McIDAS-X & Python

The Powers that Drive the COD-NEXLAB Satellite Imagery

College of DuPage unidara

Mike Zuranski - Unidata 09-26-2023

College of DuPage - NEXLAB

Mid-level Water Vapor Imagery for Continental US (GOES-East) COD Storm Chasing
- x

@ College of DuPage 28

P

ey

NEXLAB Satellite and Radar

S sgory:

Next Refresh - 04:34

@y TR

ABI Bands, RGB Products, GLM, Derived Products, Data & Mapping Overlays

College of DuPage - NEXLAB
Meteorology Faculty and Staff

i(111//
111V, \
117/ W\
y \

Paul Sirvatka Ron Stenz | Gilbert Sebenste Evan Anderson
Professor of Meteorology | Associate Professor of Support Analyst & Web Developer &
Meteorology Product Developer Lab Manager

I

College of DuPage - NEXLAB

» Normal Day:
» 12-15 Million Hits
» 20-25 Thousand Unique Visitors
» 750 GB - 1 TB of Data Out

» Busiest Day (so far) 8-29-2023:
» 40 Million Hits
» 57 Thousand Unique Visitors
» 3 TB of Data Out

GOES-16 "RGB-TRUE COLOR' 1.8 KM | VALID & JAN 23 13:0

VALID 29 AUG 23 18:01:17 UTC

The College of DuPage - NEXLAB
Satellite Imagery Processing

A Behind-the-Scenes Look at How COD’s Satellite Imagery is Made

Overview

» 16 ABI Bands, 8 RGB products, 10 L2 Derived products, 4 GLM products

» Nearly all this data comes from NOAAPort/SBN

» Exceptions:
» Gridded GLM (Unidata LDM feed)
» Select GRB imagery (Unidata ADDE)

» Almost everything is initiated by LDM

Overview
General Processing Workflow

e

.

~\

LDM

goes-
restitch.py

J

()

Manager
Scripts

-

_

goes-info.py

Centralization
Of information
And functions

()

Runner
Scripts

\. J

-

map_gen.py

Map overlay
generation

_

.

LDM

To
IA-State
Archive

Automation
Local Data Manager (LDM)

» Nearly all data arrives via the LDM
» ABI tiles are stitched together using goes-restitch.py

» ABIl and L2 data are saved to disk

» Their paths are passed to the manager scripts

» GLM data is saved to disk for use later, no actions taken

Powered By Q

unidaTa LDM

Automation
Manager Scripts

>

>

manager.py, manager_derived.py and manager_remote.py

These take the file name/path from goes-restitch.py

Invokes the “runners” and enforces timeouts

Invocation details and timeouts determined by product and scene

Any runner script still running at the timeout
is culled to prevent runaway processing

Automation
Runner Scripts

» sat_runner.py, sat_runner_meso.py,
rgb_runner.py, sandwhich_runner.py, derived_runner.py

» These are the product generation scripts
» This is where McIDAS is invoked

» Includes handling for scenes, bands, products, projections, etc.

» Utilizes multiprocessing where possible

» Not generally possible for Full-Disk - many unique projections

Automation
ABIl Imagery

1. Reproject if necessary

2. For Each sector and scale, make the base image

a) If CONUS or Mesoscale, make GLM imagery

b) If Mesoscale, handle 30-second imagery and new location mapping

c) If Full-Disk, make background images

3. Send images to |A-State for archival

CONUS Mesoscale Full-Disk Remote
One projection No reprojection Many projections One projection
GLM data GLM data No GLM data* GLM Data
5-minute Possible 30-sec Possible 5-min Check each min for
Standard Mode Mode new data

Automation
ABIl Imagery - Remote Cropping

» We needed imagery over Canada, but SBN Full-Disk is too coarse

» Full-Disk GRB data is large!

» Solution: Take a cropping of GRB imagery remotely with IMGREMAP
» | download only what | need

» Faster to work with too

Automation

ABIl Imagery - Remote Cropping

‘L'.A.

[»5;:4

o

-l
&
%:im,uw@l], oo

McIDRS

10001 GO

IMGREMAP RTGOESR/FDC02 GOESDATA.9902 PRO=LAMB 2 26 95 SSIZE=2000 10500 SIZE=3600 9400 LAT=50.2 82.5

Automation
GLM Products

» All GLM products are made as part of the ABI processing
» Each GLM product is initiated by an ABI band

» GLM products are overlays - Must make them transparent

» EU Tables:
» FED: L2-COD

» TOE and MFA: Derived from AWIPS color tables
» Different EU tables for reprojected imagery
» Accuracy not guaranteed

» Logarithmic scaling required to do make these products the right way

Automation

GLM Products

Mesoscale

Reprojected CONUS

Automation
RGB Imagery

>

>

>

>

Very similar structure and workflow as ABl imagery

A single band will initiate a product
» E.g. Band-8 will start making Airmass imagery
» The rgb_runner will wait until all required bands are available

» Separate timeout for waiting on the other bands

Mesoscale handling included in rgb_runner

RGB recipes are stored in the rgb_runner as part of its code

» Different recipes for reprojected imagery

lowa State Archive
Daryl Herzmann

>

>

Began archiving in 2018

All ABl and RGB products (except local sectors)

Images are inserted into LDM after they are made

Example URL:
https://mtarchive.geol.iastate.edu/2023/09/26/cod/sat/

There will be a front-end... Someday™

IEM

Automation
Level-2 Derived Products

» Very similar structure and workflow as ABI imagery

» Some additional logic for specific products/domains
» E.g. SSTs, do we need that in the Midwest?

» These are all overlays - Must make them transparent

» These are not sent to |A-State for archival

Automation

Centralization - goes_info.py

» This is home for things referenced in multiple locations

» Sector information, projections, frame labels

» Common functions

» Examples of common functions
» insert_into_ldm()
» sueu()
» AREA file mapping logic

» Non-operational message overlays

def sueu(band, meso
sueu

band
sueu

band [

meso.

sueu

sueu

sueu

Automation
Map Generation - map_gen.py

» This is the only script where maps are made
» This is also where map sets are defined

» Maps used vary depending on scale and location

» Most maps are pre-made once, mesoscale when moved to a new location

» Maps include roads, lakes & rivers, counties, CWAs, Lat/Lon, ARTCC boundaries
» CWA and ARTCC were made from GEMPAK maps

Optimizations, Tips and Tricks

| wanna go fast! - Ricky Bobby

Setting the McIDAS Environment in Python

» Set McIDAS environmental variables in the top level of the script...

» They will be used across the board from that point on.

ome

S .envi

05. |_'|-E't|'| . j.:jir" |. "/home™

viron[
riron|

riron|

:'ﬁﬂﬂ[

_WRITE"]

ICPATH"]

s .path.join{mchome, "workdata

os .pathsep.join(

os.path.

0s.path.join{mchome

os.path.join
os.path.join
os.path.join
os.path.join

os.path.join

on[“"PATH"] = os.pathsep.join([os.path.join(mchome, "bin’

CoATA"]

D"] os.pathsep.join(os.path. join{mchome,
join({mchome

mchome,
mchome,
mchome,
mchome,

mchome,

String Formatting
It’s used everywhere!

» Parsing data file path/name so | don’t have to crack open the data

def parse filename(filepath):
band = '82°
sat id = "GODES16
scene = "CONUS'
dateString = '26228381°
timeString = 225117
Expected format is as follows (data subdir + OSPO conv
GOES16/CONUS/Channel82/26226381/0R_ABI-L2-CMIPC-M6C82 G16 s282 2 £117€ e28228602251178 c26228602251178.nC
prodinfo = {}
prodinfo["args"] tilepath.replace(20
prodinfo["filename”] = prodinfo["args"].split("/")[-1]
prodinfo["filenamefull™] prodinfo["args"]
prodinfo["band™] prodinfo["filename”].split(” ")[1].split("C")[-1]
prodinfo["sat_id"] prodinfo["args"].split{"/")[&]
prodinfo["scena™] prodinfo["args"].split("/")[1]
prodinfo["dateString”] prodinfo["args™].split("/"}[3]
prodinfo["time5tring”] prodinfo["filename™].split{" ")[3]1I

String Formatting
It’s used everywhere!

» Poll the remote ADDE server to check for new data

;f meidas@mun: ~

result check output(['imglist.k', 'RTGOESR/FDC format(band)], stderr , timeout) .decode()
dateTimeStr " '.join(result.split)

pattern Wy AH 1 EM:%S
valit timestamp = int(time.mktime(time.strptime(dateTimesStr, pattern

String Formatting

It’s used everywhere!

» Dynamically create McIDAS commands

product ‘natcolor’:

areas = areas_from scale(["18@4', "1@85', 'l1eet'], dataSource)

areas = areas_from satellite(areas, satellite, 'RGB")

mcRemap . imgoper (™ 81 GOESDATA. SIZE=ALL SCALE=38 238 ® 255" .format(prefix=dsetPrefix, a3=areas)

reprojection:

mcRemap.imgremap(” 85 GOESDATA. " .format(prefix-dsetPrefix, al=areas|[@], proj=proj))
mcRemap . imgremap (" 83 GOESDATA. " . format(prefix=dsetPrefix, a2=areas|[1], proj=proj))
mcRemap. imgremap (" GOESDATA. GOESDATA. " .format{a3=areas » proj=proj))
dsets ["GOESDATA. " .format{al=areas »

"GOESDATA. " .format{a2=areas .

"GOESDATA. " .format(a3=areas]

dsets [

" format (prefix=dsetPrefix),
'.format (prefix=dsetPrefix),
"GOESDATA. " .format(a3=areas]

Put key directories in a RAMDisk

» Python’s tempfile module uses /tmp

» This default can be changed

» Goes-restitch.py uses tempfile

» McIDAS reads/writes AREA files in ~/workdata

» This too can be changed

» Putting both of these into RAMDisk significantly reduces |/0 overhead

» All these things can be lost, and that’s okay

Transparent Images with Python
Using Pillow (PIL)

img
img

|
ata

item[1] item[2]
a.append((2,8,8,8))

newData.append(item)
img.putdata(newData)
img.save(imageFileFinal,

Image File Sizes

» Base imagery saved with QUA =90

» Background imagery with QUA = 70

» Archive imagery with QUA = 85 (Pillow)

» Thumbnails for mesoscale selection

» These gave about a 40% reduction in file sizes

» Web cache settings were also critical

Multiprocessing

multiprocessing
numProcs

scaleTuple sector_scales():

scale, mag = scaleTuple

secTuples = list{conus sectors(scale).items())

pool = multiprocessing.Pool(processes=numProcs)

maps = pool.map async{process conus_sectors, secTuples)

results = maps.get(timeout)

TimeoutError:
logger.error(' Timeout reached processing conus sectors, closing pool...")
pool.close()

Exception e:

logger.error('Error in one of the CONUS children procs:')
logger.error(e)

Multiprocessing

Multiprocessing Efficiency Number of Cores Time (seconds)
Time to plot Band 02 across CONUS

25T : : : : : : 1 24
. , s
: 4 9.2
ED - ..
6 7.2
- 8 6.7
k=
E 15 SN dissssnnishsssssssssnss i 995555525558 i a9 525588 sanEniaasSa5s s Ean ridaSas 588 SanEanensdia G4 SaSEERERERE S84 Sas R SsnsERs s SaasasansEadh saEaaE 10 5.83
@
" 12 5.8
£
10 N 14 5.2
16 5.15
20 4.9
5 Sflsdcsssnminisssssssss e s saS5a555 5555 B R SSSSPESEEEE SRR RN SSSEER0 SR R T
: : : : : ; 24 4.35
T T T T T T T 28 3-6
0 5 10 15 20 25 30

Number of Cores 32 3.2

Strategic Use of AREA Files

ABT Bands:
2Bl - Lxx16
.xXx28 Reserved for map overlay generation

ABI Bands - GOES-16
Cloxx RGE Products - GOES-16

L 2axx L2 Derived Products - GOES-16
.dxxx ABI Bands - GOES-17

CAxx RGE Products - GOES-17

RGE Products:

.5xxx L2 Derived Products - GOE5-17 .xxB1 - .xx83 Airmass
.7xxx RESERVED - Files made/used for other projects .xx84 - .xxB6 Natural Color
.Bxxx lLegacy products (old 88@x608 format and such) .xx@7 - .xx12 True Color

2x13 - Lxx15 Nighttime Micro Physics
2x16 - Lxx18 Simple Water Vapor

Dev products (test/volatile data, not for operational usage)

xBxx CONUS 2x19 - xx23 Day (Cloud Phase
xlxx MESOL L2l - xx26 Natural Color - Fire
LK2xx MESO2 2T - Lxw29 Sandwich

I E e FullDisk
Ll PRREGI
.x5xx RTGOESR_Canada

xx31 - .xx47 True Color (Advanced)

L2 Derived Products:

.xbxx MESO3 Ll TPW - Total Precipitable Water
XTxx MES04| . xx@2 DSI - CAPE
.x8xx HIREGI . xxB3 ACHA - Cloud Top Height
AKREGI B S5T
. xxE5 LST
. xxB86 ADP - Smoke
. .xxB7 ADP - Dust
Now you know why | have those helper functions! [e
. XxB9 RRQPE
.xx18 ACHT
Lxx11 GLM_FED
Lxx12 GLM TOE

Ll GLM_MFA

Matching Domains between
McIDAS and GEMPAK

» Convert center point & mag into lower-left and upper-right

REM %1 Dataset to plot
REM %2 Lat

REM %3 Lon

REM %4 Mag

REM %5 Name of Sector

IMGDISP %1 1 LAT=%2 %3 MAG=%4

REM ECHO %5
ECHO %SECNAMEZ%
PC T %00 1

=

PC T 1 16080

=

Some Observations, Hindsights
And Final Thoughts

McIDAS Python Wrapper

» Works great, near-zero issues!
» It made all that automation possible
» Greatly simplifies the automation

» Easily capture STDOUT from McIDAS invocations
» Which can then be acted upon

McIDAS Python Wrapper
Some ldeas

» Return the imagery made as an object

» Return data values, coordinates and other information
» Return metadata (e.g. IMGLIST output)

» Returns as Xarray or Pandas dataframes

» Jupyter Notebook integration

» Tools for working with color bars, EU and SU tables

RGB Recipes Are a Pain
And | did it to myself

» Adding or modifying these recipes is cumbersome
» Extracting the actual McIDAS commands is very cumbersome

» What | would consider doing differently:

» Use .BAT files to store recipes

» Script option to print recipes in McIDAS format

McIDAS Map Files

078100

» Somewhat common feedback: “Your maps are out of date.” Fort McMurray

073200 Peace River ®
L 078200
079200

» Plenty of GIS data that could be useful as maps IR e sask.

077100 077200

» Forecast, Fire, Marine zones

0768100 o7s100 Cold Lake
077200
078200

» Canadian Forecast Regions

Jasper. o amonton kloydminster

» International boundaries m:oo \mo 076800 | 75300

071200 .R;dm?oeer\/'j_
» I’'m making a shapefile -> map file utility T e asoo . A

. B.C. Banﬁl Caigary
» Automatically updates to latest AWIPS Basemap o T M v
and TIGER road shapefiles Medicine Hat
073200
073100 z
» Convert your own { 1200 Le‘“'{:“:gjoo

» Reduction with Mapshaper

Final Thoughts

>

>

>

>

McIDAS is the only way to batch process as much imagery as COD does
Python made the automation approachable
While | could have used .BAT files, the wrapper made things much easier

Additional Python integrations would make McIDAS much more accessible

» And more in-line with current teachings

Thank You!

>

>

>

>

SSEC, for McIDAS and the ongoing partnership with Unidata
Unidata, for letting COD be a guinea pig & beta tester

COD, for letting me brag about the operation I’m no longer a part of

Daryl Herzmann, for archiving an insane amount of imagery (and many other things)

Questions?

