
- Gigabit and 10 Gigabit network (also 100 MB admin network, 40 Gigabit InfiniBand).

Server room layout

S4 Supercomputing Cluster

- Total compute: 3072 cores, 8TB memory
- Total storage: 456 TB
- 40 Gigabit/s InfiniBand Network Interconnect
- Funded by the NOAA & used by NOAA and UW researchers to run data assimilation experiments
- The system was designed, installed, and is maintained by the UW SSEC Technical Computing Group.
- S4 expansion complete. Additional 1600 cores, 10 TB memory and 1 PB storage.

Data Center Antennas

- <u>C-Band</u>
 - 11 meter heated (87° West SES-2, POES Wallops Relay, MSG)
 - 7.3 meter backup (101° West SES-1, POES Fairbanks Relay, MTSAT, Noaaport)
 - 6.3 meter heated (101° West SES-1, POES Fairbanks Relay, MTSAT, Noaaport)
- <u>L-Band</u>
 - 7.3 meter (75° West -GOES-East Primary)
 - 4.6 meter (135° West -GOES-West Primary)
 - 4.5 meter (60° West -GOES-SA auto tracking)
 - 4.5 meter (90° West -GOES-test/spare)
 - 3.7 meter (offline spare)
- <u>X-Band</u>

WISCON

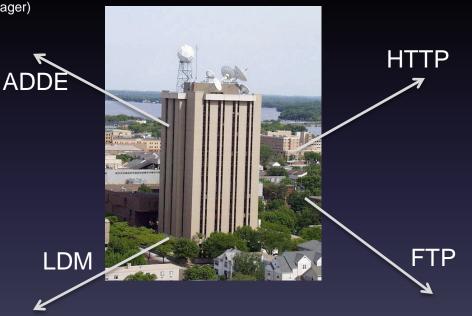
- 4.4 meter (Tracking EOS)
- X/L Band

SSEC Data Center Incoming Data

May, 2015

170+ GB/day via Satellite (C-band, L-band, X-band)

GOES satellites	~96 GB/day
International Geo Satellites	~360 GB/day
NOAA Polar	~27 GB/day
Landsat-8	~50 GB/day
Miscellaneous Polar and Non satellite	~85 GB/day
MODIS polar from NASA archive	~150 GB/day
NPP (VIIRS CrIS ATMS)	~1,800
GB/day	


2,300+ GB/day via Internet (ftp, LDM, ADDE, http)

WISCONSIN

SSEC Data Center Outgoing Data

Four primary methods of Data delivery 1.ADDE 2.HTTP 3.FTP 4.LDM (Unidata local data manager)

- On average over 890,000 ADDE transactions per day
- Over 2.2 TB data distributed per day via ADDE
- In addition over 1 TB data distributed via ftp, http, and ldm

Real-time Data

The SSEC Data Center receives data from 12 different geostationary satellites and 11 different polar orbiting satellites. Most data are available in near real-time via ADDE. Other methods of data access are available

upon request.

Geostationary Satellites received

- GOES-13 -East (75° W)
- GOES-15 -West(135°W)
- GOES-14 -Test (105° W)
- Meteosat-10 (0° E)
- Meteosat-7 (57°E)
- COMS (128° E)

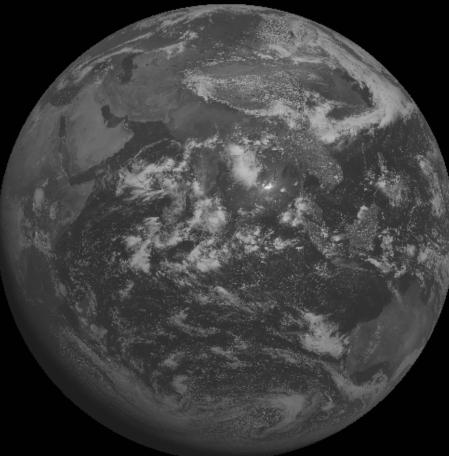
FY-2D (86° E) FY-2G (105° E) MTSAT-2 (145° E) Himawari-8 (140° Kalpana(74° E) INSAT-3D(83° E)

Geostationary Satellites Received at UW SSEC in 2015

	Sub-Point	Reception Method	Source	Latency	Daily Volume
GOES-13	75° West	L-Band	DB	<2 minutes	23 GB
GOES-14	105° West	L-Band	DB	<2 minutes	23 GB
GOES-15	135° West	L-Band	DB	<2 minutes	23 GB
Meteosat-10	o° East	C-Band Relay	DB Relay	<15 minutes	24 GB
Meteosat-7	57° East	Network Relay	NESDIS	~30 minutes	2 GB
Himawari-8	140° East	Network Relay	NOAA STAR	~ 10 minutes	300 GB
MTSAT-2	145° East	C-Band Relay	DB Relay	~ 6 minutes	12GB
Kalpana	74° East	Network Relay	ISRO	45-120 minutes	1.4 GB
Insat-3D	83° East	Network Relay	ISRO	45-180 min	19 GB
FY2D	86° East	Network Relay	ABOM	15-30 minutes	4.7 GB
FY2G	105° East	Network Relay	ABOM	15-30 minutes	4.7 GB
COMS	128° East	Network Relay	КМА	9-24 minutes	11 GB

Himawari-8

120012 HIMAWARI-8 3 4 JUN 15155 060000 00001 00001 42.0


Himawari-8

- Started receiving it routinely in March, 2015 via NOAA STAR
- HSF format data
- Archive on line March 2015 Present (~ 300 GB/day)
- Data are available via ADDE ~10 minutes after end of Image
- Receiving 10 minute Full Disks and 2.5 minute Target Sectors
- Operational after July 7, 2015

Insat-3D

12 0012 INSAT3D-IMG1 5 JUN 15156 050000 00001 00001 22.0

Insat-3D

- Started receiving it routinely in April, 2014
- HDF5 format data
- Archive on line April 2014 Present
- Data are available via ADDE 30 minutes to several hours after end of Image
- NASA LaRC funded ADDE server work. Should be in the first fasttrack release after Himawari fasttrack

Polar Satellites received

- NOAA-15
- NOAA-18
- NOAA-19
- METOP-A
- METOP-B

- Aqua
- Terra
- Suomi-NPP
- Landsat-8
- FY-3B
- GCOM-W1

Polar Satellites Received at UW SSEC in 2015

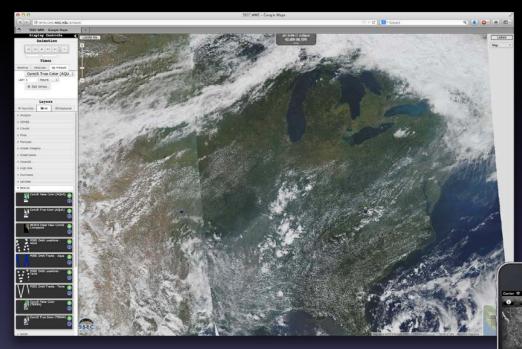
	Reception Method	Domain	ADDE Latency	Instruments	External Access
NOAA-15	C-Band relay, DDS	DB CONUS Global	DB <1 minutes after pass	AVHRR, AMSU, DCS->level-1	ADDE
				All other instruments Level-0	NA
NOAA-18	DB L-Band, C-Band relay, DDS	DB CONUS Global	DB <1 minutes after pass	AVHRR->level-1	ADDE
				All other instruments Level-0	NA
NOAA-19	DB L-Band, C-Band relay, DDS	DB CONUS Global	DB <1 minutes after pass	AVHRR->level-1	ADDE
				All other instruments Level-0	NA
Metop-A	DB L-Band, NOAA DDS	DB CONUS Global	CONUS <15 minutes after pass	AVHRR ->level-1	ADDE
				AVHRR, IASI	DB ftp (sips)
Metop-B	DB L-Band, NOAA DDS	DB CONUS Global	CONUS <15 minutes after pass	AVHRR ->level-1	ADDE
				AVHRR,IASI	DB ftp (sips)
Suomi-NPP	DB X/L Band, NASA Relay	DB CONUS Global	CONUS <15 minutes after pass	VIIRS	ADDE
				VIIRS,ATMS, CrIS	DB ftp (sips)
Aqua	DB X-Band, NASA Relay	DB CONUS Global	DB <15 minutes after pass	AIRS, MODIS -> Level-1	ADDE
				AIRS, MODIS	DB ftp (sips)
Terra	DB X-Band, NASA Relay	DB CONUS Global	DB <15 minutes after pass	MODIS -> Level-1	ADDE
				MODIS	DB ftp (sips)
Landsat-8	Network Relay (USGS)	CONUS	22-24 hours	Level-1	ADDE, WMS
Shizuku GCOM-W1	DB X-Band	CONUS	DB <1 min after pass	Level-0	SSEC ftp
FY-3C	DB X/L Band	CONUS	DB <1 min after pass	Level-0	SSEC ftp

V

NOAAPORT/Conventional Data

Model Output (GFS, RAP, etc)

NEXRAD


NWS Text output

Real-time Data Custom Products

SSEC RealEarth via WMS

Archive Data

As of May 2015, over 1,450 TBs online. (much of this is redundant). Grows approximately about ~150 TB/year

US Geostationary Satellites

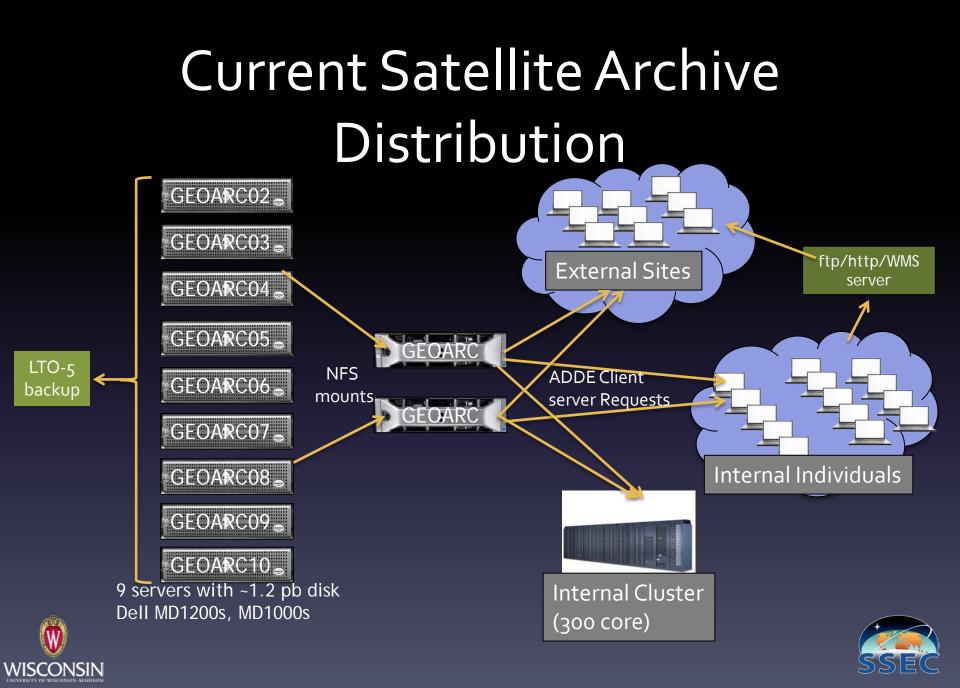
- GOES-8 through GOES-15 (1994-Present) (East, West, South America and test)
- GOES-1 through GOES-7 (1978-1996)
- SMS-1&2 <u>(1978-1981)</u>

Archive Data

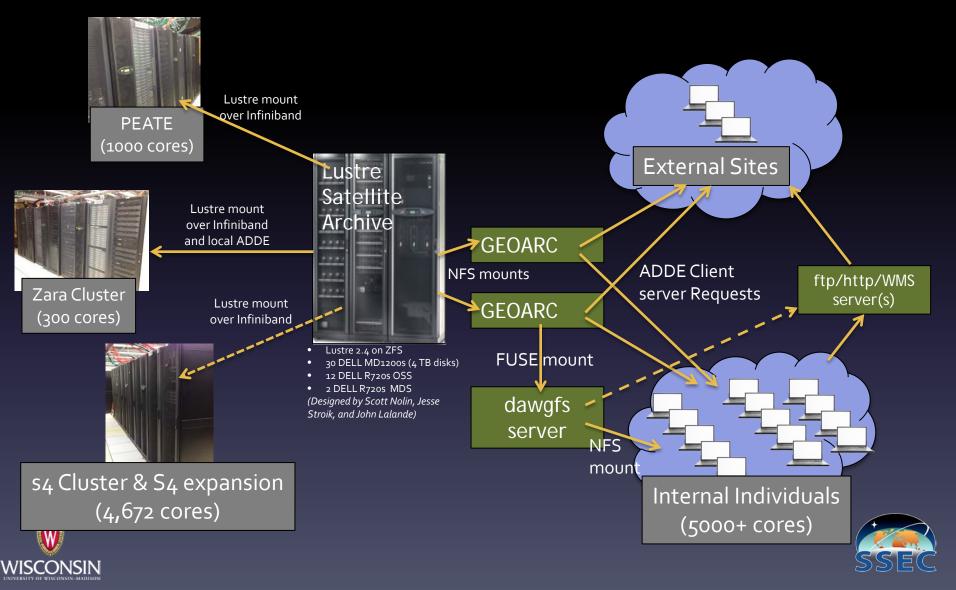
International Geostationary Satellites

- GMS/MTSAT <u>(1998-Present)</u>
- Meteosat/Meteosat IODC (1998-Present)
- FY₂ (2004-Present)
- Kalpana <u>(2005-Present)</u>
- Insat-3D (June 2014-Present)
- COMS (June 2012 Present)
- Himawari-8 (March 2015 Present)

Archive Data



NOAAPORT/Conventional Data

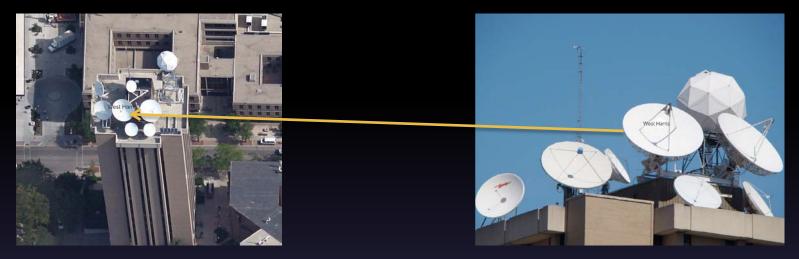

- Model Output (1996-Present)*
- In situ Point Observations (1976-Present)


New Satellite Archive Distribution

New Stuff

- Antenna Upgrade Summer 2015
 - New Feed
 - DVB-S2 demodulator
- 7.3 meter diameter

- ADDE access to ABI (with tracking)
- Level-2 products via CSPP GEO (ADDE access when available)
- Archive CADU CCSDS and level-1 netcdf



Archive level 0No ADDE service

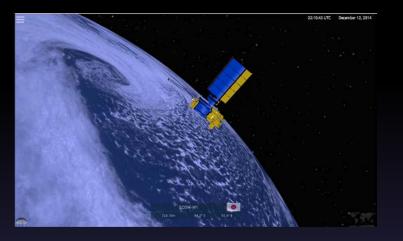
- Testing with GRB simulator now
- Developing new SDI for Ingest and serving

Event Handler

- Satellite Imagery Event Handler
- Provides users with notification of data availability
- Users will be able to subscribe and trigger processing based on event attributes
- Internal testing now. External access in 2016
- Utilizes RabbitMQ

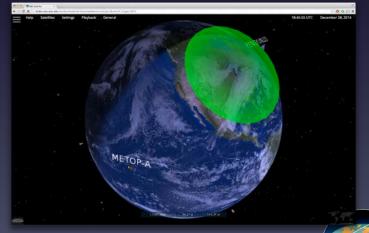
More methods of data access

- ADDE interface that returns netCDF
- McIDAS-X scripts in Python
- WMS server direct access to ADDE archive

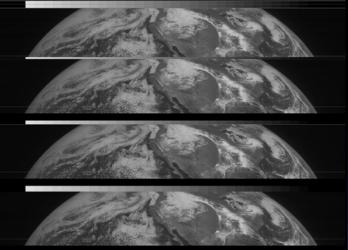

Opening up the archive

- Starting in 2011, active McIDAS-X sites have access to archive data older than the previous month (limit of 5 GB/month) per site.
- Beginning in 2016, <u>any</u> user will have access to ADDE data <u>older than 6 months</u> in our satellite archive up to 5 GB/day.

Visualizing Operational Leo and Geo Satellites in Real-time Utilizing WebGL



http://www.ssec.wisc.edu/datacenter/wxsats



WISCON

- SMS-1 & 2 data for May 1974 July 1981
- 1480 tapes

• Joint effort with NASA GSFC

