

McIDAS-V Tutorial
An Introduction to Jython Scripting
updated July 2016 (software version 1.6)

McIDAS-V is a free, open source, visualization and data analysis software package that is the next generation in SSEC's 40-year history of

sophisticated McIDAS software packages. McIDAS-V displays weather satellite (including hyperspectral) and other geophysical data in 2- and 3-

dimensions. McIDAS-V can also analyze and manipulate the data with its powerful mathematical functions. McIDAS-V is built on SSEC's VisAD

and Unidata's IDV libraries. The functionality of SSEC's HYDRA software package is also being integrated into McIDAS-V for viewing and

analyzing hyperspectral satellite data.

McIDAS-V version 1.2 included the first release of fully supported scripting tools. Running scripts with McIDAS-V allows the user to automatically

process data and generate displays for web pages and other environments. The McIDAS-V scripting API is written in java implementation of python

called Jython. The McIDAS-V scripting library system library is still under development and new tools will be added with future releases of

McIDAS-V. You will be notified at the start-up of McIDAS-V when new versions are available on the McIDAS-V webpage -

http://www.ssec.wisc.edu/mcidas/software/v/.

If you encounter any errors or would like to request an enhancement, please post questions to the McIDAS-V Support Forums -

http://www.ssec.wisc.edu/mcidas/forums/. The forums also provide the opportunity to share information with other users.

This tutorial assumes that you have McIDAS-V installed on your machine, and that you know how to start McIDAS-V. If you cannot start McIDAS-

V on your machine, you should follow the instructions in the document entitled McIDAS-V Tutorial – Installation and Introduction. More training

materials are available on the McIDAS-V webpage and in the “Getting Started” chapter of the McIDAS-V User's Guide, which is available from the

Help menu within McIDAS-V.

Terminology

There are two windows displayed when McIDAS-V first starts, the McIDAS-V Main Display (hereafter Main Display) and the McIDAS-V

Data Explorer (hereafter Data Explorer).

The Data Explorer contains three tabs that appear in bold italics throughout this document: Data Sources, Field Selector, and Layer Controls.

Data is selected in the Data Sources tab, loaded into the Field Selector, displayed in the Main Display, and output is formatted in the Layer

Controls.

Menu trees will be listed as a series (e.g., Edit -> Remove -> All Layers and Data Sources). Mouse clicks will be listed as combinations (e.g.,

Shift+Left Click+Drag).

http://www.ssec.wisc.edu/mcidas/software/v/
http://www.ssec.wisc.edu/mcidas/forums/

Page 2 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Python vs. Jython

Fact: You will do all of your McIDAS-V programming in the Python programming language.

Fact: McIDAS-V uses an implementation of the Python programming language called Jython.

Fact: The original and most widely used implementation of the Python programming language is not Jython; the full and proper name for

that one is actually CPython. (In case you're wondering, Jython is implemented in Java, and CPython is implemented in C!). In day-to-day

usage, CPython is often referred to as just “Python.”

What does all that mean?

As you learn McIDAS-V scripting, you should know that all the documentation you'll find across the web for the Python programming

language (specifically, version 2.7) is relevant and accurate. Jython is very careful to retain compatibility with the Python language. This

includes almost the entire Python standard library, which is why we had access to the functions we needed to import, like glob and

basename.

However, the most important distinction between Jython and CPython is the availability of libraries. Because Jython is Java-based, we do

not generally get to use the Python libraries that depend on "native" code. As a result, there is a large list of libraries we cannot use in

Jython, including:

 SciPy

 NumPy

 matplotlib

 netcdf4-python

 h5py

So, once you are comfortable with the basics of the Python programming language, the remainder of learning McIDAS-V scripting is largely

about learning the "McIDAS-V way of doing things": instead of NumPy, matplotlib, and netcdf4-python, we will use the VisAD data model,

VisAD displays, and NetCDF-Java to get our work done.

In summary, Jython's language and standard library are the same as CPython, but many non-standard Python libraries such as NumPy are not

available in Jython. However, McIDAS-V has good alternatives for data access, plotting, and numerical computation.

Page 3 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Using the Jython Shell

The Jython Shell consists of an output window on top and an input field on the bottom. The user enters Jython into the input field. When

the Enter key or "Evaluate" is pressed, the Jython input is evaluated and output is shown in the output window. The Jython Shell is a great

tool to begin writing scripts that can be run from the background. When inputting commands, the Jython Shell runs in single or multi-line

mode. You can switch modes by using the double down arrows or with the shortcut Ctrl+/. The Evaluate button also has a shortcut

Shift+Enter.

Here is a chart containing keyboard shortcuts for the Jython Shell:
Enter Evaluate command in single-line input mode

Shift+Enter Evaluate command in multi-line input mode

Ctrl+/ Switch between single and multi-line input modes

Ctrl+p Recall a previously evaluated command

Ctrl+n Recall the next run command, assuming Ctrl+p was already used

1. Using the Jython Shell, create a window with a single panel Map Display.

a. In Main Display, select Tools -> Formulas -> Jython Shell to open the Jython

Shell.

b. In the input field, type:

panel = buildWindow()
Click Evaluate.

buildWindow is the function used to create an object that contains an array of panels. This

creates a window as you would using the GUI with File -> New Display Window….

2. Now create another window, this time with a Globe Display. Using the same Jython

Shell, in the input field, type:

globePanel = buildWindow(height=600, width=600, panelTypes=GLOBE)
Click Evaluate.

You now have two single paneled displays, each of which can be modified.

3. Turn off the wireframe box on the Map Display and then rotate the Globe Display.

Page 4 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

In the input field, type:

panel[0].setWireframe(False)
Click Evaluate.

 In the input field, type:

globePanel[0].setAutoRotate(True)

Click Evaluate.

setWireframe and setAutoRotate are methods which operate on an object. In these examples, the objects are panel and globePanel.

Basic Jython Terminology

In the above examples we introduced the terms function, method and object. In most general terms, an object is returned from a function and

a method operates on an object and may return a new object.

In steps 1 and 2, the buildWindow function is used to create an object, in this case an array of panels. Objects can have one or more

attributes and these attributes are defined by a class. In later examples of this tutorial, you will see the importance of knowing these attributes.

Methods are used to operate on an object. In step 3, setWireframe operates on the panel object by turning off the wireframe box.

The word object can be intimidating because it hints at the topic of object-oriented programming, which can be complex and confusing.

However, as McIDAS-V programmers, we just need to know that an object is a special kind of variable that has functions associated with it.

These special kinds of functions are referred to as methods.

4. It is important to understand how to interact with the kinds of objects encountered frequently. For example, the list (described later) is an

object. For this particular kind of object, methods like append and remove can be used. Click the Expand Input Field icon to the right

of the input field so multiple lines can be entered into the Jython Shell.

In the input field, type:

myList = [1, 2, 3]

print(myList)
Click Evaluate.

This code results in:

[1, 2, 3]

 In the input field, type:

myList.append(4)

print(myList)

Click Evaluate.

Page 5 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

This code results in:

[1, 2, 3, 4]

 In the input field, type:

myList.remove(2)

print(myList)

Click Evaluate.

This code results in:

[1, 3, 4]

5. Defining new types of objects is possible but it is outside the scope of this tutorial. As a McIDAS-V programmer, most of the objects

needed are already defined. For example, in McIDAS-V, there is a Window object, and its size can be adjusted with the method setSize.

 In the input field, type:

panel2 = buildWindow()

panel2[0].setSize(800,800)

Click Evaluate.

This code results in a window being built with a size of 800x800.

This window can now be closed.

It is important to know the input parameters for each of the functions and methods. McIDAS-V Jython functions and methods are

documented in the scripting section of the McIDAS-V User's Guide:

http://www.ssec.wisc.edu/mcidas/doc/mcv_guide/current/misc/Scripting/Scripting.html

Any documentation for the core Python (2.7) language and standard library will be valid for Jython and McIDAS-V. Python has become a

favorite learning language, so there is a lot of information available. The syntax is case sensitive and adheres to strict indentation practices.

Here are a few good sources of information:

• Learn Python The Hard Way (http://learnpythonthehardway.org/book/index.html)

• Standard Python documentation (https://docs.python.org/2/), especially the tutorial (https://docs.python.org/2/tutorial/index.html)

• Python Style Guide (https://www.python.org/dev/peps/pep-0008/)

Using the Jython Shell (continued)

6. The Map Display will be used in the remaining examples, so at this time, close the Globe Display.

7. Change the projection and center point of the display. The projection name will follow the structure of the menu tree of the Main Display.

http://www.ssec.wisc.edu/mcidas/doc/mcv_guide/current/index.php?page=misc/Scripting/Scripting.html
http://learnpythonthehardway.org/book/index.html
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/2/tutorial/index.html
https://docs.python.org/2/tutorial/index.html
https://www.python.org/dev/peps/pep-0008/

Page 6 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

a. In the input field, type: panel[0].setProjection('US>States>Midwest>Wisconsin')

Click Evaluate.

b. In the input field, type: panel[0].setCenter(43.0,-89.0)

Click Evaluate.

setProjection changes the projection of a panel. The syntax for setting a projection is similar to the menu structure you see when you

change the projection using the GUI. Note, Jython is a case sensitive language, and you must type things exactly as documented here.

8. Add some annotations to the display.

a. Determine the available fonts for your OS. In the input field, type (the 4 spaces before print are necessary):

for fontname in allFontNames():

 print fontname

Click Evaluate.

b. From the results, pick a font for the next commands. In these examples, SansSerif is used. In the input field, type:

here = panel[0].annotate('You Are Here', size=20, font='SansSerif', lat=43.5, lon=-89.2, color='Red')

Click Evaluate.

The bottom left corner of the text is located at the specified latitude/longitude coordinates. Line and element coordinates are also

available in annotate. Color can be specified using RGB values or the color name. html tags can also be used to do things like making

the font bold.

c. In the input field, type:

plus = panel[0].annotate('+', size=20, font='SansSerif', line=200, element=295, color=[1.0,0.0,1.0])

Click Evaluate.

d. When you are through adding annotations to the display, close the window created with buildWindow.

Indentation in Python

In the previous step, it was required that the print line be indented 4 spaces. Python syntax is focused on code readability. The Python

programming language requires specific, consistent indentation of source code and uses block indentation to control the flow. This tutorial,

as well as any documentation of McIDAS-V scripting, will use indentation of 4 spaces (https://www.python.org/dev/peps/pep-0008/#tabs-or-

spaces). Not all programming languages require this specific indentation.

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

Page 7 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

For example, consider the following example of valid IDL code:

 myList = [1, 2, 3] This code results in:

for i=0, n_elements(myList)-1 do begin 1

print, myList[i] 2

endfor 3

IDL control blocks (if, for, foreach, while, etc.) do not need indentation to work properly. The IDL code above is not formatted well, but it

still runs as expected.

9. Run commands in the Jython Shell to become accustomed to the indentation required for scripts to run.

a. In the input field, type:

myList = [1, 2, 3]

for thing in myList:

print(thing)

Click Evaluate.

The Jython Shell raises an error:

SyntaxError: ("mismatched input 'print' expecting INDENT", ('<string>', 3, 0, 'print(thing)\n'))

The only thing wrong with the Python code in step 9a is the missing 4-space indentation in front of print.

b. Add a 4-space indentation to the print statement. In the input field, type:

myList = [1, 2, 3] This code results in:

for thing in myList: 1

 print(thing) 2

Click Evaluate. 3

c. The indentation of print thing is required by Python. However, there is no need for an ENDFOR. Every indented line is

considered to be “inside” the for loop. In the input field, type:

myList = [1, 2, 3]

endingMessage = "Loop is finished"

for thing in myList:

 print(thing)

print endingMessage

Click Evaluate.

Page 8 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

This code results in:

1

2

3

Loop is finished

d. “This is junk” from the previous example was only printed a single time after the for loop. This is because print junk is one

indentation level to the left of those inside the for loop, indicating the end of the for block. The same is true for if/else. In the

input field, type:

mcv_is_cool = True

if mcv_is_cool:

 print 'McIDAS-V is great!'

else:

 print 'McIDAS-V is horrible!'

Click Evaluate.

This code results in:

McIDAS-V is great!

Again, notice the lack of ENDIF or ENDELSE. Or, comparing to C-style languages, note the absence of anything like a

closing curly brace. In Python, the end of a control block is indicated by a “dedent” (i.e. the next line starts one indentation

level to the left).

e. In review, the control flow in Python is indicated with indentation, as in the following code. In the input field, type:

condition = True

if condition:

 print 'beginning of if block'

else:

 print 'beginning of else block'

print 'end of if/else block'

Click Evaluate.

This code results in:

beginning of if block

beginning of if/else block

Page 9 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Note the colons at the end of if and else, lack of parentheses around condition, indentation to indicate the start of the if block,

and the “dedent” to indicate the end of the entire if/else block. If/else was used in this example, but the same holds true for

other control statements like while and for.

Lists and For in Loops in Python

Python has a list data type similar to arrays in scientific programming languages like IDL or MATLAB. However, there is a difference.

10. Here is how Python’s list works.

a. In the input field, type: zero_to_ten = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Click Evaluate.

b. Indexing is zero-based. In the input field, type: print zero_to_ten[5]

This code results in:

5

c. “Slicing” syntax can be used, but be careful! The second part of the slice is the index after the last element selected by the

slice. In the input field, type: print zero_to_ten[3:6]

This code results in:

[3, 4, 5]

The 6 is not included.

d. Python lists are not restricted to single data types as arrays are in other languages. Python lists can contain mixed data types.

In the input field, type: myList = [0, 1, 'foo', 2]

This property can be useful but makes the list data type a poor choice for representing large sets of numbers often needed in

scientific computing.

e. A common way to loop through lists in Python is with the for..in syntax. In the input field, type:

myList = [0, 1, 'foo', 2]

for thing in myList:

 print thing

Page 10 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

This code results in:

0

1

foo

2

f. If indices are needed, like in a classical for loop, you can “enumerate” the list. In the input field, type:

for (i, thing) in enumerate(myList):

 print 'The list at index %d is: %s' % (i, thing)

This code results in:

The list at index 0 is: 0

The list at index 1 is: 1

The list at index 2 is: foo

The list at index 3 is: 2

Lists are powerful and ubiquitous in Python, so get to know them. An example of a for loop will be used in the next section to list directory

information from images in a dataset.

Creating a Simple Local ADDE Request

Up until now all of the functions have been customizing panel attributes. McIDAS-V scripting can also make ADDE requests to list and

transfer image data. Once data has been transferred, it can be used to create data layers. The next part of this tutorial will access data from the

Joplin tornado from 2011.

11. Create local datasets to access the Joplin tornado infrared imagery. In the input field of the Jython Shell, type:
dataDir = '<local-path>/Data/Scripting/tornado-areas/IR'

irDataSet = makeLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR', mask=dataDir, format='McIDAS Area', save=True)

12. listADDEImages is a function that creates a list of dictionaries containing information about each available image. Dictionaries will be

described in more detail later in this tutorial. Request a listing of all images from the dataset TORNADO. In the input field of the Jython

Shell, type: dirList = listADDEImages(server='localhost', position='ALL', localEntry=irDataSet)

13. Earlier, we listed all the available fonts found on your machine. Using the same techniques, list out the directory information for each

image. In the input field of the Jython Shell, type:

Page 11 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

for imageDir in dirList:

 print ' '

 print 'New image directory %s %s' % (imageDir['sensor-type'], imageDir['nominal-time'])

 print ' ---'

 for key,value in imageDir.iteritems():

 print key,value

14. loadADDEImage is the function used to request imagery from an ADDE server. The inputs to loadADDEImage are in the form of

keyword, value pairs. The dictionaries returned from listADDEImages are in this same format and can be used as inputs to

loadADDEImage. Make an ADDE request to get the imagery data from the first keyword parameter pairing returned from

listADDEImages. In the input field, type:

imageData = loadADDEImage(size='ALL', **dirList[1])

15. loadADDEImage returns one object containing a list of metadata and an array of data. Build a new window using buildWindow and

display the data using createLayer. In the input field, type:

panel = buildWindow(height=600, width=900, panelTypes=MAP)

dataLayer = panel[0].createLayer('Image Display', imageData)

16. Use the method captureImage to save the display to a file in the imagePath directory. In the input field, type:

panel[0].captureImage('<local-path>/Data/Scripting/Images/IR-Image.jpg')

Because McIDAS-V does a screen capture on some platforms, be sure that the entire window is showing and is not blocked by other

windows, or your resulting image will not be complete. After viewing IR-Image.jpg in a browser, close the image window.

Creating a Simple Remote ADDE Request

The data from the Joplin tornado from 2011 can also be found on the remote server pappy.ssec.wisc.edu. If you do not have internet access

to remote servers, continue with next section.

17. Request a listing of all images from the dataset TORNADO found on the server pappy.ssec.wisc.edu. In the input field, type:
dirList = listADDEImages(server='pappy.ssec.wisc.edu', dataset='TORNADO', descriptor='GOES13-IR', position='ALL')

18. As with the local dataset, list the directory information for each image. In the input field, type (the 4 space indentations are necessary):

for imageDir in dirList:

 print ' '

 print 'New image directory %s %s' % (imageDir['sensor-type'], imageDir['nominal-time'])

Page 12 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

 print '-'*55

 for key,value in imageDir.iteritems():

 print key,value

The directories returned from a remote listADDEImages request are identical to those of a local ADDE request and can be used as inputs

to loadADDEImage.

Dictionaries in Python
One useful data type in Python is called the dict, which is short for dictionary. A dictionary is a set of associations between “keys” and

“values”. Comparing this to a real life dictionary (the book of words and meanings), the “key” is the word being looked up, and the “value”

is the definition of the word.

19. Run commands in the Jython Shell to become accustomed to dictionaries. The dictionaries created here are only to illustrate Python

syntax and not directly useful as inputs to McIDAS-V functions. In Python, the “keys” of a dictionary can be almost anything, as long as

the value of that thing doesn’t change over the lifetime of the program. Numbers and strings are the most common “keys”; the value of 3

of ‘a’ doesn’t ever change. “Values”, in contrast, can be just about anything: numbers, strings, lists, and even other dictionaries

a. Define a dictionary. In the input field, type:

resolution = {

 # Key: Value,

 'Band1': '1km',

 'Band2': '4km',

 'Band3': '4km',

}
Click Evaluate.

b. Print the list of keys included in the dictionary. In the input field, type:

print resolution.keys()

c. Once the dictionary is defined, key/value pairs can be accessed with square brackets. In the input field, type:

print resolution['Band1']

print resolution['Band2']

This code results in:

1km

4km

Page 13 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

d. If 'Band1', 'Band2', etc. is too verbose, integer keys can be used instead. In the input field, type:

resolution = {

 1: '1km',

 2: '4km',

 3: '4km',

}

print resolution[1]

print resolution[2]

The code results are the same.

e. Remember, the dictionary values can be arbitrarily complex. This makes it possible to represent a lot of useful information in

an accessible way. In the input field, type:

sensor_info = {

 'name': 'viirs',

 'bands': ['SVI01', 'SVM02', 'SVM03'],

 'resolution': ['375m', '750m', '750m'],

}

In this example, the ‘name’ key maps to a simple string, but the ‘bands’ and ‘resolution’ keys map to lists of band information.

Dictionaries are extremely flexible and are often used in McIDAS-V. The next section of this tutorial covers building a dictionary to

represent all parameters for a single ADDE request. That dictionary can then be passed to a McIDAS-V function that will return the data.

Using Dictionaries and Metadata to Formulate an ADDE Request

Most ADDE requests need many more parameters than the previous example. Specifying long lists of keyword parameters can be

cumbersome and create code that is difficult to read. To avoid these problems, you can take advantage of a Python dictionary. Using a

Python dictionary, you can specify all of the key:value pairs, or include just a few, and add the extra ones directly to the loadADDEImage

function call.

20. The next few steps require a lot of typing. If you'd like, you can cut and paste the lines from the <local path>/Data/Scripting/ADDE-

dictionary.txt file into the Jython Shell and then skip to the next step. All of the files used in this tutorial are printed at the end of the

document. Alternatively, use the editFile function via editFile(<local-path>/Data/Scripting/ADDE-dictionary.txt’)

Page 14 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

a. Earlier in the tutorial, you created a local ADDE dataset for GOES-13 IR dataset for the TORNADO case. Use

getLocalADDEEntry to get the value for localEntry and use it to create a dictionary to be use local data with loadADDEImage.

In the input field, type:

irLocalDataSet = getLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR')

b. In the input field, type (the 4 space indentation is required):

ADDE_IR_loadRequest = dict(

 server = 'localhost',

 localEntry = irLocalDataSet,

 size = 'ALL',

 time = ('23:45:00', '23:45:00'),

 day = '2011142',

 unit = 'BRIT',

)

c. Make an ADDE request for infrared data using key:value pairs and a dictionary. The ** before the dictionary tells Python to

evaluate the dictionary's contents and include the key:value pairs in loadADDEImage. The dictionary must be last in the list. In

the input field, type:

irData = loadADDEImage(band=4, **ADDE_IR_loadRequest)

21. loadADDEImage returns one object containing a list of metadata and an array of data. Build a new window using buildWindow and

display the data using createLayer. The above request was for all the lines and elements (size='ALL'). Creating a window to show the

entire image would probably go beyond the extents of your desktop. To avoid this problem, use the metadata to create a window with

dimensions of half the number of lines and elements. In the input field, type:

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

22. Now create layer objects for the infrared data. Use createLayer with the object irData. In the input field, type:

irLayer = panel[0].createLayer('Image Display', irData)

23. Apply the 'Longwave Infrared Deep Convection' color table to the infrared layer. Since there is a unique name for each color table, the

syntax is a little different than that used with setProjection, and the entire naming structure is not necessary here. In the input field, type:

irLayer.setEnhancement('Longwave Infrared Deep Convection')

24. Using the values from the keywords 'sensor-type' and 'nominal-time' from the irData object, create a string to use with setLayerLabel

(remember that the 4 spaces of indentation are mandatory).

Page 15 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

a. Print the list of keys included in the irData object. In the input field, type:

print irData.keys()

b. In the input field, type:

irLabel = '%s %s' % (

 irData['sensor-type'],

 irData['nominal-time']

)

c. In the input field, type:

irLayer.setLayerLabel(label=irLabel, size=16, color='White', font='SansSerif')

c. After checking the new layer label in the buildWindow Display, close the window.

Functions in Python

Functions are a way to refer to a piece of code that takes arguments and returns results based on those arguments. Functions are the key to

creating reusable code and avoiding repetition, and Python makes them easy to define and use. The next sections utilize functions in

McIDAS-V. In Python, defining functions is straightforward.

25. Create a function named add and demonstrate its usage with numbers and letters. In the input field, type:

def add(a, b):

 return a+b

print add(2,2)
Click Evaluate.

This code results in:

4

As with loops and if/else blocks, indentation/dedent indicate the end of the function.

26. Similarly to IDL but unlike languages like C and Fortran, Python functions do not need to explicitly state the type of argument.

Consequences of this can be observed when attempting to use something other than numbers with the add function. In the input field,

type:

Page 16 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

print add('a', 'b')
Click Evaluate.

This code results in:

ab

This still works. The + operator works just as well on 'a' and 'b' as it does on 1 and 2, so the function completes without error.

Jython Library

The above exercises used functions such as setLayerLabel and loadADDEImage. The code for these functions can be found in the Jython

Library.

27. Open the Jython Library and search for code to set a layer label.

a. In Main Display, select Tools -> Formulas -> Jython Library.

b. Open the System -> Background Processing Functions library.

c. Using the search utility type setLayerLabel. This shows you the code that sets a layer label. Keep pressing Enter or use the

up/down arrows to search for multiple instances of setLayerLabel in the library.

28. Users can also share code by adding functions to the Local Jython Library. Add a function named importColorTable to the Local

Jython library. This function will be used in the next part of the tutorial.

a. Create a new Jython library by selecting File->New Jython Library from the menu. Type Training Library and click OK.

b. Open a text editor (e.g. gedit, vi, WordPad, Notepad++), and edit the file <local-

path>/Data/Scripting/importColorTable.txt.

c. Copy the entire contents of this file and paste it into the Local Jython -> Training Library library.

d. Select Save and close the Jython Library.

Page 17 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Using Functions in a McIDAS-V Script

Building upon the previous examples, the next script uses the importColorTable, mask and mul functions. mask and mull are system

functions, packaged with McIDAS-V.

The <local-path>/Data/Scripting/function.py file is an example script showing how to use these functions and ways to make the script

platform independent. These are not be entered into the Jython Shell at this time. Read through the following portions of the script and the

associated comments to learn what the script is doing at each step.

The first line of the code imports common functions in the os library. These functions are used to create platform-independent path names.

import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

The GOES-13 IR TORNADO dataset is used, this time with temperature (unit='TEMP') values requested:

This example gets the information from the dataset created previously in the tutorial

irLocalDataSet = getLocalADDEEntry('TORNADO','GOES-13 IR')

ADDE_IR_loadRequest = dict(

 debug=True,

 server='localhost',

Page 18 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

 localEntry=irLocalDataSet,

 size='ALL',

 time=('23:45:00','23:45:00'),

 day='2011142',

 unit='TEMP',

)

irData = loadADDEImage(**ADDE_IR_loadRequest)

The mask function requires a temperature threshold:

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Applying a mask requires a two part process. First, a threshold temperature is applied to the data object returned from loadADDEImage,

creating a new data object of either values of 1's or missing. Second, the original data object is multiplied by the new data object. The data

object created by the mul function creates a data object that contains either temperature or missing values.

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporary data object

Second, multiply the first results to the temporary data object

maskedData = mask(irData, 'lt', temperatureThreshold, 1)

finalDataSet = mul(irData, maskedData)

The importColorTable function reads in a file exported using the color table editor. The name of the color table is extracted and used with

setEnhancement:

Import enhancement table

IRColorTableFile = os.path.join(enhancementPath, 'Tornado-IR.xml')

IRTable = importColorTable(IRColorTableFile)

IRTableName = IRTable.getName()

As previously done, the last section of the script builds a window, creates the layer, applies the enhancement table and sets the projection.

Page 19 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Build a window

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add layers to the existing window set enhancement table and data ranges

irLayer = panel[0].createLayer('Image Display', finalDataSet)

irLayer.setLayerLabel('GOES-13 Temperatures less than ' + str(temperatureThreshold) + ' %timestamp%')

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

Set the center latitude, longitude and scale

panel[0].setProjection('US>States>N-Z>Oklahoma')

panel[0].setCenter(33, -97, scale=.5)

fileName=os.path.join(imagePath, 'ir-image.gif')

panel[0].captureImage(fileName)

29. From the Jython Shell, run function.py. In the input field, type:

editFile('<local-path>/Data/Scripting/function.py')

30. Evaluate the function.py file by clicking Evaluate.

31. Open a browser and view the file '<local-path>/Data/Scripting/Images/ir-image.gif'.

Creating Movies in a McIDAS-V Script

In the previous example, you created a single image. You can also create movies that contain loops of images. To do this, multiple data

requests must be made. The <local-path>/Data/Scripting/image-movie.py file is an example script showing the creation of movie loops in

McIDAS-V.

In this example, the loop is created by making a call to listADDEImageTimes and multiple calls to loadADDEImage.

listADDEImageTimes is similar to listADDEImages, but returns a list of dictionaries containing only image days and times. Below is part

of the script with some comments. These are not be entered into the Jython Shell at this time.

Page 20 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

A Python list, as described previously, is used to store data objects and is initialized using the syntax below. As the script loops through

loadADDEImage calls, the data objects returned are appended to the list. In this script, myLoop is the python list:

 myLoop=[]

listADDEImageTimes uses the dictionary parms as its input parameters. The dictionary object dateTimeList is returned and contains

keyword/value pair for each day and time.

dateTimeList = listADDEImageTimes(**parms)

The script then loops through all the dictionaries returned from the call to listADDEImageTimes. Using a for loop, individual directories,

dateTime, are extracted from the list dictionaries, dateTimeList, which was returned from listADDEImageTimes. The loop takes the time

value out of the dateTime dictionary which is used to create a new dictionary that is passed into loadADDEImage.

for dateTime in dateTimeList:

 imageTime = dateTime['time']

 ADDE_IR_loadRequest = dict(

 localEntry=irLocalDataSet,

 day=dateTime['day'],

 time=(imageTime,imageTime),

 band=4,

 unit='TEMP',

 size='ALL'

)

 IRData = loadADDEImage(**ADDE_IR_loadRequest)

 maskedData = mask(irData, ‘lt’, temperatureThreshold, 1)

 finalDataSet = mul(irData, maskedData)

The data objects returned from listADDEImageTimes and passed through mask and mul are added to myLoop using the append method.

 myLoop.append(finalDataSet)

Once the loop is completed, a window is built and myLoop is used to create an Image Sequence Layer which is then saved as an animated

gif.

bwLines = irData[‘lines’] / 2

bwEles = irData[‘elements’] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Page 21 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

irLayer = panel[0].createLayer('Image Sequence Display' ,myLoop)

writeMovie(imagePath+'ir-loop.gif')

32. From the Jython Shell run image-movie.py. In the input field, type:

editFile('<local path>/Data/Scripting/image-movie.py')

33. Evaluate the image-movie.py file by clicking Evaluate.

34. Open a browser and view the file '<local-path>/Data/Scripting/Images/ir-loop.gif'.

Creating Your Own McIDAS-V Script

35. You now have all the tools necessary to write a script that creates a movie of the infrared images placed over a basemap. For this exercise,

a. import the enhancement table from <local-path>/Data/Scripting/Color-Enhancements/Tornado-basemap.xml

b. write a script that does the tasks listed below:

1. uses the local data files from the TORNADO 'GOES-13 IR' dataset

2. creates and uses the local McIDAS Area dataset for a base map

a. name the dataset TORNADO

b. assign the image type 'Land Sea Mask'

c. data is located <local-path>/Data/Scripting/tornado-areas/BASE

3. uses the entire size of the image of both datasets

4. loads a list IR temperature data that spans 14:45 on day 2011142 to and 02:45 on day 2011143

a. the mask function removes temperature greater than 250 K

b. uses the enhancement table <local-path>/Data/Scripting/Color-Enhancements/Tornado-IR.xml

c. applies the color enhancement with a range of 250 to 200 K

5. loads a single base map image and uses the enhancement table:

 <local-path>/Data/Scripting/Color-Enhancements/Tornado-basemap.xml

6. builds a window 700 lines X 1000 elements

7. creates an Image Display layer from the base map dataset (do not include the layer label)

8. overlays an Image Sequence Display layer from the IR data list

9. adds a layer label to the IR data set which includes

a. the text 'Joplin Tornado'

b. timestamp

c. displayname

10. sets the projection to Central U.S.

11. changes the center point to 35N 97W with a scale factor of 1.5

Page 22 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

12. turns off the wireframe box

13. adds the annotation 'Joplin, Missouri'; text is left and center justified at 37.15N and 94.5W

14. saves the movie with the file name of <local-path>/Data/Scripting/Images/image-exercise.gif

An example solution is available at <local path>/Data/Scripting/image-exercise.py. However, before checking the solution, it is

recommended that you try to complete the tasks on your own.

Page 23 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Running Scripts from a Command Prompt

So far in this tutorial, you have been running commands and scripts using the Jython Shell. Scripts can also be run from the command line

by adding the flag -script to the startup script.

36. Run the McIDAS-V script using the –script flag.

a. Exit McIDAS-V.

b. Open a terminal and change directory to the directory where McIDAS-V is installed (<user-path>/McIDAS-V-System)

c. Run the <local-path>/Data/Scripting/image-exercise.py script.

For Unix, type:

./runMcV –script <local-path>/Data/Scripting/image-exercise.py

For Windows, type:

runMcV.bat –script <local-path>/Data/Scripting/image-exercise.py

d. The progress of the script can be monitored by watching the mcidasv.log file in your McIDAS-V directory with the tail

command.

Type: tail -f <user-path>/McIDAS-V/mcidasv.log

e. From your browser, view the file <local-path>/Data/Scripting/Images/image-exercise.gif that was created from

<local-path>/Data/Scripting/image-exercise.py.

Page 24 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Calculating Statistics in a McIDAS-V Script

Calculating statistics for data is also important. McIDAS-V uses the VisAD statistics package to calculate statistics.

<local-path>/Data/Scripting/stats.py is an example script showing statistics calculations in McIDAS-V scripting. Below is part of the script

with some comments. These are not be entered into the Jython Shell at this time.

To calculate statistics on your data, extra lines of code are needed to specify the output files and the data object passed into the package.

These lines open the files for writing statistics:

textFileName = os.path.join(statisticsPath, "stats.txt")

textOutputFile = open(textFileName, "w")

csvFileName = os.path.join(statisticsPath, "stats.csv")

csvOutputFile = open(csvFileName, "wb")

This line defines how to delimit the data going to the csv file:

csvData = csv.writer(csvOutputFile, delimiter=",")

This line writes a header text file:

csvData.writeRow(["Time”, ”latitude”, ”longitude”, ”geometricMean”, ”min”,

 ”median”, ”max”, ”kurtosis”, ”skewness”, ”stdDev”, ”variance"])

This line passes the data from loadADDEImage to the statistics package:

stats = Statistics(finalDataSet)

These line write the statistic to the output text file:

textOutputFile.write(" stat and value for: %s \n" % irData["nominal-time"])

textOutputFile.write(" geometric mean: %s \n" % stats.geometricMean())

textOutputFile.write(" kurtosis: %s \n" % stats.kurtosis())

textOutputFile.write(" num points: %s \n" % stats.numPoints())

textOutputFile.write(" skewness: %s \n" % stats.skewness())

textOutputFile.write(" std dev: %s \n" % stats.standardDeviation())

textOutputFile.write(" variance: %s \n" % stats.variance())

textOutputFile.write("\n")

Page 25 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

This line writes the statistics to the csv file:

csvData.writerow([theTime, "37.0", "-94.5", stats.geometricMean(), stats.min(),

 stats.median(), stats.max(), stats.kurtosis(), stats.numPoints(),

 stats.skewness(), stats.standardDeviation(), stats.variance()])

37. From a terminal in the directory where McIDAS-V is installed, run the stats.py script using the –script flag.

For Unix, type: ./runMcV –script <local-path>/Data/Scripting/stats.py

For Windows, type: runMcV.bat –script <local-path>/Data/Scripting/stats.py

38. You can use the statistics created by McIDAS-V in other software packages, and you can plot the statistics values on your McIDAS-V

images.

a. Using Excel, open the csv file <local-path>/Data/Scripting/statistics/stats.csv, and do something like create a line graph of your

statistics.

b. Using your text editor, open the text file <local-path>/Data/Scripting/statistics/stats.txt, and view the file.

c. From your browser, view the file <local-path>/Data/Scripting/Images/stats-image.jpg that was created from stats.py.

Using glob to Find Files on Disk

Previous sections of this tutorial have concentrated on ADDE requests for imagery data. This section will use a standard Python function

called glob to find files on disk, a task scientific programmers deal with every day. Restart McIDAS-V before proceeding.

39. List all of the grib2 files contained in the <local-path>/Data/Scripting/tornado-model directory.

a. In Python, only a small number of functions are available at start up, and glob is not one of them, so the function must be

imported. In the input field, type: from glob import glob

b. You can read this as “import the function glob from the module named glob.” This example is a little awkward due to the

module and function having the same name, so here is another example that imports a function called basename that can be

used to strip the directory prefix off a full path of a file. In the input field, type: from os.path import basename

Page 26 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

c. You now have all the tools needed to do something useful like locate a set of grib2 RUC files on your system. If you have

used IDL’s FILE_SEARCH, this will look familiar. The asterisk * is used as a “wildcard” to indicate parts of the filename

which are varying. In the input field, type:

from glob import glob

from os.path import basename

file_path = '<local-path>/Data/Scripting/tornado-model/'

ruc_files = glob(file_path + 'RUC*.grib2')

for full_path in ruc_files:

 print 'Full path to the file: %s' % (full_path)

 print 'Filename only: %s' % (basename(full_path))

glob returns a list of strings (representing file paths) that can be operated on like any list. Depending on what is in that

directory, the code above may return:

Full path to the file: /home/myuser/Data/Scripting/tornado-model\RUC-

USLC13KM_105_2011_142_05_22_RH1500_FH0000_000_NA_XXX_XXXX_XXX.grib2

Filename only: RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0000_000_NA_XXX_XXXX_XXX.grib2

Full path to the file: /home/myuser/Data/Scripting/tornado-model\RUC-

USLC13KM_105_2011_142_05_22_RH1500_FH0003_000_NA_XXX_XXXX_XXX.grib2

Filename only: RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0003_000_NA_XXX_XXXX_XXX.grib2

Full path to the file: C:/Users/rcarp/Data/Scripting/tornado-model\RUC-

USLC13KM_105_2011_142_05_22_RH1500_FH0006_000_NA_XXX_XXXX_XXX.grib2Filename only: RUC-

USLC13KM_105_2011_142_05_22_RH1500_FH0006_000_NA_XXX_XXXX_XXX.grib2

Full path to the file: /home/myuser/Data/Scripting/tornado-model\RUC-

USLC13KM_105_2011_142_05_22_RH1500_FH0009_000_NA_XXX_XXXX_XXX.grib2

Filename only: RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0009_000_NA_XXX_XXXX_XXX.grib2

Full path to the file: /home/myuser/Data/Scripting/tornado-model\RUC-

USLC13KM_105_2011_142_05_22_RH1500_FH0012_000_NA_XXX_XXXX_XXX.grib2

Filename only: RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0012_000_NA_XXX_XXXX_XXX.grib2

The next section of this tutorial will cover listing information from these RUC grids.

Page 27 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Using Gridded Data in a McIDAS-V Script – Part 1: Listing Grid information

The previous sections of the tutorial concentrated on ADDE requests for imagery data. This part of the tutorial concentrates on functions that

load, list and display gridded data. An assumption is made that the previous portions of the tutorial have been completed. Basic concepts

discussed above carry over for all McIDAS-V scripts. The files used for this part of the tutorial are found in <local-

path>/Data/Scripting/tornado-model. The files are typical of those that come across the NOAAPORT feed. The <local-

path>/Data/Scripting/grid-list.py file is an example script showing how to begin listing gridded data. The lines of script are shown below

interleaved with comments. These comments are not be entered into the Jython Shell. Copy and paste the lines of code into the Jython

Shell.

These lines initialize variables used throughout the script.

import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

Some of the path definitions are not not used with in the script,

but rather in subsequent scripts

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

gridPath = os.path.join(scriptingPath, 'tornado-model')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

Page 28 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

The next lines of code assign a value to the variable gridFileName. The parameter filename= is required for all grid functions and can be used

in a dictionary. Dictionaries are useful as scripts become more complex.

Grid file names can be long, assigning the value to a variable

makes a script easier to read

gridFileName = os.path.join(gridPath,

 'RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0006_000_NA_XXX_XXXX_XXX.grib2')

Create a dictionary to define the file name to be used. The parameter

filename is used with many of the grid functions.

modelData = dict(

 filename=gridFileName

)

The contents of the grid file can be listed using the function listGridFieldsInFile. List all the fields found in our grid file.

List all the fields in the grib file

listGridFieldsInFile(**modelData)

The listing contains both a field name and a description. The description is seen when using the GUI. For subsequent grid functions, the field

name is used. In most cases, each field contains several different levels. These levels are listed using listGridLevelsInField.

Using the v-component field, list all the levels for the v-component

listGridLevelsInField(field='v-component_of_wind_isobaric', **modelData)

As mentioned above, the files sent across the NOAAPORT feed frequently contain only one forecast hour, this is the case for the files used in

this tutorial. Use the function listGridTimesInField to list the time in the grid file field v-component_of_wind_isobaric:

Again using the v-component field, list all the times available

listGridTimesInField(field='v-component_of_wind_isobaric', **modelData)

Page 29 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

During the image portion of the tutorial, a for loop was used to step through a list of images to create a movie. A method to loop through a

list grid is to use the Jython function glob. Import the glob function.

from glob import glob

Create a list of files

fileMatch = os.path.join(gridPath,'*.grib2')

fileList = glob(fileMatch)

print fileList

List each of the individual file names

for gridFile in fileList:

 print gridFile

By concatenating all the files in <local-path>/Data/Scripting/tornado-model/, we can create a file with multiple times. Concatenating the

files works similar to the Aggregate Grids By Time Data Type. Use the function listGridTimesInField with the file <local-

path>/Data/Scripting/tornado-model/multiple-times to create a list of times for the field v-component_of_wind_isobaric.

Here is an example of a grib file containing multiple times

timesFileName = os.path.join(gridPath, 'multiple-times')

timeList = listGridTimesInField(field='v-component_of_wind_isobaric', filename=timesFileName)

print timeList

During the image portion of the tutorial, a for loop was used to step through a list of images to create a movie. A similar set of code could be

used to loop the times found in the variable timeList.

Page 30 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Using Gridded Data in a McIDAS-V Script – Part 2: Loading and Displaying Grid Data

The information obtained from listGridFieldsInFile and listGridTimesInField are used as inputs to the function that loadGrid. Similar to

loadADDEImage, loadGrid returns a data object that can be manipulated mathematically or used with other functions such as createLayer.

As we have done with our previous scripts libraries are imported and variables are initialize to make the scripts platform and user

independent. Cut and paste the lines of code onto the Jython Shell. This code can be found in the <local-path>/Scripting/grid-display.py

script.

import os

import java.awt.Color as Color

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath,'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

gridPath = os.path.join(scriptingPath, 'tornado-model')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath,'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

Grid file names can be long, assigning the value to a variable

makes a script easier to read

gridFileName = os.path.join(gridPath,

 'RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0006_000_NA_XXX_XXXX_XXX.grib2')

Page 31 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Create a dictionary to define the file name to be used. The parameter

filename is used with many of the grid functions.

modelData = dict(

 filename = gridFileName

)

Load the model data for the following grids:

v component of the at 25000 Pa for the verification time of 2011-05-22 @ 21:00:00Z

w component of the at 25000 Pa for the verification time of 2011-05-22 @ 21:00:00Z

The listing function showed that the grid file contains both the u and v components of the wind. Using the loadGrid function, data objects of

each of these parameters can be created:

vWind = loadGrid(field='v-component_of_wind_isobaric',

 level='25000 Pa', time='2011-05-22 21:00:00Z', **modelData)

uWind = loadGrid(field='u-component_of_wind_isobaric',

 level='25000 Pa', time='2011-05-22 21:00:00Z', **modelData)

Using basic mathematical functions a new data object, windSpeed, can be computed from the u and v components of the wind. As is

mentioned in the comment imbedded in the code, there are multiple mathematical methods to calculate the same quantity.

Create a data object of wind speed.

windSpeed = (uWind**2+vWind**2)**.5

The IDV function sqrt could also be used:

windSpeed = sqrt(pow(uWind,2)+pow(vWind,2))

Through the GUI, there is a grid function to make flow vectors from u and v components of the wind. Mousing over that formula reveals that

the function makeVector is used. The data object returned from makeVector is used to create streamlines or wind fields.

Create a flow vector using the IDV function makeVector

flowVectors = makeVector(uWind,vWind)

Page 32 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

The next parts of the script are similar to the previous image scripts, importing color tables, building a window and creating layers.

Import enhancement tables

windSpeedColorFile = os.path.join(enhancementPath, 'Tornado-Jet-Wind-Speed.xml')

windSpeedColorTable = importColorTable(windSpeedColorFile, overwrite=True)

windSpeedTableName = windSpeedColorTable.getName()

Build a window with a height of 500 pixels and width of 600 pixels

Panel = buildWindow(height=700,width=900)

Add individual layers to the existing window and set enhancement table and data ranges

windSpeedLayer = panel[0].createLayer('Image Display', windSpeed)

windSpeedLayer.setEnhancement(windSpeedTableName, range=(0,80))

windSpeedLayer.setLayerLabel(visible=False)

A new display type, 'Streamline Plan View', is used to display streamlines. At the top of the script we imported the library import

java.awt.Color as Color. Code from this library provides the capability of changing the color of the streamlines.

streamLineLayer = panel[0].createLayer('Streamline Plan View', flowVectors)

streamLineLayer.setColor(Color.cyan)

streamLineLayer.setLineWidth(2)

streamLineLayer.setLayerLabel(visible=False)

Set the center latitude, longitude and scale

panel[0].setProjection('US>Central U.S.')

panel[0].setCenter(35, -97, scale=1.5)

filename = os.path.join(imagePath, 'isotachs-streamlines.gif')

panel[0].captureImage(filename)

Page 33 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

40. Use listGridFieldsInFile to determine the correct parameter name for CAPE (Convective Available Potential Energy).

41. Open a text editor (e.g. gedit, vi, WordPad), and start with the file <local-path>/Data/Scripting/grid-display.py to write a script that

does the following:

a. Uses the glob function to step through all NOAAPORT grid files and create a movie showing (in order from bottom to top):

1. image sequence of CAPE

o applying the enhancement table found in Tornado-Cape.xml

o stretching the enhancement table across a range of 4000 to 7550

2. image sequence of wind speed

o applying the enhancement table found in Tornado-Jet-Wind-Speed.xml

o stretching the enhancement table across a range of 0 to 80

3. loop of streamlines

o color cyan

o line width of 2

b. Imports the color table 'Tornado-Cape.xml

c. Sets the projection to the Central U.S.

d. Changes the center point to 35N 97W with a scale factor of 1.5

e. Turns off the wireframe box

f. Saves the movie as <local path>/Data/Scripting/Images/winds-cape.gif

An example solution is available at <local-path>/Data/Scripting/grid-exercise.py. However, before checking the solution, it is

recommended that you try to complete the tasks on your own.

42. The last exercise requires you to write a script combining both grid and image data types. The script should do the following:

a. Uses the glob function to step through all the NOAAPORT grid files

b. Uses the position number keyword with loadADDEImage to specify the image matching the time of the gridded data

c. Imports the enhancement table from <local-path>/Data/Scripting/Color-Enhancements/Tornado-IR.xml

d. Imports the enhancement table from <local-path>/Data/Scripting/Color-Enhancements/Tornado-basemap.xml

e. Imports the enhancement table from <local-path>/Data/Scripting/Color-Enhancements/ Tornado-Jet-Wind-Speed.xml

f. Creates and uses the local McIDAS AREA dataset for a base map

o name the dataset TORNADO

o assign the image type 'Land Sea Mask'

o data is located <local-path>/Data/Scripting/tornado-areas/BASE

o use the enhancement table from Tornado-basemap.xml

o stretch the range from 0 to 255

Page 34 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

g. Creates an image sequence of the local data files from the TORNADO 'GOES-13 IR' dataset

o a mask is applied to temperature values of data greater than 250 K

o use the enhancement table from Tornado-IR.xml

o stretch the range from the specified temperature threshold to 200

h. Creates an image sequence of wind speed

o apply the enhancement table found in Tornado-Jet-Wind-Speed.xml

o stretch the range of 0 to 80

o apply the enhancement table found in Tornado-Jet-Wind-Speed.xml

i. Creates a loop of streamlines

o use a line width of 2

o use a color of Cyan

j. Adds a layer label to the IR data set which includes:

o the text 'Joplin Tornado'

o font size of 12

o color White

o display name

k. Adds a layer label to the wind speed dataset which includes:

o the text 'Wind Speed and Streamlines'

o style of NONE

o font size of 12

o color White

l. Adds a layer label to the stream line dataset which includes:

o font size of 12

o color White

o timestamp

m. Adds a color scale for the IR data set

n. Adds the annotation 'Joplin, Missouri'

1. Places the text left and center justified located at 37.15N and 94.5W

o. Turns wireframe off

p. Sets the projection to Central U.S.

q. Changes the center point to 35N and 97W with a scale factor of 1.5

r. Saves the movie with the file name of <local path>/Data/Scripting/Images/final-exercise.gif

An example solution is available at <local-path>/Data/Scripting/final-exercise.py. However, before checking the solution, it is

recommended that you try to complete the tasks on your own. Note, creating time matched loops of multiple data types can be challenging

and is currently only available through the GUI. Development for this capability within the scripting environment may be done at a later date.

Page 35 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Files Used In This Tutorial

ADDE-dictionary.txt
This example assumes that the TORNADO dataset has been

defined on your workstation in the local ADDE Data Manager

<local path>/Data/Scripting/areas-files/IR

Create a dictionary to be used with loadADDEImage.

(remember the 4 space indentation is required)

irLocalDataSet = getLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR')

ADDE_IR_loadRequest = dict(

 server = 'localhost',

 localEntry = irLocalDataSet,

 size = 'ALL',

 time = ('23:45:00','23:45:00'),

 day = '2011142',

 unit = 'BRIT',

)

Make an ADDE request for infrared data using keyword=parameter

pairs and the dictionary.

irData = loadADDEImage(band=4, **ADDE_IR_loadRequest)

The ** before the dictionary tells python to evaluate the contents of the

dictionary and include the keyword=parameter with the request to

loadADDEImage. Note, the dictionary must be the last parameter specified.

Page 36 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

importColorTable.txt
def importColorTable(filename, name=None, category=None, overwrite=False):

 """Import color table using the given path.

 If the color table in question was exported from the Color Table Manager,

 the name and category parameters will be set to values within the file.

 If the name already exists within the category, a unique name will be

 generated. The format is <name>_<integer>.

 If the given parameters match a system color table and overwriting is

 enabled, the specified color table will merely take precedence over the

 system color table. Removing the local color table will result in the

 system color table being made available.

 Args:

 filename: Path to color table to import.

 name: Name of the color table. If not specified, name will be the

 "base" filename without an extension (e.g. foo.et becomes foo).

 category: Category of the color table. If not specified, the category

 will default to Basic.

 overwrite: Optional value that controls whether or not an existing

 color table that matches all the given parameters will be

 overwritten. Default value is False.

 Returns:

 Either the imported color table or nothing if there was a problem.

 """

 from ucar.unidata.util import IOUtil

 from ucar.unidata.util import ResourceManager

 from ucar.unidata.xml import XmlEncoder

 mcv = getStaticMcv()

 if mcv:

 makeUnique = not overwrite

 ctm = mcv.getColorTableManager()

 tables = ctm.processSpecial(filename, name, category)

 if tables:

 return _ColorTable(ctm.doImport(tables, makeUnique))

 else:

 xml = IOUtil.readContents(filename, ResourceManager.__class__)

 if xml:

 obj = XmlEncoder().toObject(xml)

 return _ColorTable(ctm.doImport(obj, makeUnique))

Page 37 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

function.py
import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath=os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

This example gets the information from the dataset created previously in the tutorial

irLocalDataSet = getLocalADDEEntry('TORNADO', 'GOES-13 IR')

ADDE_IR_loadRequest = dict(

 debug=True,

 server='localhost',

 localEntry=irLocalDataSet,

 size='ALL',

 time=('23:45:00','23:45:00'),

 day='2011142',

 unit='TEMP',

)

irData = loadADDEImage(**ADDE_IR_loadRequest)

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Page 38 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporary data object

Second, multiply the first results to the temporary data object

maskedData = mask(irData, 'lt', temperatureThreshold, 1)

finalDataSet = mul(irData, maskedData)

Import enhancement table

IRColorTableFile = os.path.join(enhancementPath, 'Tornado-IR.xml')

IRTable = importColorTable(IRColorTableFile)

IRTableName = IRTable.getName()

Build a window and turn off the wireframe box

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add layers to the existing window set enhancement table and data ranges

irLayer = panel[0].createLayer('Image Display', finalDataSet)

irLayer.setLayerLabel('GOES-13 Temperatures less than ' + str(temperatureThreshold) + ' %timestamp%')

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

Set the center latitude, longitude and scale

panel[0].setProjection('US>States>N-Z>Oklahoma')

panel[0].setCenter(33, -97, scale=.5)

fileName=os.path.join(imagePath, 'ir-image.gif')

panel[0].captureImage(fileName)

Page 39 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

image-movie.py
import os

The ** before the dictionary tells python to evaluate the contents of the

dictionary and include the keyword=parameter with the request to

loadADDEImage. Note, the dictionary must be the last parameter specified.

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Initialize a python list

myLoop=[]

Create a dictionary for requesting images

irLocalDataSet = getLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR')

parms = dict(

 server='localhost',

 localEntry=irLocalDataSet,

 position='ALL'

)

Page 40 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Create a list of all available Images using listADDEImageTimes

dateTimeList = listADDEImageTimes(**parms)

listADDEImages was successful, so now try loadADDEImage for each of the

directories returned. There may be occasions when the loadADDEImage fails

but we want to continue

for dateTime in dateTimeList:

 imageTime = dateTime['time']

 print dateTime['time']

 ADDE_IR_loadRequest = dict(

 localEntry=irLocalDataSet,

 day=dateTime['day'],

 time=(imageTime,imageTime),

 band=4,

 unit='TEMP',

 size='ALL',

)

 irData = loadADDEImage(**ADDE_IR_loadRequest)

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporaary data object

Second, multiply the first results to the temporary data object

 maskedData = mask(irData, 'lt', temperatureThreshold, 1)

 finalDataSet = mul(irData, maskedData)

 myLoop.append(finalDataSet)

Import enhancement table

IRColorTableFile=os.path.join(enhancementPath,'Tornado-IR.xml')

IRTable=importColorTable(IRColorTableFile,overwrite=True)

IRTableName=IRTable.getName()

Page 41 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Build a window and turn off the wireframe box

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add layers to the existing window set enhancement table and data ranges

irLayer = panel[0].createLayer('Image Sequence Display', myLoop)

irLayer.setLayerLabel('GOES-13 Temperatures less than ' + str(temperatureThreshold) + ' %timestamp%')

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

Set the center latitude, longitude and scale

panel[0].setProjection('US>States>N-Z>Oklahoma')

panel[0].setCenter(33,-97,scale=.5)

fileName = os.path.join(imagePath, 'ir-loop.gif')

writeMovie(fileName)

Page 42 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

image-exercise.py
import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

basePath = os.path.join(areaPath, 'BASE')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Create a dictionary for a basemap image

baseMapDataSet = makeLocalADDEEntry(dataset='TORNADO', imageType='Land Sea Mask', mask=basePath, format='McIDAS Area',

save=True)

baseMapParms = dict(

 server='localhost',

 localEntry=baseMapDataSet,

 size='ALL'

)

baseMapData = loadADDEImage(**baseMapParms)

irLocalDataSet = getLocalADDEEntry('TORNADO', 'GOES-13 IR')

ADDE_IR_loadRequest = dict(

 debug=True,

 server='localhost',

 localEntry=irLocalDataSet,

 size='ALL',

 mag=(1,1),

 position='ALL',

 unit='TEMP',

)

Page 43 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

irData = loadADDEImage(**ADDE_IR_loadRequest)

Initialize a python list

myLoop=[]

Create a list of all available Images using listADDEImageTimes

dateTimeList = listADDEImageTimes(**ADDE_IR_loadRequest)

listADDEImages was successful, so now try loadADDEImage for each of the

directories returned. There may be occasions when the loadADDEImage fails

but we want to continue

for dateTime in dateTimeList:

 imageTime = dateTime['time']

 print dateTime['time']

 ADDE_IR_loadRequest = dict(

 localEntry=irLocalDataSet,

 day=dateTime['day'],

 time=(imageTime,imageTime),

 band=4,

 unit='TEMP',

 size='ALL',

)

 irData = loadADDEImage(**ADDE_IR_loadRequest)

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporary data object

Second, multiply the first results to the temporary data object

 maskedData = mask(irData, 'lt', temperatureThreshold, 1)

 finalDataSet = mul(irData, maskedData)

 myLoop.append(finalDataSet)

Page 44 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Import enhancement tables

basemapTableFile = os.path.join(enhancementPath, 'Tornado-Basemap.xml')

basemapTable = importColorTable(basemapTableFile, overwrite=True)

basemapTableName = basemapTable.getName()

IRColorTableFile=os.path.join(enhancementPath,'Tornado-IR.xml')

IRTable=importColorTable(IRColorTableFile,overwrite=True)

IRTableName=IRTable.getName()

Build a window and turn off the wireframe box

bwLines = 700

bwEles = 1000

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add individual layers to the existing window and set enhancement table and data ranges

Note that the layer order is important

baseMapLayer = panel[0].createLayer('Image Display', baseMapData)

baseMapLayer.setEnhancement(basemapTableName, range=(0,255))

baseMapLayer.setLayerLabel(' ', visible=False)

irLayer = panel[0].createLayer('Image Sequence Display', myLoop)

irLayer.setLayerLabel('%longname% Joplin Tornado Temperatures less than ' + str(temperatureThreshold) + ' %timestamp%')

irLayer.setEnhancement(IRTableName,range=(temperatureThreshold, 200))

irLayer.setColorScale(visible=True, placement='Top', showUnit=True)

Set the center latitude, longitude and scale

panel[0].setProjection('US>Central U.S.')

panel[0].setCenter(35, -97, scale=1.5)

panel[0].annotate('Joplin, Missouri - >',lat=37.15, lon=-94.5,size=18,

font='SansSerif',alignment=('left','center'),color='White')

fileName=os.path.join(imagePath,'image-exercise.gif')

writeMovie(fileName)

Page 45 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

stats.py
import os

import csv

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

statisticsPath = os.path.join(scriptingPath, 'Statistics')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

The easiest way to make an ADDE request is to create a dictionary

That defines your parameters. Here we have a generic request

irLocalDataSet = getLocalADDEEntry('TORNADO', 'GOES-13 IR')

ADDE_IR_loadRequest = dict(

 server='localhost',

 localEntry=irLocalDataSet,

 place=Places.CENTER,

 size=(100,200),

 coordinateSystem=LATLON,

 location=(37.0,-94.5),

 mag=(1, 1),

 unit='TEMP',

)

Assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Page 46 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Define the output file names

textFileName = os.path.join(statisticsPath, "stats.txt")

textOutputFile = open(textFileName, "w")

csvFileName = os.path.join(statisticsPath, "stats.csv")

csvOutputFile = open(csvFileName, "wb")

csvData = csv.writer(csvOutputFile, delimiter=",")

csvData.writerow(["Time", "latitude", "longitude", "geometricMean", "min", "median", "max", "kurtosis", "numPoints",

"skewness", "stdDev", "variance"])

Now make the request using the function loadADDEImage

This returns an object containing data and metadata

for pos in range(-4,1):

 irData = loadADDEImage(position=(pos),band=4, **ADDE_IR_loadRequest)

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporaary data object

Second, multiply the first results to the temporary data object

 maskedData = mask(irData, 'lt', temperatureThreshold, 1)

 finalDataSet = mul(irData, maskedData)

pass the irData into the Statistics package

 stats = Statistics(finalDataSet)

open a file and write out the statistics data

 textOutputFile.write(" stat and value for: %s \n" % irData["nominal-time"])

 textOutputFile.write(" geometric mean: %s \n" % stats.geometricMean())

 textOutputFile.write(" kurtosis: %s \n" % stats.kurtosis())

 textOutputFile.write(" num points: %s \n" % stats.numPoints())

 textOutputFile.write(" skewness: %s \n" % stats.skewness())

 textOutputFile.write(" std dev: %s \n" % stats.standardDeviation())

 textOutputFile.write(" variance: %s \n" % stats.variance())

 textOutputFile.write("\n")

Page 47 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

import the csv library for writing out the

statistics values

 theTime = str(irData["nominal-time"])[11:16]

 csvData.writerow([theTime, "37.0", "-94.5", stats.geometricMean(), stats.min(), stats.median(), stats.max(),

stats.kurtosis(),

 stats.numPoints(), stats.skewness(), stats.standardDeviation(), stats.variance()])

csvOutputFile.close()

textOutputFile.close()

The last section of the script will annotate an image

with the information from the statistics package.

Create some strings from the data object to be able

to annotate our window with the stats values.

min = 'min: %s' % (

 stats.min()

)

max = 'max: %s' % (

 stats.max()

)

stddev = 'std dev: %s' % (

 stats.standardDeviation()

)

geomean = 'geometric mean: %s' % (

 stats.geometricMean()

)

numpoints = 'num points: %s' % (

 stats.numPoints()

)

Create a string from the data to make it

easier to label the image.

irLabel = '%s %s' % (

 irData['sensor-type'],

 irData['nominal-time']

)

Page 48 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Build a window with a single panel

panel = buildWindow(height=600,width=900)

Import enhancement table

Create a layer from the infrared data object

IRColorTableFile = os.path.join(enhancementPath, 'Tornado-IR.xml')

IRTable = importColorTable(IRColorTableFile, overwrite=True)

IRTableName = IRTable.getName()

When changing attributes, some are panel based and

others are layer based. In the following steps, they are:

Change the projection (panel)

Turn off the wire frame box (panel)

Change the center point (panel)

Add the statistics values (panel)

Add a layer label (layer)

Save the output file (panel)

irLayer = panel[0].createLayer('Image Display', finalDataSet)

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

irLayer.setColorScale(visible=True, placement='Top', showUnit=True, size=20)

irLayer.setLayerLabel(label=irLabel, size=14)

panel[0].setProjection('US>States>N-Z>Oklahoma')

panel[0].setCenter(33,-97,scale=.5)

panel[0].setWireframe(False)

panel[0].annotate(min, line=430,element=30, size=18, color='White', alignment=('right','center'))

panel[0].annotate(max, line=460,element=30, size=18, color='White', alignment=('right','center'))

panel[0].annotate(stddev, line=490,element=30, size=18, color='White', alignment=('right','center'))

panel[0].annotate(geomean, line=520,element=30, size=18, color='White', alignment=('right','center'))

panel[0].annotate(numpoints, line=550,element=30, size=18, color='White', alignment=('right','center'))

fileName = os.path.join(imagePath, 'stats-image.jpg')

panel[0].captureImage(fileName)

Page 49 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

grid-list.py
import os

from glob import glob

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

Some of the path definitions are not not used with in the script,

but rather in subsequent scripts

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

gridPath = os.path.join(scriptingPath, 'tornado-model')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

Grid file names can be long, assigning the value to a variable

makes a script easier to read

gridFileName = os.path.join(gridPath, 'RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0006_000_NA_XXX_XXXX_XXX.grib2')

Create a dictionary to define the file name to be used. The parameter

filename is used with many of the grid functions.

modelData=dict(

 filename=gridFileName

)

List all the fields in the grib file

listGridFieldsInFile(**modelData)

Page 50 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Using the v-component field, list all the levels for the v-component

listGridLevelsInField(field='v-component_of_wind_isobaric', **modelData)

Again using the v-component field, list all the times available

listGridTimesInField(field='v-component_of_wind_isobaric', **modelData)

Create a list of files

fileMatch = os.path.join(gridPath, '*.grib2')

fileList = glob(fileMatch)

print fileList

List each of the individual file names

for gridFile in fileList:

 print gridFile

Here is an example of a grib file containing multile times

timesFileName = os.path.join(gridPath, 'multiple-times')

timeList = listGridTimesInField(field='v-component_of_wind_isobaric', filename=timesFileName)

print timeList

Page 51 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

grid-display.py
import os

import java.awt.Color as Color

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

gridPath = os.path.join(scriptingPath, 'tornado-model')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

Grid file names can be long, assigning the value to a variable

makes a script easier to read

gridFileName = os.path.join(gridPath, 'RUC-USLC13KM_105_2011_142_05_22_RH1500_FH0006_000_NA_XXX_XXXX_XXX.grib2')

Create a dictionary to define the file name to be used. The parameter

filename is used with many of the grid functions.

modelData = dict(

 filename = gridFileName

)

Load the model data for the following grids:

v component of the at 25000 Pa for the verification time of 2011-05-22 @ 21:00:00Z

w component of the at 25000 Pa for the verification time of 2011-05-22 @ 21:00:00Z

vWind = loadGrid(field='v-component_of_wind_isobaric', level='25000 Pa', time='2011-05-22 21:00:00Z', **modelData)

uWind = loadGrid(field='u-component_of_wind_isobaric', level='25000 Pa', time='2011-05-22 21:00:00Z', **modelData)

Page 52 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Create a data object of wind speed.

windSpeed = (uWind**2+vWind**2)**.5

The IDV function sqrt could also be used:

windSpeed=sqrt(pow(uWind,2)+pow(vWind,2))

Create a flow vector using the IDV function makeVector

flowVectors = makeVector(uWind,vWind)

Import enhancement tables

windSpeedColorFile = os.path.join(enhancementPath, 'Tornado-Jet-Wind-Speed.xml')

windSpeedColorTable = importColorTable(windSpeedColorFile, overwrite=True)

windSpeedTableName = windSpeedColorTable.getName()

Build a window with a height of 500 pixels and width of 600 pixels

panel = buildWindow(height=700,width=900)

Add individual layers to the existing window and set enhancement table and data ranges

windSpeedLayer = panel[0].createLayer('Image Display', windSpeed)

windSpeedLayer.setEnhancement(windSpeedTableName, range=(0,80))

windSpeedLayer.setLayerLabel(visible=False)

streamLineLayer = panel[0].createLayer('Streamline Plan View', flowVectors)

streamLineLayer.setColor(Color.cyan)

streamLineLayer.setLineWidth(2)

streamLineLayer.setLayerLabel(visible=False)

Set the center latitude, longitude and scale

panel[0].setProjection('US>Central U.S.')

panel[0].setCenter(35, -97, scale=1.5)

fileName = os.path.join(imagePath,'isotachs-streamlines.gif')

panel[0].captureImage(fileName)

Page 53 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

grid-exercise.py
import os

from glob import glob

import java.awt.Color as Color

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users^

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

gridPath = os.path.join(scriptingPath, 'tornado-model')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

Initialize a movie loops for wind speed and streamlines

windSpeedLoop = []

streamLineLoop = []

capeLoop = []

Loop through all the files to make a movie

fileMatch = os.path.join(gridPath, '*.grib2')

fileList = glob(fileMatch)

for gridFile in fileList:

Page 54 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Load the model data for the following grids:

v component of the at 25000 Pa

w component of the at 25000 Pa

 print gridFile

 vWind = loadGrid(field='v-component_of_wind_isobaric', level='25000 Pa', filename=gridFile)

 uWind = loadGrid(field='u-component_of_wind_isobaric', level='25000 Pa', filename=gridFile)

 cape = loadGrid(field='Convective_available_potential_energy_surface', level='25000 Pa', filename=gridFile)

Create a data object of wind speed.

 windSpeed = (uWind**2+vWind**2)**.5

 windSpeedLoop.append(windSpeed)

The IDV function sqrt could also be used:

windSpeed = sqrt(pow(uWind,2)+pow(vWind,2))

Create a flow vector using the IDV function makeVector

 flowVectors = makeVector(uWind, vWind)

 streamLineLoop.append(flowVectors)

Add new forecast hour for CAPE to loop

 capeLoop.append(cape)

Import enhancement tables

windSpeedColorFile = os.path.join(enhancementPath, 'Tornado-Jet-Wind-Speed.xml')

windSpeedColorTable = importColorTable(windSpeedColorFile, overwrite=True)

windSpeedTableName = windSpeedColorTable.getName()

capeColorFile = os.path.join(enhancementPath,'Tornado-Cape.xml')

capeColorTable = importColorTable(capeColorFile, overwrite=True)

capeTableName = capeColorTable.getName()

Page 55 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Build a window with a height of 500 pixels and width of 600 pixels

panel = buildWindow(height=700,width=900)

Add individual layers to the existing window and set enhancement table and data ranges

capeLayer = panel[0].createLayer('Image Sequence Display', capeLoop)

capeLayer.setEnhancement(capeTableName, range=(4000,7550))

capeLayer.setLayerLabel(visible=False)

windSpeedLayer = panel[0].createLayer('Image Sequence Display', windSpeedLoop)

windSpeedLayer.setEnhancement(windSpeedTableName, range=(0,80))

windSpeedLayer.setLayerLabel(visible=False)

streamLineLayer = panel[0].createLayer('Streamline Plan View', streamLineLoop)

streamLineLayer.setColor(Color.cyan)

streamLineLayer.setLineWidth(2)

streamLineLayer.setLayerLabel(visible=False)

Set the center latitude, longitude and scale

panel[0].setProjection('US>Central U.S.')

panel[0].setCenter(35, -97, scale=1.5)

fileName = os.path.join(imagePath, 'winds-cape.gif')

writeMovie(fileName)

Page 56 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

final-exercise.py
import os

from glob import glob

import java.awt.Color as Color

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users^

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

gridPath = os.path.join(scriptingPath, 'tornado-model')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath,'Images')

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Create a dictionary for a basemap image

baseMapDataSet = makeLocalADDEEntry(dataset='TORNADO', imageType='Land Sea Mask', mask=basePath, format='McIDAS Area',

save=True)

baseMapParms = dict(

 server='localhost',

 localEntry=baseMapDataSet,

 size='ALL'

)

Request basemap data

baseMapData = loadADDEImage(**baseMapParms)

Page 57 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Get local data set information for IR and

create a dictionary for the IR data - this will be used in the loop

irLocalDataSet = getLocalADDEEntry('TORNADO', 'GOES-13 IR')

ADDE_IR_loadRequest = dict(

 debug=True,

 server='localhost',

 localEntry=irLocalDataSet,

 size='ALL',

 mag=(1,1),

 unit='TEMP',

)

Initialize a position number to be used for requestiong IR data

irPos = -4

Initialize a movie loops for wind speed and streamlines and ir data

windSpeedLoop = []

streamLineLoop = []

irLoop = []

Loop through all the files to make a movie

fileMatch = os.path.join(gridPath, '*.grib2')

fileList = glob(fileMatch)

for gridFile in fileList:

Load the model data for the following grids:

v component of the at 25000 Pa

w component of the at 25000 Pa

 vWind = loadGrid(field='v-component_of_wind_isobaric', level='25000 Pa', filename=gridFile)

 uWind = loadGrid(field='u-component_of_wind_isobaric', level='25000 Pa', filename=gridFile)

Page 58 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

Create a data object of wind speed.

 windSpeed = (uWind**2+vWind**2)**.5

 windSpeedLoop.append(windSpeed)

The IDV function sqrt could also be used:

windSpeed = sqrt(pow(uWind,2)+pow(vWind,2))

Create a flow vector using the IDV function makeVector

 flowVectors = makeVector(uWind, vWind)

 streamLineLoop.append(flowVectors)

request IR data

 irData = loadADDEImage(position=irPos, **ADDE_IR_loadRequest)

 irPos = irPos+1

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporary data object

Second, multiply the first results to the temporary data object

 maskedData = mask(irData, 'lt', temperatureThreshold, 1)

 finalIRData = mul(irData, maskedData)

Add IR data to loop

 irLoop.append(finalIRData)

Import enhancement tables

windSpeedColorFile = os.path.join(enhancementPath, 'Tornado-Jet-Wind-Speed.xml')

windSpeedColorTable = importColorTable(windSpeedColorFile, overwrite=True)

windSpeedTableName = windSpeedColorTable.getName()

basemapTableFile = os.path.join(enhancementPath, 'Tornado-Basemap.xml')

basemapTable = importColorTable(basemapTableFile, overwrite=True)

basemapTableName = basemapTable.getName()

Page 59 of 59

McIDAS-V Tutorial – An Introduction to Jython Scripting July 2016 – McIDAS-V version 1.6

IRColorTableFile = os.path.join(enhancementPath, 'Tornado-IR.xml')

IRTable = importColorTable(IRColorTableFile, overwrite=True)

IRTableName = IRTable.getName()

Build a window with a height of 500 pixels and width of 600 pixels

panel = buildWindow(height=700, width=900)

Add individual layers to the existing window and set enhancement table and data ranges

baseMapLayer = panel[0].createLayer('Image Display', baseMapData)

baseMapLayer.setEnhancement(basemapTableName, range=(0,255))

irLayer = panel[0].createLayer('Image Sequence Display', irLoop)

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

irLayer.setColorScale(visible=True, placement='Top', showUnit=True)

windSpeedLayer = panel[0].createLayer('Image Sequence Display', windSpeedLoop)

windSpeedLayer.setEnhancement(windSpeedTableName, range=(0,80))

streamLineLayer = panel[0].createLayer('Streamline Plan View', streamLineLoop)

streamLineLayer.setColor(Color.cyan)

streamLineLayer.setLineWidth(2)

streamLineLayer.setLayerLabel(visible=True)

baseMapLayer.setLayerLabel(' ', visible=False)

irLayer.setLayerLabel(label='%longname% Joplin Tornado IR Brightness Temperatures less than ' +

str(temperatureThreshold) + 'K', style='NONE', size=12, color='White')

windSpeedLayer.setLayerLabel(label='Wind Speed and Streamlines', style='NONE', size=12, color='White')

streamLineLayer.setLayerLabel(label='%timestamp%')

panel[0].annotate('Joplin, Missouri - >', lat=37.15, lon=-94.5,size=18, font='SansSerif',

alignment=('left','center'), color='White')

Set the center latitude, longitude and scale

panel[0].setProjection('US>Central U.S.')

panel[0].setCenter(35, -97, scale=1.5)

fileName = os.path.join(imagePath, 'final-example.gif')

writeMovie(fileName)

