McIDAS - XCD

2015 McIDAS Users’ Group Meeting
Rewrite Team

- Kevin Baggett, Dan Forrest, Kevin Hallock, Jay Heinzelman, Dave Parker, Roseann Spangler, Becky Schaffer, Jerrold Robaidek, Clayton Suplinski
McIDAS-XCD

McIDAS X

Conventional Data Decoder

McIDAS-XCD files, decodes and indexes the NOAAPORT data stream into formats that can be served by McIDAS-X ADDE servers.

Output formats include McIDAS MD files, Text files, McIDAS GRID files, GRIB Version 1 and 2 files, NEXRAD files, and BUFR files.
NOAAPORT Data

- The NOAAPORT broadcast system provides a one-way broadcast communication of NOAA environmental data and information in near-real time to NOAA and external users. This broadcast service is implemented by a commercial provider of satellite communications utilizing C-band.
NOAAPORT Channels

The following NOAAPORT channels supply data to be decoded by McIDAS-XCD:

- **NCEP/NWSTG Channel (NWS Telecommunications Gateway)**
 - model output from the National Centers for Environmental Prediction (NCEP)
 - observations, forecasts, watches and warnings from NWS Forecast Offices
 - WSR-88D radar products
 - most observational data over North America

- **NCEP/NWSTG2 Channel**
 - supplements the NWSTG channel
NOAAPORT Data flow into SSEC

Users generally get NOAAPORT data in two ways:

1. Directly from DOMSAT (101° W)
2. Over the Internet via LDM
Why replace -XCD?

- Installation is difficult
- Upgrades are difficult
- System is overly complex, large learning curve for operators, and very large learning curve for new programmer
- System was written for a mainframe then ported to UNIX
- A powerful system is needed to run -XCD, otherwise data can be lost
- A data format change can mean bad data, and a fix can be difficult to implement, and is only effective for future data
Goals

- Replace 4 parts of -XCD filing and decoding:
 - GRIB (in testing) ✔
 - NEXRAD (in testing) ✔
 - Text (in testing) ✔
 - POINT/MD serving (in testing) ✔
- Utilize LDM direct filing ✔
- Reduce or eliminate compiled code ✔
- Remove legacy mainframe complexity ✔
- Utilize simple open-source database, SQLite ✔
- Create simple interface to pqact.conf and ldmd.conf to select and edit data to be filed (prototype)
- Match or exceed current filing and serving performance on existing hardware (close)
GRIB Data

- LDM files GRIB messages to a temporary directory
- A GRIB daemon written in Python watches for data, extracts information and files metadata into a SQLite database
- SQLite databases are separated by model and date
NEXRAD Data

- LDM files NEXRAD files into a directory structure similar to the existing -XCD Decoder
- Data served by NEXRAD server
Text Data

- LDM files data directly to disk
- A bash script running as a daemon watches for new data and files data into a daily *.XCD file as data comes in
 - New -XCD:
 - A concatenation of the text from the LDM stream with no stripping out of start of text, carriage return, line feed, end of text characters
 - Current -XCD:
 - Starts with the date of the file (in binary) and a total 80-byte header
 - Padding (spaces) in the file - to make 80 character lines
 - Start of text character 0x01 and end of text character 0x03 are included, and also 80-character padded. Carriage returns/line feeds stripped out
- The bash script extracts metadata for insertion into a daily SQLite database
- Text server queries SQLite databases to find data and return information to client
Point Data

- No MD files are created, but structure created on the fly when serving via ADDE
- PTLIST, PTDISP and PTCOPY get metadata from the SQLite database, then extract data from the *.XCD file created by the text filer
- Daily Station Database table (equivalent to STNDB.CORE) is created upon creation of the same SQLite database file that contains the daily text metadata table
- Station Database is retained for archived data
BUFR Data
(Binary Universal FoRmat)

- Filed directly using LDM
- No operational McIDAS-X server exists, only a prototype server
- Individual files can be loaded into McIDAS-V if they follow the standard BUFR tables
- Options are under discussion for upcoming increase in BUFR data volume
Local Data

- A couple -XCD sites have local (non-NOAAport) feeds of data
- We have contacted those sites in the past
 - So far, no core -XCD decoder dependencies are known i.e. sites have written their own decoders
- If there is local data that do depend on -XCD libraries, sites will be able to continue to use -XCD libraries, or may link to McIDAS-X libraries as needed. Contact Jerry Robaidek or Becky Schaffer if you have concerns.
Hardware Specs

- Requires more resources than hoped.
- Development hardware (~$4K in 2013)
 - 2- AMD Opteron 4180 CPUs - 6 core each
 - 32 GB ram
 - 7.2k rpm SAS disks
- Briefly tested GRIB on a sub $1K desktop
 - Intel i5-3570 3.4 GHz (quad core)
 - 16 GB memory
 - 7.2k rpm SATA drives (6 Gb/s)
Serving performance (Text)

- **TEXT lists**
 - **WXLIST** (no parameters)
 - Current -XCD: fastest=.081 s slowest=.177 s
 - New -XCD: fastest=.019 s slowest=.043 s
 - **WXLIST WMO=SA**
 - Current -XCD: fastest=.023 s slowest=.054 s
 - New -XCD: fastest=.987 s slowest=1.092 s
Serving performance (SFCRPT)

- SFCRPT
 - SFCRPT KGRB 9 (Current – XCD)
 - Fastest: ~0.030 s
 - Slowest: ~0.255 s
 - SFCRPT KGRB 9 (New – XCD)
 - Fastest: ~0.020 s
 - Slowest: ~0.037 s
Serving performance (PTLIST)

PTLIST

- PTLIST RTPTSRC/SFCHOURLY SEL="DAY 2015155; TIME 12; ID KMSN"
 - Current –XCD: fastest=.027 s slowest=.040 s
 - New –XCD: fastest=.025 s slowest=.051 s
- Remove ID: PTLIST RTPTSRC/SFCHOURLY SEL="DAY 2015155; TIME 12"
 - New –XCD slows to: ~0.584 s
- Remove ID and Time: PTLIST RTPTSRC/SFCHOURLY SEL="DAY 2015155"
 - New –XCD slows to: ~2.39 s
Server performance (GRID)

- **GRID lists (GRDLIST)**
 - RTGRIDS/GFS-USLC DAY=2015155 TIME=6:00 PAR=U NUM=10
 - Current -XCD: ~.85 s
 - New -XCD: ~.084 s

- **GRID display (GRDDISP)**
 - RTGRIDS/GFS-USLC DAY=2015155 TIME=6:00 PAR=U FHOUR=12 LEV=500
 - Current -XCD: ~.181 s
 - New -XCD: ~.165 s

- **GRID copy (GRDCOPY)**
 - RTGRIDS/NAM-USPS G/G.5700 DAY=2015155 TIME=0:00 PAR=T FHOUR=9 LEV=500
 - Current -XCD: ~.264 s
 - New -XCD: ~.160 s
Monitoring

- Command line
 - ldmadmin watch
 - gribadmin

- Graphical
 - HTML based
 - Does not require apache to be installed
Monitoring
Point Monitoring
GRIB Monitoring

<table>
<thead>
<tr>
<th>System</th>
<th>Status</th>
<th>Percentage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIB-1</td>
<td>Active</td>
<td>99.9%</td>
<td>03:01</td>
</tr>
<tr>
<td>GRIB-2</td>
<td>Active</td>
<td>99.8%</td>
<td>03:02</td>
</tr>
<tr>
<td>GRIB-3</td>
<td>Active</td>
<td>99.7%</td>
<td>03:03</td>
</tr>
<tr>
<td>GRIB-4</td>
<td>Active</td>
<td>99.6%</td>
<td>03:04</td>
</tr>
<tr>
<td>GRIB-5</td>
<td>Active</td>
<td>99.5%</td>
<td>03:05</td>
</tr>
<tr>
<td>GRIB-6</td>
<td>Active</td>
<td>99.4%</td>
<td>03:06</td>
</tr>
</tbody>
</table>

Current Time: 16:17 UTC, Last Updated: 59.30.39 UTC, Last Refresh: 18:17 UTC
Radar Monitoring
Packaging and installation

- -XCD replacement beta will be packaged with McIDAS-XCD 2015.1
 - User will have the choice to install either or both -XCD packages.

- Version 1.0 of the -XCD replacement will again be packaged with McIDAS-XCD 2016.1
 - Announcements of -XCD sunset dates will be announced at that time
Schedule

- All ingest and serving components are In testing
- Monitoring (nearly complete)
- Operations testing just beginning now
- Beta release summer 2015