SDI (Satellite Data Ingestor)

David Santek, Scott Mindock, Jerrold Robaidek

2016 McIDAS Users’ Group Meeting
16 November 2016
Overview

- SDI-104
 - Hardware configuration
 - Software configuration
 - Satellites signals
- Next generation SDI
 - Hardware Configuration
 - Software configuration
 - Satellites signals
SDI-104
Hardware Configuration

- PC/104-Plus
- LittleBoard 735
- 1 GHz CPU
- Disk: 160 Gbyte IDE
- Boot from compact flash
- Ethernet: Up to 1G/s
- Connectors for monitor and keyboard
- Mounted in 2U rack box
Hardware Configuration

Data rates tested up to 40 Mbits/s

- **Connectors:**
 - D15P
 - BNC

- **Configuration:**
 - Single ended (TTL)
 - RS422 (differential)

- **Data types**
 - NRZ-L, NRZ-M, NRZ-S
 - Jumper configurable
Software Configuration

- Knoppix 6.7.1 (Linux 3.0.41)
 - Up-to-date security
 - Compatible with old binaries
 - Can be configured as a standalone ingestor/server, or write data to an external disk (via NFS, for example)
Event Notification

- Notifications:
 - Image start
 - Image end (not for GVAR Imager)

- Three types of notifications:
 - Send an email
 - Write notification to a file (log messages)
 - Run a program or script
SDI-104 Status for Current Satellites

- **GVAR:** up-to-date for entire series

- **POES AVHRR:**
 - Up-to-date for all satellites
 - Unable to test direct reception, although a system is running at NWS Honolulu
SDI … the next generation
Introducing the SDI-GRB Appliance
SDI-GRB Hardware Configuration

- Dell PowerEdge R430 servers
- 12 core, 2.5 GHz Intel Xeon Processor
- 64 GB Ram
- 6 1-TB disks in RAID-6
- 10 Gb Ethernet and 1 GB Ethernet
 - No more clock and data
 - Everything over Ethernet
- No SSEC-designed hardware components
SDI-GRB Software Configuration

- CentOS 6.x
- Software and security updates via yum
 - Repository at UW SSEC
- McIDAS-X ADDE servers
- CSPP Geo ingest software
- RabbitMQ event notification
SDI-GRB Data Access

- ADDE
- SFTP
- Considering NFS
SDI-GRB Event Notification

- RabbitMQ Server
 - Start and End Events
 - No more email events
 - Remote workstations will be able to connect to the exchange server and receive desired events
SDI-GRB Appliance

GOES-R Rebroadcast

GRB

CADU
(Channel Access Data Unit)
Partial CCSDS packets

SFTP servers

NetCDF4

ABI (Advanced Baseline Imager)
GLM (Geostationary Lightning Mapper)
MAG (Magnetometer)
SEISS (Space Environment In-Situ Suite)
SUVI (Solar Ultraviolet Imager)
EXIS (Extreme Ultraviolet and X-ray Irradiance Sensors)

RT-CSPP
Based on NASA RT-STPS
Assembles and aggregates packets

CSPP GEO

GRB-R
GRB Reconstructor
 Writes NetCDF4 files and logs
 Publishs AMQP messages
→ RabbitMQ broker

→ ADDE servers

SDI

Archive
Processing
Users
SDI-GRB Supported Satellites

- **GOES-R series**
 - Ingest handled by CSPP Geo
 - Instruments
 - ABI (Advanced Baseline Imager)
 - Follow/tracking
 - GLM (Geostationary Lightning Mapper)
 - MAG (Magnetometer)
 - SEISS (Space Environment In-Situ Suite)
 - SUVI (Solar Ultraviolet Imager)
 - EXIS (Extreme Ultraviolet and X-ray Irradiance Sensors)
 - **No Level-2 processing on the SDI-GRB**

- **GVAR (under consideration)**
What is CSPP Geo?

- **Community Satellite Processing Package for Geostationary Data**
- NOAA-sponsored project at UW SSEC
- The software will be capable of processing GOES-R Rebroadcast (GRB) data
- Level 2 ABI products will be generated by algorithms developed by the GOES-R Algorithm Working Group
- Software is freely available; distributed as self-contained 64-bit Linux binary packages
CSPP Geo initial product suite

- Cloud mask
- Cloud phase
- Cloud type
- Cloud top height
- Cloud top temperature
- Cloud top pressure
- Cloud 11 µm emissivity
- Cloud visible optical depth
- Cloud effective radius
- Cloud liquid water path
- Cloud ice water path
- Probability of Marginal Visual Flight Rules (MVFR)
- Probability of Instrument Flight Rules (IFR)
- Probability of Low Instrument Flight Rules (LIFR)
- Low cloud geometric thickness
Questions?