
McIDAS-X & Python
The Powers that Drive the COD-NEXLAB Satellite Imagery

Mike Zuranski – Unidata

McIDAS Users’ Group 2023

09-26-2023

College of DuPage - NEXLAB

ABI Bands, RGB Products, GLM, Derived Products, Data & Mapping Overlays

College of DuPage – NEXLAB

Meteorology Faculty and Staff

Paul Sirvatka

Professor of Meteorology

Ron Stenz

Associate Professor of

Meteorology

Gilbert Sebenste

Support Analyst &

Product Developer

Evan Anderson

Web Developer &

Lab Manager

College of DuPage - NEXLAB

 Normal Day:

 12-15 Million Hits

 20-25 Thousand Unique Visitors

 750 GB – 1 TB of Data Out

 Busiest Day (so far) 8-29-2023:

 40 Million Hits

 57 Thousand Unique Visitors

 3 TB of Data Out

The College of DuPage – NEXLAB

Satellite Imagery Processing
A Behind-the-Scenes Look at How COD’s Satellite Imagery is Made

Overview

 16 ABI Bands, 8 RGB products, 10 L2 Derived products, 4 GLM products

 Nearly all this data comes from NOAAPort/SBN

 Exceptions:

 Gridded GLM (Unidata LDM feed)

 Select GRB imagery (Unidata ADDE)

 Almost everything is initiated by LDM

Overview

General Processing Workflow

LDM

goes-

restitch.py

Manager

Scripts

Runner

Scripts

LDM

To

IA-State

Archive

goes-info.py

Centralization

Of information

And functions

map_gen.py

Map overlay

generation

Automation

Local Data Manager (LDM)

 Nearly all data arrives via the LDM

 ABI tiles are stitched together using goes-restitch.py

 ABI and L2 data are saved to disk

 Their paths are passed to the manager scripts

 GLM data is saved to disk for use later, no actions taken

Automation

Manager Scripts

 manager.py, manager_derived.py and manager_remote.py

 These take the file name/path from goes-restitch.py

 Invokes the “runners” and enforces timeouts

 Invocation details and timeouts determined by product and scene

 Any runner script still running at the timeout

is culled to prevent runaway processing

Automation

Runner Scripts

 sat_runner.py, sat_runner_meso.py,

rgb_runner.py, sandwhich_runner.py, derived_runner.py

 These are the product generation scripts

 This is where McIDAS is invoked

 Includes handling for scenes, bands, products, projections, etc.

 Utilizes multiprocessing where possible

 Not generally possible for Full-Disk – many unique projections

Automation

ABI Imagery

1. Reproject if necessary

2. For Each sector and scale, make the base image

a) If CONUS or Mesoscale, make GLM imagery

b) If Mesoscale, handle 30-second imagery and new location mapping

c) If Full-Disk, make background images

3. Send images to IA-State for archival

CONUS Mesoscale Full-Disk Remote

One projection

GLM data

5-minute

Standard

No reprojection

GLM data

Possible 30-sec

Mode

Many projections

No GLM data*

Possible 5-min

Mode

One projection

GLM Data

Check each min for

new data

Automation

ABI Imagery – Remote Cropping

 We needed imagery over Canada, but SBN Full-Disk is too coarse

 Full-Disk GRB data is large!

 Solution: Take a cropping of GRB imagery remotely with IMGREMAP

 I download only what I need

 Faster to work with too

Automation

ABI Imagery – Remote Cropping

IMGREMAP RTGOESR/FDC02 GOESDATA.9902 PRO=LAMB 2 26 95 SSIZE=2000 10500 SIZE=3600 9400 LAT=50.2 82.5

Automation

GLM Products

 All GLM products are made as part of the ABI processing

 Each GLM product is initiated by an ABI band

 GLM products are overlays – Must make them transparent

 EU Tables:

 FED: L2-COD

 TOE and MFA: Derived from AWIPS color tables

 Different EU tables for reprojected imagery

 Accuracy not guaranteed

 Logarithmic scaling required to do make these products the right way

Automation

GLM Products

Reprojected CONUS Mesoscale

Automation

RGB Imagery

 Very similar structure and workflow as ABI imagery

 A single band will initiate a product

 E.g. Band-8 will start making Airmass imagery

 The rgb_runner will wait until all required bands are available

 Separate timeout for waiting on the other bands

 Mesoscale handling included in rgb_runner

 RGB recipes are stored in the rgb_runner as part of its code

 Different recipes for reprojected imagery

Iowa State Archive

Daryl Herzmann

 Began archiving in 2018

 All ABI and RGB products (except local sectors)

 Images are inserted into LDM after they are made

 Example URL:

https://mtarchive.geol.iastate.edu/2023/09/26/cod/sat/

 There will be a front-end… Someday™

Automation

Level-2 Derived Products

 Very similar structure and workflow as ABI imagery

 Some additional logic for specific products/domains

 E.g. SSTs, do we need that in the Midwest?

 These are all overlays – Must make them transparent

 These are not sent to IA-State for archival

Automation

Centralization – goes_info.py

 This is home for things referenced in multiple locations

 Sector information, projections, frame labels

 Common functions

 Examples of common functions

 insert_into_ldm()

 sueu()

 AREA file mapping logic

 Non-operational message overlays

Automation

Map Generation – map_gen.py

 This is the only script where maps are made

 This is also where map sets are defined

 Maps used vary depending on scale and location

 Most maps are pre-made once, mesoscale when moved to a new location

 Maps include roads, lakes & rivers, counties, CWAs, Lat/Lon, ARTCC boundaries

 CWA and ARTCC were made from GEMPAK maps

Optimizations, Tips and Tricks
I wanna go fast! - Ricky Bobby

Setting the McIDAS Environment in Python

 Set McIDAS environmental variables in the top level of the script…

 They will be used across the board from that point on.

String Formatting

It’s used everywhere!

 Parsing data file path/name so I don’t have to crack open the data

String Formatting

It’s used everywhere!

 Poll the remote ADDE server to check for new data

String Formatting

It’s used everywhere!

 Dynamically create McIDAS commands

Put key directories in a RAMDisk

 Python’s tempfile module uses /tmp

 This default can be changed

 Goes-restitch.py uses tempfile

 McIDAS reads/writes AREA files in ~/workdata

 This too can be changed

 Putting both of these into RAMDisk significantly reduces I/O overhead

 All these things can be lost, and that’s okay

Transparent Images with Python

Using Pillow (PIL)

Image File Sizes

 Base imagery saved with QUA = 90

 Background imagery with QUA = 70

 Archive imagery with QUA = 85 (Pillow)

 Thumbnails for mesoscale selection

 These gave about a 40% reduction in file sizes

 Web cache settings were also critical

Multiprocessing

Multiprocessing

Number of Cores Time (seconds)

1 24

2 15.5

4 9.2

6 7.2

8 6.7

10 5.83

12 5.8

14 5.2

16 5.15

20 4.9

24 4.35

28 3.6

32 3.2

Strategic Use of AREA Files

Now you know why I have those helper functions!

Matching Domains between

McIDAS and GEMPAK

 Convert center point & mag into lower-left and upper-right

Some Observations, Hindsights

And Final Thoughts

McIDAS Python Wrapper

 Works great, near-zero issues!

 It made all that automation possible

 Greatly simplifies the automation

 Easily capture STDOUT from McIDAS invocations

 Which can then be acted upon

McIDAS Python Wrapper

Some Ideas

 Return the imagery made as an object

 Return data values, coordinates and other information

 Return metadata (e.g. IMGLIST output)

 Returns as Xarray or Pandas dataframes

 Jupyter Notebook integration

 Tools for working with color bars, EU and SU tables

RGB Recipes Are a Pain

And I did it to myself

 Adding or modifying these recipes is cumbersome

 Extracting the actual McIDAS commands is very cumbersome

 What I would consider doing differently:

 Use .BAT files to store recipes

 Script option to print recipes in McIDAS format

McIDAS Map Files

 Somewhat common feedback: “Your maps are out of date.”

 Plenty of GIS data that could be useful as maps

 Forecast, Fire, Marine zones

 Canadian Forecast Regions

 International boundaries

 I’m making a shapefile -> map file utility

 Automatically updates to latest AWIPS Basemap

and TIGER road shapefiles

 Convert your own

 Reduction with Mapshaper

Final Thoughts

 McIDAS is the only way to batch process as much imagery as COD does

 Python made the automation approachable

 While I could have used .BAT files, the wrapper made things much easier

 Additional Python integrations would make McIDAS much more accessible

 And more in-line with current teachings

Thank You!

 SSEC, for McIDAS and the ongoing partnership with Unidata

 Unidata, for letting COD be a guinea pig & beta tester

 COD, for letting me brag about the operation I’m no longer a part of

 Daryl Herzmann, for archiving an insane amount of imagery (and many other things)

Questions?

