
McIDAS-X & Python
The Powers that Drive the COD-NEXLAB Satellite Imagery

Mike Zuranski – Unidata

McIDAS Users’ Group 2023

09-26-2023

College of DuPage - NEXLAB

ABI Bands, RGB Products, GLM, Derived Products, Data & Mapping Overlays

College of DuPage – NEXLAB

Meteorology Faculty and Staff

Paul Sirvatka

Professor of Meteorology

Ron Stenz

Associate Professor of

Meteorology

Gilbert Sebenste

Support Analyst &

Product Developer

Evan Anderson

Web Developer &

Lab Manager

College of DuPage - NEXLAB

 Normal Day:

 12-15 Million Hits

 20-25 Thousand Unique Visitors

 750 GB – 1 TB of Data Out

 Busiest Day (so far) 8-29-2023:

 40 Million Hits

 57 Thousand Unique Visitors

 3 TB of Data Out

The College of DuPage – NEXLAB

Satellite Imagery Processing
A Behind-the-Scenes Look at How COD’s Satellite Imagery is Made

Overview

 16 ABI Bands, 8 RGB products, 10 L2 Derived products, 4 GLM products

 Nearly all this data comes from NOAAPort/SBN

 Exceptions:

 Gridded GLM (Unidata LDM feed)

 Select GRB imagery (Unidata ADDE)

 Almost everything is initiated by LDM

Overview

General Processing Workflow

LDM

goes-

restitch.py

Manager

Scripts

Runner

Scripts

LDM

To

IA-State

Archive

goes-info.py

Centralization

Of information

And functions

map_gen.py

Map overlay

generation

Automation

Local Data Manager (LDM)

 Nearly all data arrives via the LDM

 ABI tiles are stitched together using goes-restitch.py

 ABI and L2 data are saved to disk

 Their paths are passed to the manager scripts

 GLM data is saved to disk for use later, no actions taken

Automation

Manager Scripts

 manager.py, manager_derived.py and manager_remote.py

 These take the file name/path from goes-restitch.py

 Invokes the “runners” and enforces timeouts

 Invocation details and timeouts determined by product and scene

 Any runner script still running at the timeout

is culled to prevent runaway processing

Automation

Runner Scripts

 sat_runner.py, sat_runner_meso.py,

rgb_runner.py, sandwhich_runner.py, derived_runner.py

 These are the product generation scripts

 This is where McIDAS is invoked

 Includes handling for scenes, bands, products, projections, etc.

 Utilizes multiprocessing where possible

 Not generally possible for Full-Disk – many unique projections

Automation

ABI Imagery

1. Reproject if necessary

2. For Each sector and scale, make the base image

a) If CONUS or Mesoscale, make GLM imagery

b) If Mesoscale, handle 30-second imagery and new location mapping

c) If Full-Disk, make background images

3. Send images to IA-State for archival

CONUS Mesoscale Full-Disk Remote

One projection

GLM data

5-minute

Standard

No reprojection

GLM data

Possible 30-sec

Mode

Many projections

No GLM data*

Possible 5-min

Mode

One projection

GLM Data

Check each min for

new data

Automation

ABI Imagery – Remote Cropping

 We needed imagery over Canada, but SBN Full-Disk is too coarse

 Full-Disk GRB data is large!

 Solution: Take a cropping of GRB imagery remotely with IMGREMAP

 I download only what I need

 Faster to work with too

Automation

ABI Imagery – Remote Cropping

IMGREMAP RTGOESR/FDC02 GOESDATA.9902 PRO=LAMB 2 26 95 SSIZE=2000 10500 SIZE=3600 9400 LAT=50.2 82.5

Automation

GLM Products

 All GLM products are made as part of the ABI processing

 Each GLM product is initiated by an ABI band

 GLM products are overlays – Must make them transparent

 EU Tables:

 FED: L2-COD

 TOE and MFA: Derived from AWIPS color tables

 Different EU tables for reprojected imagery

 Accuracy not guaranteed

 Logarithmic scaling required to do make these products the right way

Automation

GLM Products

Reprojected CONUS Mesoscale

Automation

RGB Imagery

 Very similar structure and workflow as ABI imagery

 A single band will initiate a product

 E.g. Band-8 will start making Airmass imagery

 The rgb_runner will wait until all required bands are available

 Separate timeout for waiting on the other bands

 Mesoscale handling included in rgb_runner

 RGB recipes are stored in the rgb_runner as part of its code

 Different recipes for reprojected imagery

Iowa State Archive

Daryl Herzmann

 Began archiving in 2018

 All ABI and RGB products (except local sectors)

 Images are inserted into LDM after they are made

 Example URL:

https://mtarchive.geol.iastate.edu/2023/09/26/cod/sat/

 There will be a front-end… Someday™

Automation

Level-2 Derived Products

 Very similar structure and workflow as ABI imagery

 Some additional logic for specific products/domains

 E.g. SSTs, do we need that in the Midwest?

 These are all overlays – Must make them transparent

 These are not sent to IA-State for archival

Automation

Centralization – goes_info.py

 This is home for things referenced in multiple locations

 Sector information, projections, frame labels

 Common functions

 Examples of common functions

 insert_into_ldm()

 sueu()

 AREA file mapping logic

 Non-operational message overlays

Automation

Map Generation – map_gen.py

 This is the only script where maps are made

 This is also where map sets are defined

 Maps used vary depending on scale and location

 Most maps are pre-made once, mesoscale when moved to a new location

 Maps include roads, lakes & rivers, counties, CWAs, Lat/Lon, ARTCC boundaries

 CWA and ARTCC were made from GEMPAK maps

Optimizations, Tips and Tricks
I wanna go fast! - Ricky Bobby

Setting the McIDAS Environment in Python

 Set McIDAS environmental variables in the top level of the script…

 They will be used across the board from that point on.

String Formatting

It’s used everywhere!

 Parsing data file path/name so I don’t have to crack open the data

String Formatting

It’s used everywhere!

 Poll the remote ADDE server to check for new data

String Formatting

It’s used everywhere!

 Dynamically create McIDAS commands

Put key directories in a RAMDisk

 Python’s tempfile module uses /tmp

 This default can be changed

 Goes-restitch.py uses tempfile

 McIDAS reads/writes AREA files in ~/workdata

 This too can be changed

 Putting both of these into RAMDisk significantly reduces I/O overhead

 All these things can be lost, and that’s okay

Transparent Images with Python

Using Pillow (PIL)

Image File Sizes

 Base imagery saved with QUA = 90

 Background imagery with QUA = 70

 Archive imagery with QUA = 85 (Pillow)

 Thumbnails for mesoscale selection

 These gave about a 40% reduction in file sizes

 Web cache settings were also critical

Multiprocessing

Multiprocessing

Number of Cores Time (seconds)

1 24

2 15.5

4 9.2

6 7.2

8 6.7

10 5.83

12 5.8

14 5.2

16 5.15

20 4.9

24 4.35

28 3.6

32 3.2

Strategic Use of AREA Files

Now you know why I have those helper functions!

Matching Domains between

McIDAS and GEMPAK

 Convert center point & mag into lower-left and upper-right

Some Observations, Hindsights

And Final Thoughts

McIDAS Python Wrapper

 Works great, near-zero issues!

 It made all that automation possible

 Greatly simplifies the automation

 Easily capture STDOUT from McIDAS invocations

 Which can then be acted upon

McIDAS Python Wrapper

Some Ideas

 Return the imagery made as an object

 Return data values, coordinates and other information

 Return metadata (e.g. IMGLIST output)

 Returns as Xarray or Pandas dataframes

 Jupyter Notebook integration

 Tools for working with color bars, EU and SU tables

RGB Recipes Are a Pain

And I did it to myself

 Adding or modifying these recipes is cumbersome

 Extracting the actual McIDAS commands is very cumbersome

 What I would consider doing differently:

 Use .BAT files to store recipes

 Script option to print recipes in McIDAS format

McIDAS Map Files

 Somewhat common feedback: “Your maps are out of date.”

 Plenty of GIS data that could be useful as maps

 Forecast, Fire, Marine zones

 Canadian Forecast Regions

 International boundaries

 I’m making a shapefile -> map file utility

 Automatically updates to latest AWIPS Basemap

and TIGER road shapefiles

 Convert your own

 Reduction with Mapshaper

Final Thoughts

 McIDAS is the only way to batch process as much imagery as COD does

 Python made the automation approachable

 While I could have used .BAT files, the wrapper made things much easier

 Additional Python integrations would make McIDAS much more accessible

 And more in-line with current teachings

Thank You!

 SSEC, for McIDAS and the ongoing partnership with Unidata

 Unidata, for letting COD be a guinea pig & beta tester

 COD, for letting me brag about the operation I’m no longer a part of

 Daryl Herzmann, for archiving an insane amount of imagery (and many other things)

Questions?

