McIDAS-V Demo

Bob Carp 2025 McIDAS Users' Group Meeting

Space Science and Engineering Center University of Wisconsin-Madison

Outline

- McIDAS-V introduction
- Kanlaon Volcano VIIRS RGB, GEMS, TEMPO, HYDRA2
- Cyclone Zelia VIIRS Rayleigh Correction, MIRS, Sandwich RGB, HYDRA2
- 3D Gridded display over Hurricane Milton
- Additional enhancements and new functionality in McIDAS-V
- How to download the 2.0beta1 nightly build

Introduction

- McIDAS-V is composed primarily of two windows, the Main Display window and the Data Explorer window.
- Main Display window Where most displays appear
- Data Explorer window What and how to display.
 - Data Sources tab Select the type of data
 - Field Selector tab Select the variable and display type
 - Layer Controls tab Modify the display

Main Display Window

Data Explorer Window Data Sources Tab

🍯 McIDAS-V - Data Explorer						- 0	\times
Data Sources	Field Selector	Cayer Controls					
 Satellite Imagery HYDRA Orbit Tracks Radar Point Observations Gridded Data Local Remote Front Positions General Under Development 	Server; Image Type, Times:	adde.ucar.edu 2. CONUS - GOES-East CONUS all bands Relative Absolute Number of times: 5 6.	5.	Dataset: EAST 3.		Connect 4.	
		Match Time Driver					
	Navigation:	Default 👻					
	Preview:	Create preview image				_	
					Press "Add Source" to load	the selected image	data
					0 2 🤇	O Add Source	\supset

Data Explorer Window Field Selector Tab

🍯 McIDAS-V - Data Explorer		- 0	×
Data Sources	Field Selector Q Layer Controls		
Data Sources:	Fields	S Displays	
Data Sources: Formulas CONUS - GOES-East CONUS	Fields • • 0.47 um VIS Daytime aerosols over land • 0.64 um VIS Clouds,fog,insolation,wind • 0.86 um NIR Veg/burn scar,aerosols,wind • 1.37 um NIR Cirrus clouds • 1.6 um NIR Cloud phase,snow • 2.2 um NIR Land/cloud,vegetation,snow • 3.9 um IR Sfc,cloud,fog,fire,wind • 6.2 um IR Hi-level WV,wind,rainfall • 6.9 um IR Mid-level WV,wind,rainfall • 7.3 um IR Lower-level WV,wind,sO2 • 8.4 um IR Total WV cloud phase,dust • 9.6 um IR Total WV cloud phase,dust • 9.6 um IR Surface and cloud • Brightness 1. • Radiance • Scaled counts • Temperature • 11.2 um IR Imagery,SST,clouds,rainfall • 12 um IR Imagery,SST,clouds,rainfall	Displays Imagery Image Display 2. Image Display Over Topography Image As Topography Image Contours Times Region Advanced 3. Coordinate Type: Latitude/Longitude Location: Center Lat: 30.1 Lon: -87.1 (*) Image Size: 1500 X 2500 (**) Raw size: 1500 X 2500 Magnification: 4. Line Mag=1 Res=	=2.0 km
	 12.3 um IR Total water,ash,SST 13.3 um IR Air temp,cloud hgt and amt Imagery 	Ele Mag=1 Center Lat: 30.0761 Lon: -87.087 Upper Left Lat: missing Lon: missing Approx. Area: Upper Right Lat: 51.3746 Lon: -52.911 Lower Left Lat: 15.1041 Lon: -113.07 Lower Right Lat: 14.6227 Lon: -61.893 Freate Display 5.	2.0 km

Data Sources Window Layer Controls Tab

🍯 McIDAS-V - Data Explore	er					_		×		
Data Sources	Field Selector	Call Layer Controls								
□⊕untitled>Panel 1	<u>File Edit View H</u>	elp								
Default Background Maps	Settings Histog	ram								
GOES-East - 10.3 um IR S. 🕨		1								
	Color <u>Lable</u> :	ABI_IR_11-14	255							
	Vortical Desition	\bigtriangledown)							
	verucai Position.	Bottom	Middle	Тор						
		▽		·						
	Pixel Sampling:	0	5	10						
		·	•							
	Texture Quality:	Low	Medium	High						
	<u>ት ጫ የ</u> ቆካ									
						_				

Display

Space Science and Engineering Center University of Wisconsin-Madison

Example 1: Kanlaon Volcano Steps to Create to Follow

Space Science and Engineering Center University of Wisconsin-Madison

Panel 1 – Ash RGB

• Load VIIRS data containing M14, M15, and M16 through the JPSS Chooser. In the Field Selector:

Panel 2 – GEMS SO2

 Load GEMS data through the General>Files/ Dir chooser as a gridded data source. Field Selector:

Panel 3 – TROPOMI SO2

 Load TROPOMI data through the General>Files/ Dir chooser as a gridded data source. Field Selector:

Add HYDRA2 Button to Main Display

 From the Main Display window, select Edit > Preferences. Add HYDRA2 button to toolbar:

Space Science and Engineering Center University of Wisconsin-Madison

Start HYDRA2

• From the Main Display window, click the HYDRA2 button.

S McIDAS-V									
<u>F</u> ile	<u>E</u> dit <u>D</u> isp	olay <u>T</u> oo	ls H <u>i</u> story	<u>B</u> undles	<u>W</u> indow	<u>H</u> elp		1.	
	5			S (🗐 🛒 🔁 Current WX	

🝯 HYDRA Control Window		_	×
File Edit Tools Settings			
Datasets Combinations			
	Display New 🔻 Replace 🔻		

Load CrIS Data in HYDRA2

• Start HYDRA2. In the HYDRA Control Window, select File>Files. Select file. Click Display

Subtract 2 Channels to Show SO2

 In the HYDRA display window, choose Tools>Four Channel Combine. Enter 1345.0-1325.0 and click Create. Channel 1345 is SO2 sensitive, 1325 is not. Both channels are similarly sensitive to water vapor.

Display Channel Subtracted Data

 In the HYDRA Control Window, display the Combination in a new window. The dark area circled represents likely SO2 detection.

Example 2: Tropical Cyclone Zelia Steps to Create to Follow

Space Science and Engineering Center University of Wisconsin-Madison

Panel 1 – Rayleigh-Corrected RGB

• Load VIIRS data containing M3, M4, M5, and M15 through the JPSS Chooser. In the Field Selector:

Space Science and Engineering Center University of Wisconsin-Madison

Panel 1 – Water Vapor Profile

• Use the same VIIRS file from the RGB. In the Field Selector (min/max=180/270; VIS=M4Rad; IR=M15T):

🍯 McIDAS-V - Data Explorer			– 🗆 X									
Data Sources	Field Selector Q Layer Controls											
Data Sources:	Fields	۹,	Displays									
Formulas) 1.	- CLAVRx Functions		P-Imagery									
VIIRS 2025-02-14 05:19:45 G	🗠 Image Filters		- 3 Color (RGB) Image									
NPR-MIRS-SND v11r9 npp	 JPSS Functions (Under Development) 		(RGB Composite) 3.									
	- VIIRS EDR		- 3 Color (RGB) Image over topography									
	► Indices		Omni Control									
	♀ − RGBs											
	- f(x) VIIRS EDR Ash RGB											
	- f(x) VIIRS EDR Blowing Snow RGB											
	- f(x) VIIRS EDR Cloud Phase RGB											
	- f(x) VIIRS EDR Day Cloud Phase Distinction I-Band RGB											
	- J(X) VIRS EDR Day Cloud Phase Distinction M-Band RGE	5										
	- J(8) VIIRS EDR Day Cloud Type RGB											
	(ii) VIIRS EDR Day Fire RGB											
	(ii) VIIRS EDR Day Snow-Fog I-Band RGB											
	(iii) VIIRS EDR Day Snow-Fog M-Band RGB											
	(iii) VIIRS EDR Dust RGB											
	(iii) VIIRS EDR Fire Temperature RGB											
	(%) VIIRS EDR Natural Color I-Band RGB											
	(%) VIIRS EDR Natural Color M-Band RGB											
	(v) VIIRS EDR NGPS Microphysics M and FBand RGB											
	(v) VIIRS EDR NGPS Microphysics M-Band RGB											
	WWIRSEDR Sandwich DOD											
			h									
	Create Displa	y	≥4.									

Panel 2 – GEMS SO2

 Load GEMS data through the General>Files/ Dir chooser as a gridded data source. Field Selector:

Start HYDRA2

• From the Main Display window, click the HYDRA2 button.

S McIDAS-V									
<u>F</u> ile	<u>E</u> dit <u>D</u> isp	olay <u>T</u> oo	ls H <u>i</u> story	<u>B</u> undles	<u>W</u> indow	<u>H</u> elp		1.	
	5			S (🗐 🛒 🔁 Current WX	

🝯 HYDRA Control Window		_	×
File Edit Tools Settings			
Datasets Combinations			
	Display New 🔻 Replace 🔻		

Load CrIS Data in HYDRA2

• Start HYDRA2. In the HYDRA Control Window, select File>Files. Select file. Click Display

Convolve CrIS Bands

 In the HYDRA display window, choose Tools>Convolve. Enter a range of 1517.5 to 1726.875 and click Create. This range can be used to simulate ABI upper-level water vapor band 8.

🍯 Convolve	_		\times	
1517.5 1726.875	Kernel	Create	Dis	play

Display Convolved CrIS Data

 In the HYDRA Control Window, display the Combination in a new window. After inverting the enhancement, this looks like ABI band 8.

Other New HYDRA2 Functionality

- In the MultiSpectral display, probes can be added over the highest and lowest pixel locations.
- The Transect Display is now possible than VIIRS data.
- Multi-variate transect displays are now possible.
- Scatter Analysis displays can be colored by density.
- Note The goal is to have HYDRA2 replace the existing HYDRA in McIDAS-V.

Example 3: Hurricane Milton GFS Data Steps to Create to Follow

Space Science and Engineering Center University of Wisconsin-Madison

Layer 1 – MSLP

 Add forecast model data through the Gen>Files/Dir or Gridded>Remote chooser. In the Field Selector:

Layer 2 – 3D Grid Trajectory

• Display Grid 3D Trajectory data. In the Field Selector:

🍯 McIDAS-V - Data Explorer		- 🗆 X
Data Sources	Field Selector Q Layer Controls	
Data Sources:	Fields show variables Q Displays	
Formulas	- 3D grid	
10 files	• Cloud 3D Grid Trajectory 2.	
	Forecast Radar Imagery 30 Grid Streamline	
	Mass JD Grid Trajectory Colored by Spec	ed
	Moisture JD Grid Streamline Colored by Spontage	eed
	Momentum Trajectory Colored by Another Para	ameter
	Orived Streamline Colored by Another Pai	rameter
	- 100 3D Flow Vectors (from u-component_of_wind_isobaric & v-component_of_	
	- 7(*) 3D Flow Vectors (from u-component_of_wind_isobaric & v-component_of_	
	7(3) 3D True Wind Vectors (from u-component_of_wind_isobaric & v-componen	ng
	- 700 3D True wind vectors (from u-component_of_wind_isobarc & v-componen	Use Default 💌
	2024-10-08 00:00:00Z	
	 Associate vorticity (from u-component_of_wind_neight_above_ground & v-component_of_wind_neight_above_ground & v-component_of_wind_neight_above_	
	We Absolute Voltight (from the component of wind, solarity) untiple uniform 2024-10-08 12:00:007	
	- /// Absolute volicity (inom d-component_or_wind_potential_volicity_sunde a	
	100 A Geostrophic Wind (from Licomannant of wind isobaric vicomannant of 2024-10-09 00:00:00Z	
	1/20 A Generation bic Wind Vietners (from Learning and a final day in the sharing very and a start of wind is sharing very and a start of wind very and start of wind very and a s	
	2024-10-09 12:00:00Z	
	100 Flow Vectors (from L-componentfwind height above ground & v-comp	
	10) Flow Vectors (from u-component of wind isobatic & v-component of wind	
	- f(x) Elow Vectors (from u-component of wind potential vorticity surface & v-cd 2024-10-10 06:00:00Z	
	- f(x) Grid 2D Trajectory (from u-component of wind altitude above msl & v-co	
	- f(x) Grid 2D Trajectory (from u-component of wind height above ground & v-	
	- 1(*) Grid 2D Trajectory (from u-component of wind isobaric & v-component of	
	- 1(%) Grid 2D Trajectory (from u-component_of_wind_potential_vorticity_surface	
	1 Ka Grid 3D Trajectory (from u-component_of_wind_isobaric & v-component_of	
	the standard of balance and the standard below the standard of block of the standard of block of the	
	Create Display 3.	

Layer 2 – 3D Grid Trajectory

• Change some of the display characteristics. In the Layer Controls:

3D Grid Trajectory	_		\times
<u>File Edit View H</u> elp			
Controls			
Trajectory Start Level: 100000	} • :	1.	
Trajectory Initial Area: O Points	:		
CloseF	olygon:		
⊖ Rectar	ngle:		
Initial Area Skip Factor: 0 💷			
Backward trajectory:			
Create Trajectory 2.	Ж)	
Trajectory Form: Cylinder	≥3.		
Length Offset: 1.0 🛥 4 A	rrow		
Color: white 🔻 5	-		
Line Width/Point Size: 1			

Layer 3 – Wind Speed Isosurface

 Display an isosurface of 3D wind speed data. In the Field Selector:

🍯 McIDAS-V - Data Explorer														_		×
Data Sources	Field Se	lector 🔯 Laye	er Controls													
Data Sources:	Fields	show variables					a	N	Display	s						
Formulas		- f(x) Grid 2D Tr	ajectory (from	n u-component_	of_wind_isob	oaric & v-co	mponent_of		9-3D	Surface	_					
10 files		- f(x) Grid 2D Tr	ajectory (from	n u-component_	of_wind_pote	ential_vortio	city_surface		-	Isosurface	2.					
		- J(X) Grid 3D Tr	ajectory (from	n u-component_	of_wind_isob	paric & v-co	mponent_of			Isosurface	colored by	y another parameter				
		- J(X) Grid 3D Tr	ajectory (from	n u-component_	of_wind_isob	paric & v-co	mponent_of			Contours (Over Topog	graphy				=
		- f(x) Horizontal	Advection (fro	om u-componer	nt_of_wind_all	titude_abo	ve_msl & v-o			Color-Fille	d Contours	s Over Topography				
		- J(X) Horizontal	Advection (fro	om u-componer	nt_of_wind_he	eight_abov	e_ground &			Color-Sha	ded Image	Over Topography				
		(v) Horizontal	Advection (in	om u-componer	it_or_wind_is	obaric & v-	component_			Color-Sha	ded Param	neter As Topography				
		(%) Horizontal	Advection (in	from u componen	n_or_wind_pd	otential_vol	nicity_sunac			Contoured	Paramete	r As Topography				-
		(v) Horizontal	Divergence (from u compon	ent_of_wind_	annuue_an	ove_msra		Time	Laval	Perior	Data Sampling				
		- f(x) Horizontal	Divergence (from u-compone	ent_of_wind_i	isobaric &			- me	Lever	Region	Data Sampling				
		- f(x) Horizontal	Divergence (from u-compone	ent_of_wind_	notential v	vorticity surf:						Use	Defaul	t	-
		- 1(%) Horizontal	Flux Diverger	nce (from u-com	ponent of w	ind altitud	le above m		2024-'	10-08 00:0	0:00Z					
		- f(x) Horizontal	Flux Diverger	nce (from u-com	ponent of w	ind height	t above gro		2024-'	10-08 06:0	0:00Z					
		- f(x) Horizontal	Flux Diverger	nce (from u-com	ponent of w	ind isoba	ric & v-comp		2024-'	10-08 12:0	0:00Z					
		- f(x) Horizontal	Flux Diverger	nce (from u-com	ponent of w	ind potent	tial vorticity		2024-'	10-08 18:0	0:00Z					
		- f(x) Relative Vo	orticity (from u	I-component_of	wind_altitud	le_above_r	msl & v-com		2024-'	10-09 00:0	0:00Z					
		- f(x) Relative Vo	orticity (from u	I-component_of	 [_wind_height	t_above_g	round & v-co		2024-'	10-09 06:0	0:00Z					
		- f(x) Relative Vo	orticity (from u	-component_of	_wind_isobar	ric & v-com	ponent_of_v		2024-'	10-09 12:0	0:00Z					
		- f(x) Relative Vo	orticity (from u	i-component_of	_wind_potent	tial_vorticity	y_surface &		2024-'	10-09 18:0	0:00Z					
		- f(x) Speed (fro	m u-compon	ent_of_wind_alt	titude_above_	_msl & v-co	omponent_o		2024-'	10-10 00:0	0:00Z					
		- f(x) Speed (fro	m u-compon	ent_of_wind_he	eight_above_c	ground & v-	-component		2024-'	10-10 06:0	0:00Z					
		1. XII Speed (fro	m u-compon	ent_of_wind_is	obaric & v-con	mponent_o	of_wind_isob									
		- f(x) Speed (fro	m u-compon	ent_of_wind_po	otential_vortici	ity_surface	& v-compon									
		- f(x) True Wind	vectors (from	n u-component_	of_wind_altitu	ude_above	_msl & v-cor									
		- f(x) True Wind	vectors (from	n u-component_	of_wind_heig	ht_above_	ground & v-c									
		- f(x) True Wind	vectors (from	n u-component_	of_wind_isob	oaric & v-co	mponent_of	- 1								
	•	(/v) True Mind	un atoro (from	u component	of wind note	untial wartie	hitu ourfooo -		L							
						¢	Create Di	ispla	y)	3.						

Layer 3 – Wind Speed Isosurface

 Change some of the display characteristics. In the Layer Controls Select Edit>Change Display Unit to set the unit to mi/hr.

Additional New Functionality in McIDAS-V

- More RGB and channel combos for different instruments, including the NGFS RGB for VIIRS/ABI.
- ProbSevere data can be displayed via local and remote data.
- Layer label updates to make things more consistent and descriptive across data types.
- New enhancements.
- Ability to specify lat/lon corners of wireframe box.
- Faster movie capturing.

Additional New Functionality in McIDAS-V (Continued)

- Updated and improved location labels.
- Polling notifications When new data is available a popup window will appear letting the user know.
- Globe rotation is smoother, especially at low speeds.
- In scripting, ADDE Imagery can now be centered over a station instead of a lat/lon or line/element point.
- Many other bug fixes and enhancements.

Nightly Build

 Much of the new functionality is currently in the 2.0beta1 nightly build. This is automatically created every day with all of the previous day's programming changes, and therefore not everything has been fully tested. To download the nightly, go to:

https://www.ssec.wisc.edu/mcidas/software/v/unstable/

• The username and password are both: mcv

