

McIDAS-V Tutorial
An Introduction to Jython Scripting and Data Analysis

updated April 2024 (software version 1.9)

McIDAS-V is a free, open source, visualization and data analysis software package that is the next generation in SSEC's 50-year history of

sophisticated McIDAS software packages. McIDAS-V displays weather satellite (including hyperspectral) and other geophysical data in 2- and 3-

dimensions. McIDAS-V can also analyze and manipulate the data with its powerful mathematical functions. McIDAS-V is built on SSEC's VisAD

and Unidata's IDV libraries. The functionality of SSEC's HYDRA software package is also being integrated into McIDAS-V for viewing and

analyzing hyperspectral satellite data.

McIDAS-V version 1.2 included the first release of fully supported scripting tools. Running scripts with McIDAS-V allows the user to automatically

process data and generate displays for web pages and other environments. The McIDAS-V scripting API is written in a java implementation of

Python called Jython. The McIDAS-V scripting library is still under development and new tools will be added with future releases of McIDAS-V.

You will be notified at the start-up of McIDAS-V when new versions are available on the McIDAS-V webpage -

https://www.ssec.wisc.edu/mcidas/software/v/.

If you encounter any errors or would like to request an enhancement, please post questions to the McIDAS-V Support Forums -

https://mcidas.ssec.wisc.edu/forums/. The forums also provide the opportunity to share information with other users.

This tutorial assumes that you have McIDAS-V installed on your machine, and that you know how to start McIDAS-V. If you cannot start McIDAS-

V on your machine, you should follow the instructions in the document entitled McIDAS-V Tutorial – Installation and Introduction. More training

materials are available on the McIDAS-V webpage and in the “Getting Started” chapter of the McIDAS-V User's Guide, which is available from the

Help menu within McIDAS-V.

Terminology

There are two windows displayed when McIDAS-V first starts, the McIDAS-V Main Display (hereafter Main Display) and the McIDAS-V

Data Explorer (hereafter Data Explorer).

The Data Explorer contains three tabs that appear in bold italics throughout this document: Data Sources, Field Selector, and Layer Controls.

Data is selected in the Data Sources tab, loaded into the Field Selector, displayed in the Main Display, and output is formatted in the Layer

Controls.

Menu trees will be listed as a series (e.g., Edit -> Remove -> All Layers and Data Sources). Mouse clicks will be listed as combinations (e.g.,

Shift+Left Click+Drag).

https://www.ssec.wisc.edu/mcidas/software/v/
https://mcidas.ssec.wisc.edu/forums/

Page 2 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Python vs. Jython

Fact: You will do all of your McIDAS-V programming in the Python programming language.

Fact: McIDAS-V uses an implementation of the Python programming language called Jython.

Fact: The original and most widely used implementation of the Python programming language is not Jython; the full and proper name for

that one is actually CPython. (In case you're wondering, Jython is implemented in Java, and CPython is implemented in C!). In day-to-day

usage, CPython is often referred to as just “Python.”

What does all that mean?

As you learn McIDAS-V scripting, you should know that all the documentation you'll find across the web for the Python programming

language (specifically, version 2.7) is relevant and accurate. Jython is very careful to retain compatibility with the Python language. This

includes almost the entire Python standard library, which is why we have access to the functions we need to import, like glob and basename.

However, the most important distinction between Jython and CPython is the availability of libraries. Because Jython is Java-based, we do

not generally get to use the Python libraries that depend on "native" code. As a result, there is a large list of libraries we cannot use in

Jython, including:

 SciPy

 NumPy

 matplotlib

 netcdf4-python

 h5py

Once you are comfortable with the basics of the Python programming language, the remainder of learning McIDAS-V scripting is largely

about learning the "McIDAS-V way of doing things": instead of NumPy, matplotlib, and netcdf4-python, we will use the VisAD data model,

VisAD displays, and NetCDF-Java to get our work done.

In summary, Jython's language and standard library are the same as CPython, but many non-standard Python libraries such as NumPy are not

available in Jython. However, McIDAS-V has good alternatives for data access, plotting, and numerical computation.

Page 3 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Using the Jython Shell

The Jython Shell consists of an output window on top and an input field on the bottom. The user enters Jython into the input field. When

the Enter key or "Evaluate" is pressed, the Jython input is evaluated and output is shown in the output window. The Jython Shell is a great

tool to begin writing scripts that can be run from the background. When inputting commands, the Jython Shell runs in single or multi-line

mode. You can switch modes by using the double down arrows or with the shortcut Ctrl+/. The Evaluate button also has a shortcut of

Shift+Enter.

Here is a chart containing keyboard shortcuts for the Jython Shell:
Enter Evaluate command in single-line input mode

Shift+Enter Evaluate command in single or multi-line input mode

Ctrl+/ Switch between single and multi-line input modes

Ctrl+p Recall a previously evaluated command

Ctrl+n Recall the next run command, assuming Ctrl+p was already used

Page 4 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

1. Using the Jython Shell, create a window with a single panel Map Display.

a. In the Main Display, select Tools -> Formulas -> Jython Shell to open the Jython Shell.

b. In the input field, type:

panel = buildWindow()

Click Evaluate.

buildWindow is the function used to create an object that contains an array of panels. This created a window, just as you would using the

GUI with File -> New Display Window….

2. Create another window, this time with a Globe Display. Using the same Jython Shell, in the input field, type:

globePanel = buildWindow(height=600, width=600, panelTypes=GLOBE)

Click Evaluate.

You now have two single-paneled displays, each of which can be modified.

3. Turn off the wireframe box on the Map Display and then rotate the Globe Display.

In the input field, type:

panel[0].setWireframe(False)

Click Evaluate.

In the input field, type:

globePanel[0].setAutoRotate(True)

 Click Evaluate.

setWireframe and setAutoRotate are methods which operate on an object. In these examples, the objects are panel and globePanel.

Page 5 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Basic Jython Terminology

In the above examples we introduced the terms function, method and object. In the most general terms, an object is returned from a function

and a method operates on an object and may return a new object.

In steps 1 and 2, the buildWindow function was used to create an object, in this case an array of panels. Objects can have one or more

attributes and these attributes are defined by a class. In later examples of this tutorial, you will see the importance of knowing these attributes.

Methods are used to operate on an object. In step 3, setWireframe operated on the panel object by turning off the wireframe box.

The word object can be intimidating because it hints at the topic of object-oriented programming, which can be complex and confusing.

However, as McIDAS-V programmers, we just need to know that an object is a special kind of variable that has functions associated with it.

These special kinds of functions are referred to as methods.

It is important to understand how to interact with the kinds of objects encountered frequently. For example, the list (described later) is an

object. For this particular kind of object, methods like append and remove can be used to edit the object.

4. Click the Expand Input Field icon to the right of the input field so multiple lines can be entered into the Jython Shell. Enter the

following into the Jython Shell.

Create an object called myList. In the input field, type: This code results in:

myList = [1, 2, 3] [1, 2, 3]

print(myList)
Click Evaluate.

 Append an item to the object. In the input field, type: This code results in:

myList.append(4) [1, 2, 3, 4]

print(myList)
Click Evaluate.

 Remove an item from the object. In the input field, type: This code results in:

myList.remove(2) [1, 3, 4]

print(myList)
Click Evaluate.

Page 6 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Defining new types of objects is possible, but it is outside the scope of this tutorial. As a McIDAS-V programmer, most of the objects needed

are already defined. For example, in McIDAS-V, there is a Window object, and its size can be adjusted with the method setSize.

5. Create an image window, and adjust the size of the window with setSize.

 In the input field, type:

panel2 = buildWindow()

panel2[0].setSize(800,800)
Click Evaluate.

This code results in a window being built with a size of 800x800. This window can now be closed.

It is important to know the input parameters for each of the functions and methods. McIDAS-V Jython functions and methods are

documented in the scripting section of the McIDAS-V User's Guide:

http://www.ssec.wisc.edu/mcidas/doc/mcv_guide/current/misc/Scripting/Scripting.html

Any documentation for the core Python (2.7) language and standard library will be valid for Jython and McIDAS-V. Python has become a

favorite learning language, so there is a lot of information available. The syntax is case sensitive and adheres to strict indentation practices.

Here are a few good sources of information:

• Learn Python The Hard Way (http://learnpythonthehardway.org/book/index.html)

• Python documentation (https://docs.python.org/2/), especially the tutorial (https://docs.python.org/2/tutorial/)

• Style Guide for Python Code (https://www.python.org/dev/peps/pep-0008/)

Using the Jython Shell (continued)

6. The Map Display will be used in the remaining examples, so at this time, close the Globe Display.

7. Change the projection and center point of the display. The syntax for setting a projection is similar to the menu structure you see when

you change the projection using the GUI in the Main Display. Note that Jython is a case sensitive language, and you must type things

exactly as documented here.

a. In the input field, type: panel[0].setProjection('US>States>Midwest>Wisconsin')
Click Evaluate.

b. In the input field, type: panel[0].setCenter(43.0,-89.0)

http://www.ssec.wisc.edu/mcidas/doc/mcv_guide/current/index.php?page=misc/Scripting/Scripting.html
http://learnpythonthehardway.org/book/index.html
https://docs.python.org/2/
https://docs.python.org/2/tutorial/index.html
https://www.python.org/dev/peps/pep-0008/

Page 7 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Click Evaluate.

8. Add some annotations to the display.

a. Determine the available fonts for your OS. In the input field, type (the 4 spaces before print are necessary):

for fontname in allFontNames():

 print fontname

Click Evaluate.

b. From the results, pick a font for the next commands. In these examples, SansSerif is used. In the input field, type (all one

line):

here = panel[0].annotate('You Are Here', size=20, font='SansSerif', lat=43.5,
lon = -89.2, color='Red')

Click Evaluate.

The bottom left corner of the text is located at the specified latitude/longitude coordinates. Line and element coordinates are also

available in annotate. Color can be specified using RGB values or the color name. html tags can also be used to do things like making

the font bold.

c. In the input field, type (all one line):

plus = panel[0].annotate('+', size=20, font='SansSerif', line=200,

element=295, color=[1.0,0.0,1.0])

Click Evaluate.

d. When you are through adding annotations to the display, close the window created with buildWindow.

Page 8 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Indentation in Python

In step 8a, it was required that the print line be indented 4 spaces. Python syntax is focused on code readability. The Python programming

language requires specific, consistent indentation of source code and uses block indentation to control the flow. This tutorial, as well as any

documentation of McIDAS-V scripting, will use indentation of 4 spaces (https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces). Not

all programming languages require this specific indentation.

For example, consider the following example of valid IDL code:

 myList = [1, 2, 3] This code results in:

for i=0, n_elements(myList)-1 do begin 1

print, myList[i] 2

endfor 3

IDL control blocks (if, for, foreach, while, etc.) do not need indentation to work properly. The IDL code above is not formatted well, but it

still runs as expected.

9. Run commands in the Jython Shell to become accustomed to the indentation required for scripts to run.

a. In the input field, type:

myList = [1, 2, 3]

for thing in myList:

print(thing)

Click Evaluate.

The Jython Shell raises an error:

SyntaxError: mismatched input 'print' expecting INDENT

The only thing wrong with this Python code is the missing 4-space indentation in front of print.

b. Add a 4-space indentation to the print statement. In the input field, type:

myList = [1, 2, 3] This code results in:

for thing in myList: 1

 print(thing) 2

Click Evaluate. 3

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

Page 9 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

c. The indentation of print(thing) is required by Python. However, there is no need for an ENDFOR. Every indented line is

considered to be “inside” the for loop. In the input field, type:

myList = [1, 2, 3]

endingMessage = "Loop is finished"

for thing in myList:
 print(thing)

print endingMessage

Click Evaluate.

This code results in:

1

2

3

Loop is finished

d. “Loop is finished” from the previous example was only printed a single time after the for loop. This is because print

endingMessage is one indentation level to the left of those inside the for loop, indicating the end of the for block. The same is

true for if/else. In the input field, type:

mcv_is_cool = True

if mcv_is_cool:

 print "McIDAS-V is great!"
else:

 print "McIDAS-V is horrible!"

Click Evaluate.

This code results in:

McIDAS-V is great!

Again, notice the lack of ENDIF or ENDELSE. Or, comparing to C-style languages, note the absence of anything like a

closing curly bracket. In Python, the end of a control block is indicated by a “dedent” (i.e. the next line starts one indentation

Page 10 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

level to the left).

e. In review, the control flow in Python is indicated with indentation, as in the following code. In the input field, type:

condition = True

if condition:

 print "beginning of if block"

else:
 print "beginning of else block"

print "end of if/else block"

Click Evaluate.

This code results in:

beginning of if block

beginning of if/else block

Note the colons at the end of if and else, lack of parentheses around condition, indentation to indicate the start of the if block,

and the “dedent” to indicate the end of the entire if/else block. If/else was used in this example, but the same holds true for

other control statements like while and for.

Lists and For in Loops in Python

Python has a list data type similar to arrays in scientific programming languages like IDL or MATLAB. However, there is a difference.

10. Follow these steps to see how Python’s list works.

a. In the input field, type: zero_to_ten = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Click Evaluate.

b. Indexing is zero-based. In the input field, type and evaluate: print zero_to_ten[5]

This code results in:

5

Page 11 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

c. “Slicing” syntax can be used, but be careful! The second part of the slice is the index after the last element selected by the

slice. In the input field, type and evaluate: print zero_to_ten[3:6]

This code results in:

 [3, 4, 5]

The 6 is not included.

d. Python lists are not restricted to single data types as arrays are in other languages. Python lists can contain mixed data types.

In the input field, type and evaluate: myList = [0, 1, 'foo', 2]

This property can be useful but makes the list data type a poor choice for representing large sets of numbers often needed in

scientific computing.

e. A common way to loop through lists in Python is with the for..in syntax. In the input field, type and evaluate:

myList = [0, 1, 'foo', 2]
for thing in myList:

 print thing

This code results in:

 0

 1

 foo

 2

f. If indices are needed, like in a classical for loop, you can “enumerate” the list. In the input field, type and evaluate:

for (i, thing) in enumerate(myList):

 print 'The list at index %d is: %s' % (i, thing)

This code results in:

 The list at index 0 is: 0

 The list at index 1 is: 1

 The list at index 2 is: foo

 The list at index 3 is: 2

Lists are powerful and ubiquitous in Python, so get to know them. An example of a for loop will be used in the next section to list directory

Page 12 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

information from images in a dataset.

Creating a Simple Local ADDE Request

So far, all of the functions have been customizing panel attributes. McIDAS-V scripting can also make ADDE requests to list and transfer

image data. Once data has been transferred, it can be used to create data layers.

11. Create local datasets to access the 2011 Joplin tornado infrared imagery. In the input field of the Jython Shell, type and evaluate

(irDataSet line is all one line):

dataDir = '<local-path>/Data/Scripting/tornado-areas/IR'
irDataSet = makeLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR', mask=dataDir,

format='McIDAS Area', save=True)

12. listADDEImages is a function that creates a list of dictionaries containing information about each available image. Dictionaries will be

described in more detail later in this tutorial. Request a listing of all images from the dataset TORNADO. In the input field, type and

evaluate:

dirList = listADDEImages(server='localhost', position='ALL', localEntry=irDataSet)

13. Earlier, we listed all the available fonts found on your machine. Using the same techniques, list the directory information for each image.

In the input field, type and evaluate (note that “\n” is a new-line character, meaning an empty line will be printed at the beginning of each

iteration of the for loop):

for imageDir in dirList:

 print '\nNew image directory %s %s' % (imageDir['sensor-type'], imageDir['nominal-time'])

 print '-'*55
 for key,value in imageDir.iteritems():

 print key,value

14. Make an ADDE request to get the imagery data from the first keyword parameter pairing returned from listADDEImages.

loadADDEImage is the function used to request imagery from an ADDE server. The inputs to loadADDEImage are in the form of

keyword, value pairs. The dictionaries returned from listADDEImages are in this same format and can be used as inputs to

loadADDEImage. In the input field, type and evaluate:

imageData = loadADDEImage(size='ALL', **dirList[1])

15. loadADDEImage returns one object containing a list of metadata and an array of data. Build a new window using buildWindow and

display the data using createLayer. In the input field, type and evaluate:

Page 13 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

panel = buildWindow(height=600, width=900, panelTypes=MAP)

dataLayer = panel[0].createLayer('Image Display', imageData)

Use the method captureImage to save the display to a file. Because McIDAS-V does a screen capture on some platforms, be sure the

entire window is showing and is not blocked by other windows, or your resulting image may not be complete. After viewing IR-

Image.jpg in a browser, close the image window. In the input field, type and evaluate:
panel[0].captureImage('<local-path>/Data/Scripting/Images/IR-Image.jpg')

Creating a Simple Remote ADDE Request

The data from the 2011 Joplin Missouri tornado are also found on the remote server pearl.ssec.wisc.edu. If you do not have internet access to

remote servers, continue with next section.

16. Request a listing of all images from the dataset TORNADO found on the server pappy.ssec.wisc.edu. Directories returned from a remote

listADDEImages request are identical to those of a local ADDE request and can be used as inputs to loadADDEImage. In the input

field, type and evaluate (all one line):
dirList = listADDEImages(server='pearl.ssec.wisc.edu', dataset='TORNADO', descriptor='GOES13',

position='ALL')

17. As with the local dataset, list the directory information for each image. In the input field, type and evaluate (the 4 space indentations are

necessary):

for imageDir in dirList:

 print '\nNew image directory %s %s' % (imageDir['sensor-type'], imageDir['nominal-time'])

 print '-'*55

 for key,value in imageDir.iteritems():
 print key,value

Dictionaries in Python

One useful data type in Python is called the dict, short for dictionary. A dictionary is a set of associations between “keys” and “values”.

Comparing this to a real life dictionary (the book of words and meanings), the “key” is the word, and the “value” is the definition of the word.

18. Run commands in the Jython Shell to become accustomed to dictionaries. The dictionaries created here are only to illustrate Python

syntax and not directly useful as inputs to McIDAS-V functions. In Python, the “keys” of a dictionary can be almost anything, as long as

Page 14 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

the value of that thing doesn’t change over the lifetime of the program. Numbers and strings are the most common “keys”; the value of 3

of ‘a’ doesn’t ever change. “Values”, in contrast, can be just about anything: numbers, strings, lists, and even other dictionaries.

a. Define a dictionary. In the input field, type and evaluate:

resolution = {
 # Key: Value,

 'Band1': '1km',

 'Band2': '4km',
 'Band3': '4km',

}

b. Print the list of keys included in the dictionary. In the input field, type and evaluate:

print resolution.keys()

c. Once the dictionary is defined, key/value pairs can be accessed with square brackets. In the input field, type and evaluate:

print resolution['Band1']

print resolution['Band2']

This code results in:

1km

4km

d. If 'Band1', 'Band2', etc. is too verbose, integer keys can be used instead. The code results are the same. In the input field, type

and evaluate:

resolution = {
 1: '1km',

 2: '4km',

 3: '4km',

}

print resolution[1]

print resolution[2]

e. Remember, the dictionary values can be arbitrarily complex. This makes it possible to represent a lot of useful information in

an accessible way. In the input field, type and evaluate:

sensor_info = {

Page 15 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

 'name': 'VIIRS',

 'bands': ['SVI01', 'SVM02', 'SVM03'],

 'resolution': ['375m', '750m', '750m'],

}

Print the keys and values of the bands and resolution. In the input field, type and evaluate:

for x in range(0,3):

 print 'band:',sensor_info['bands'][x],'resolution:',sensor_info['resolution'][x]

In this example, the ‘name’ key maps to a simple string, but the ‘bands’ and ‘resolution’ keys map to lists of band information.

Dictionaries are extremely flexible and are often used in McIDAS-V. The next section of this tutorial covers building a dictionary to

represent all parameters for a single ADDE request. That dictionary can then be passed to a McIDAS-V function that will return the data.

Using Dictionaries and Metadata to Formulate an ADDE Request

Most ADDE requests need many more parameters than the previous example. Specifying long lists of keyword parameters can be

cumbersome and create code that is difficult to read. To avoid these problems, you can take advantage of a Python dictionary. Using a

Python dictionary, you can specify all of the key:value pairs, or include just a few, and add the extra ones directly to the loadADDEImage

function call.

19. The next few steps require a lot of typing. If you'd like, you can cut and paste the lines from the <local path>/Data/Scripting/ADDE-

dictionary.txt file into the Jython Shell and then skip to the next step. All of the files used in this tutorial are printed at the end of the

document. Alternatively, use the editFile function via editFile('<local-path>/Data/Scripting /ADDE-dictionary.txt',encoding='UTF-8')

a. Earlier in the tutorial, you created a local ADDE dataset for GOES-13 IR dataset for the TORNADO case. Use

getLocalADDEEntry to get the value for localEntry and use it to create a dictionary to be use local data with loadADDEImage.

In the input field, type and evaluate:

irLocalDataSet = getLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR')

b. In the input field, type and evaluate (the 4 space indentation is required):

ADDE_IR_loadRequest = dict(

 localEntry = irLocalDataSet,

 size = 'ALL',
 time = ('23:45:00', '23:45:00'),

Page 16 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

 day = '2011142',

 unit = 'BRIT',

)

c. Make an ADDE request for infrared data using key:value pairs and a dictionary. The ** before the dictionary tells Python to

evaluate the dictionary's contents and include the key:value pairs in loadADDEImage. The dictionary must be last in the list.

In the input field, type and evaluate (Note that you can skip this step if the entire ADDE-dictionary.txt file was evaluated in the

previous step): irData = loadADDEImage(band=4, **ADDE_IR_loadRequest)

20. loadADDEImage returns one object containing a list of metadata and an array of data. Build a new window using buildWindow and

display the data using createLayer. The above request was for all the lines and elements (size='ALL'). Creating a window to show the

entire image would probably go beyond the extents of your desktop. To avoid this problem, use the metadata to create a window with

dimensions of half the number of lines and elements. In the input field, type and evaluate:

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

21. Now create layer objects for the infrared data. Use createLayer with the object irData. In the input field, type and evaluate:

irLayer = panel[0].createLayer('Image Display', irData)

22. Apply the 'Longwave Infrared Deep Convection' color table to the infrared layer. Since there is a unique name for each color table, the

syntax is a little different than that used with setProjection, and the entire naming structure is not necessary here. In the input field, type

and evaluate:

irLayer.setEnhancement('Longwave Infrared Deep Convection')

23. Using the values from the keywords 'sensor-type' and 'nominal-time' from the irData object, create a string to use with setLayerLabel

(remember that the 4 spaces of indentation are mandatory).

a. Print the list of keys included in the irData object. In the input field, type and evaluate:

print irData.keys()

b. In the input field, type and evaluate:

irLabel = '%s %s' % (

 irData['sensor-type'],
 irData['nominal-time']

)

Page 17 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

c. In the input field, type and evaluate:

irLayer.setLayerLabel(label=irLabel, size=16, color='White', font='SansSerif')

c. After checking the new layer label in the buildWindow Display, close the window.

Functions in Python

Functions are a way to refer to a piece of code that takes arguments and returns results based on those arguments. Functions are the key to

creating reusable code and avoiding repetition, and Python makes them easy to define and use. The next sections utilize functions in

McIDAS-V. In Python, defining functions is straightforward.

24. Create a function named add and demonstrate its usage with numbers and letters. Hopefully, 2 plus 2 will equal 4. As with loops and

if/else blocks, indentation/dedent indicate the end of the function. In the input field, type and evaluate:

def add(a, b):

 return a+b

print add(2,2)

25. Similar to IDL but unlike languages like C and FORTRAN, Python functions do not need to explicitly state the type of argument.

Consequences of this can be observed when attempting to use something other than numbers with the add function. In the input field,

type:

print add('a', 'b')
Click Evaluate.

This code results in:

ab

This still works. The + operator works just as well on 'a' and 'b' as it does on 1 and 2, so the function completes without error.

Jython Library

26. The above exercises used functions such as setLayerLabel and loadADDEImage. The code for these functions can be found in the

Jython Library. Open the Jython Library and search for code to set a layer label.

Page 18 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

a. In Main Display, select Tools -> Formulas -> Jython Library.

b. Open the System -> Background Processing Functions library.

c. Using the search utility type setLayerLabel. This shows you the code that sets a layer label. Keep pressing Enter or use the

up/down arrows to search for multiple instances of setLayerLabel in the library.

Note that users can share code by adding functions to the Local Jython Library. An example of this will be covered later in this tutorial.

Using Functions in a McIDAS-V Script

Building upon the previous examples, the next script uses the importEnhancement, mask and mul functions. mask and mul are system

functions, packaged with McIDAS-V.

The <local-path>/Data/Scripting/function.py file is an example script showing how to use these functions and ways to make the script

platform independent. These are not to be entered into the Jython Shell at this time. Read through the following portions of the script and

the associated comments to learn what the script is doing at each step.

The first line of the code imports common functions in the os library. These functions are used to create platform-independent path names.

import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

Page 19 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

imagePath = os.path.join(scriptingPath, 'Images')

The GOES-13 IR TORNADO dataset is used, this time with temperature (unit='TEMP') values requested:

This example gets the information from the dataset created previously in the tutorial

irLocalDataSet = getLocalADDEEntry('TORNADO','GOES-13 IR')

ADDE_IR_loadRequest = dict(

 debug=True,

 server='localhost',

 localEntry=irLocalDataSet,

 size='ALL',

 time=('23:45:00','23:45:00'),

 day='2011142',

 unit='TEMP',

)

irData = loadADDEImage(**ADDE_IR_loadRequest)

The mask function requires a temperature threshold:

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Applying a mask requires a two part process. First, a threshold temperature is applied to the data object returned from loadADDEImage,

creating a new data object of either values of 1's or missing. Second, the original data object is multiplied by the new data object. The data

object created by the mul function creates a data object that contains either temperature or missing values.

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporary data object

Second, multiply the first results to the temporary data object

maskedData = mask(irData, 'lt', temperatureThreshold, 1)

finalDataSet = mul(irData, maskedData)

The importEnhancement function reads in a file exported using the color table editor. The name of the color table is extracted and used

Page 20 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

with setEnhancement:

Import enhancement table

IRColorTableFile = os.path.join(enhancementPath, 'Tornado-IR.xml')

IRTable = importEnhancement(IRColorTableFile)

IRTableName = IRTable.getName()

As previously done, the last section of the script builds a window, creates the layer, applies the enhancement table and sets the projection.

Build a window

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add layers to the existing window set enhancement table and data ranges

irLayer = panel[0].createLayer('Image Display', finalDataSet)

irLayer.setLayerLabel('GOES-13 Temperatures less than ' + str(temperatureThreshold) + 'K

%timestamp%')

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

Set the center latitude, longitude and scale

panel[0].setProjection('US>States>N-Z>Oklahoma')

panel[0].setCenter(33, -97, scale=.5)

fileName=os.path.join(imagePath, 'ir-image.gif')

panel[0].captureImage(fileName)

27. From the Jython Shell, run function.py. In the input field, type:

editFile('<local-path>/Data/Scripting/function.py', encoding='UTF-8')

28. Evaluate the function.py file by clicking Evaluate.

29. Open a browser and view the file '<local-path>/Data/Scripting/Images/ir-image.gif'.

30. Close the display window created by the function.py script.

Page 21 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Creating Movies in a McIDAS-V Script

In the previous example, you created a single image. You can also create movies that contain loops of images. To do this, multiple data

requests must be made. The <local-path>/Data/Scripting/image-movie.py file is an example of the creation of movie loops in McIDAS-V.

In this example, the loop is created by making a call to listADDEImageTimes and multiple calls to loadADDEImage.

listADDEImageTimes is similar to listADDEImages, but returns a list of dictionaries containing only image days and times. Below is part

of the script with some comments. These are not to be entered into the Jython Shell at this time.

A Python list, as described previously, is used to store data objects and is initialized using the syntax below. As the script loops through

loadADDEImage calls, the data objects returned are appended to the list. In this script, myLoop is the Python list:

 myLoop=[]

listADDEImageTimes uses the dictionary parms as its input parameters. The dictionary object dateTimeList is returned and contains

keyword/value pair for each day and time.

dateTimeList = listADDEImageTimes(**parms)

The script then loops through all the dictionaries returned from the call to listADDEImageTimes. Using a for loop, individual directories,

dateTime, are extracted from the list dictionaries, dateTimeList, which was returned from listADDEImageTimes. The loop takes the time

value out of the dateTime dictionary which is used to create a new dictionary that is passed into loadADDEImage.

for dateTime in dateTimeList:

 imageTime = dateTime['time']

 ADDE_IR_loadRequest = dict(

 localEntry=irLocalDataSet,

 day=dateTime['day'],

 time=(imageTime,imageTime),

 band=4,

 unit='TEMP',

 size='ALL'

)

 IRData = loadADDEImage(**ADDE_IR_loadRequest)

 maskedData = mask(irData, ‘lt’, temperatureThreshold, 1)

 finalDataSet = mul(irData, maskedData)

Page 22 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

The data objects returned from listADDEImageTimes and passed through mask and mul are added to myLoop using the append method.

myLoop.append(finalDataSet)

Once the loop is completed, a window is built and myLoop is used to create an Image Sequence Layer which is saved as an animated gif.

bwLines = irData[‘lines’] / 2

bwEles = irData[‘elements’] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

irLayer = panel[0].createLayer('Image Sequence Display' ,myLoop)

fileName = os.path.join(imagePath, 'ir-loop.gif')

writeMovie(filename,globalPalette=False)

31. From the Jython Shell run image-movie.py. In the input field, type:

editFile('<local path>/Data/Scripting/image-movie.py', encoding='UTF-8')

32. Evaluate the image-movie.py file by clicking Evaluate.

33. Open a browser and view the file '<local-path>/Data/Scripting/Images/ir-loop.gif'.

Creating Your Own McIDAS-V Script

34. You now have all the tools necessary to write a script that creates a movie of the infrared images placed over a basemap. For this exercise,

a. import the enhancement table from <local-path>/Data/Scripting/Color-Enhancements/Tornado-basemap.xml

b. write a script that does the tasks listed below:

1. uses the local data files from the TORNADO 'GOES-13 IR' dataset

2. creates and uses the local McIDAS Area dataset for a base map

a. name the dataset TORNADO

b. assign the image type 'Land Sea Mask'

c. data is located <local-path>/Data/Scripting/tornado-areas/BASE

3. uses the entire size of the image of both datasets

4. loads a list IR temperature data that spans 14:45 on day 2011142 to and 02:45 on day 2011143

a. the mask function removes temperature greater than 250 K

b. uses the enhancement table <local-path>/Data/Scripting/Color-Enhancements/Tornado-IR.xml

c. applies the color enhancement with a range of 250 to 200 K

5. loads a single base map image and uses the enhancement table:

Page 23 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

 <local-path>/Data/Scripting/Color-Enhancements/Tornado-basemap.xml

6. builds a window 700 lines X 1000 elements

7. creates an Image Display layer from the base map dataset (do not include the layer label)

8. overlays an Image Sequence Display layer from the IR data list

9. adds a layer label to the IR data set which includes

a. the text 'Joplin Tornado'

b. timestamp

c. displayname

10. sets the projection to Central U.S.

11. changes the center point to 35N 97W with a scale factor of 1.5

12. turns off the wireframe box

13. adds the annotation 'Joplin, Missouri'; text is left and center justified at 37.15N and 94.5W

14. saves the movie with the file name of <local-path>/Data/Scripting/Images/image-exercise.gif

An example solution is available at <local path>/Data/Scripting/image-exercise.py. However, before checking the solution, it is

recommended that you try to complete the tasks on your own.

Page 24 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Running Scripts from a Command Prompt

So far in this tutorial, you have been running commands and scripts using the Jython Shell. Scripts can also be run from the command line

by adding the flag -script to the startup script.

35. Run the McIDAS-V script using the –script flag.

a. Exit McIDAS-V.

b. Open a terminal and change directory to the directory where McIDAS-V is installed (<user-path>/McIDAS-V-System)

c. Run the <local-path>/Data/Scripting/image-exercise.py script.

For Unix, type:

./runMcV –script <local-path>/Data/Scripting/image-exercise.py

For Windows, type:

runMcV.bat –script <local-path>/Data/Scripting/image-exercise.py

d. The progress of the script can be monitored by watching the mcidasv.log file in your McIDAS-V directory with the tail

command.

Type: tail -f <user-path>/McIDAS-V/mcidasv.log

Note that on Windows “tail” may not be a recognized command in a Command Prompt window. An alternative to this would

be to use a Windows PowerShell window and:

Type: Get-Content <user-path>/McIDAS-V/mcidasv.log –Wait –Tail 30

Type: Ctrl+c to escape the “tail” command.

e. From your browser, view the file <local-path>/Data/Scripting/Images/image-exercise.gif that was created from

<local-path>/Data/Scripting/image-exercise.py.

Bonus: Run the <local-path>/Data/Scripting/sandwich_example.py script to create a sandwich (IR overlaid on VIS) GOES-16 sandwich

display. The output image will be <local-path>/Data/Scripting/Images/Sandwich.jpg.

Page 25 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Running Scripts from a Command Prompt – Continued

The previous section evaluated a script from the script from the background with all variables defined within the script. It’s possible to

evaluate a background script while allowing the user to specify variables at runtime. This is done with the –scriptargs flag, which uses uses

standard Python optparse/argparse syntax within the script to specify the arguments. Anything after the scriptargs flag will be considered a

scripting argument, so scriptargs should be specified last. The <user-path> /Data/Scripting/user-band.py script uses argparse at the

beginning of the script to define the variable that the user specifies at runtime (band number):

from argparse import ArgumentParser

parser=ArgumentParser()

parser.add_argument('-b', '--band', action='store', dest='bnd', type=str, help='Band Number')

args = parser.parse_args()

The band number the user specifies at startup is then passed through loadADDEImage, setLayerLabel, and in the filename string for capture

Image.

36. From the same Command Prompt/Terminal window used in the last example, run the user-band.py script.

a. Run the user-band.py script with the –scriptargs flag to specify a band number of GOES-16 data to load. In this example,

band 13 will be specified (note the two dashes before “band”):

For Unix, type:

./runMcV –script <local-path>/Data/Scripting/user-band.py –scriptargs --band 13

For Windows, type:

runMcV.bat –script <local-path>/Data/Scripting/user-band.py –scriptargs --band 13

b. From your browser, view the file <local-path>/Data/Scripting/Images/band_*.jpg (where * is the band number) that was

created from <local-path>/Data/Scripting/user-band.py.

Page 26 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Introduction to Data Manipulation in McIDAS-V

This section of the tutorial will use the term “VisAD data object.” A VisAD data object contains the data as well as detailed information

about a data’s structure and type. These objects can also contain units, temporal and geospatial information. In this section of the tutorial, an

introduction to the VisAD data object is presented as well as a general introduction to accessing the information within the data object.

37. Restart McIDAS-V and load the '<local-path>/Data/Scripting/load_grid.py' script provided with this tutorial into the Jython Shell

(Tools -> Formulas -> Jython Shell). In the input field of the Jython Shell, type and evaluate:

editFile('<local-path>/Data/Scripting/load_grid.py', encoding='UTF-8')
Click Evaluate (or Shift+Enter) to load the script into the Jython Shell.

Click Evaluate again to execute the script.

38. Use the standard Jython function type() to display the class of the data contained in h8b1:

print type(h8b1)
Click Evaluate.

The h8b1 object belongs to a class called “MappedGeoGridFlatField.” This class is returned when data is loaded via the loadGrid()

function.

39. The Jython built-in type function does not describe how the data is structured. The JPythonMethod library built into McIDAS-V contains

a function called “whatTypes()”. This function describes the structure of any VisAD data object. whatTypes can be used for debugging.

In the input field of the Jython Shell, type and evaluate:

print whatTypes(h8b1)
Click Evaluate.

The h8b1 object domain contains latitude and longitude coordinates. The latitude and longitude coordinate unit is “degrees”. The

range of the h8b1 data object contains the data. In this case, the data are values of albedo. Albedo has no unit (Unit: 1).

40. View the data mapping. Type and evaluate: print getType(h8b1)

The result, ((Longitude, Latitude) -> albedo[unit:1]), displays a map of the albedo data (stored in the range) to the longitude (stored in

domain[0]) and latitude coordinates (stored in domain[1]).

http://www.ssec.wisc.edu/visad-docs/javadoc/visad/python/JPythonMethods.html

Page 27 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

41. Determine the size of the data and range of the coordinates. In the Jython Shell, type:

h8ds = getDomainSet(h8b1); print h8ds

Click Evaluate.

The semicolon (;) links the commands together. In this way, multiple commands can be entered on one line, and executed in

sequence. This output can be interpreted with the help of other commands run earlier. In the previous steps, evaluating the

whatTypes() function showed that the domain index for the longitude coordinate is 0 and the latitude coordinate is 1. This can also be

inferred from the getType() command. Therefore, in the output of getDomainSet(), Dimension 0 is longitude which has a range of

124.242645 to 125.749756, and Dimension 1 is latitude which has a range of 35.063034 to 36.36338. The getDomainSet() output

also shows that the length, or number of data points in this data are 441. If a user should use len(h8b1), the length of the

MappedGeoGridFlatField metadata is returned.

42. Once the data object domain set of a data object is retrieved (remember, this is the set of latitude and longitude coordinates), the latitude

and longitude values for each grid point can be accessed. Using the variable h8ds created in the previous step, type and evaluate:

h8latlons = getLatLons(h8ds)

h8lats = h8latlons[0]
h8lons = h8latlons[1]

Note: The JPythonMethod getLatLons resets the order of the longitude and latitude coordinates. This means that the latitude values

are always returned in the zero index, and the longitudes are always returned as the first index. To get return the shape of the

h8latlons array, type and evaluate:

import Numeric

print Numeric.shape(h8latlons)

Note: McIDAS-V’s see function allows for printing out all of the different options with Numeric. To do this, type and evaluate:

print see(Numeric)

43. Print the first four latitude points. Note: In the Jython Shell, it is a good practice to limit the size of data printed. Type and evaluate:

print h8lats[0:4]

http://www.ssec.wisc.edu/visad-docs/javadoc/visad/python/JPythonMethods.html#getLatLons(visad.GriddedSet,%20int%5B%5D)

Page 28 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

44. Additional methods for working with this data can be found in JPythonMethods (http://www.ssec.wisc.edu/visad-

docs/javadoc/visad/python/JPythonMethods.html). For example, a method to return the min/max of the data is getMinMax(). In the

Jython Shell, type and evaluate:

print getMinMax(h8b1)

This method returns that the range of albedo values in h8b1 goes from a minimum value of ~0.234 to a maximum value of ~0.553.

45. An additional JPythonMethod, getValues(), can be used to return the data points as float values. The values returned can be saved to a

variable named myData. In the Jython Shell, type and evaluate:

myData = getValues(h8b1)

a. Determine the type of myData. In the Jython Shell, type:

print type(myData)

The type returned is an array.

b. What is the length of the myData array? Does it match the length found in the domain set? In the Jython Shell, type:

print len(myData)

The length is 1. This does not match the length found in the domain set in the next command.

c. What is the length of myData[0]? In the Jython Shell, type:

print len(myData[0])

The length is 441, which should match the length reported in getDomainSet(h8b1) above. The actual shape of this array is a

1x441. Therefore, the first len() returns the length of the first dimension of the array myData. In this case, since there is only

one timestamp in the file, that length is 1. This is similar to a Fortran array of REAL myData(1,441). An alternative way of

returning the shape of the array would be to run:

print Numeric.shape(myData)

http://www.ssec.wisc.edu/visad-docs/javadoc/visad/python/JPythonMethods.html
http://www.ssec.wisc.edu/visad-docs/javadoc/visad/python/JPythonMethods.html

Page 29 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Files Used in this Tutorial

ADDE-dictionary.txt
This example assumes that the TORNADO dataset has been

defined on your workstation in the local ADDE Data Manager

<local path>/Data/Scripting/areas-files/IR

Create a dictionary to be used with loadADDEImage.

(remember the 4 space indentation is required)

irLocalDataSet = getLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR')

ADDE_IR_loadRequest = dict(

 server = 'localhost',

 localEntry = irLocalDataSet,

 size = 'ALL',

 time = ('23:45:00','23:45:00'),

 day = '2011142',

 unit = 'BRIT',

)

Make an ADDE request for infrared data using keyword=parameter

pairs and the dictionary.

irData = loadADDEImage(band=4, **ADDE_IR_loadRequest)

The ** before the dictionary tells python to evaluate the contents of the

dictionary and include the keyword=parameter with the request to

loadADDEImage. Note, the dictionary must be the last parameter specified.

Page 30 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

function.py
import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath=os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

This example gets the information from the dataset created previously in the tutorial

irLocalDataSet = getLocalADDEEntry('TORNADO', 'GOES-13 IR')

ADDE_IR_loadRequest = dict(

 debug=True,

 server='localhost',

 localEntry=irLocalDataSet,

 size='ALL',

 time=('23:45:00','23:45:00'),

 day='2011142',

 unit='TEMP',

)

irData = loadADDEImage(**ADDE_IR_loadRequest)

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Page 31 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporary data object

Second, multiply the first results to the temporary data object

maskedData = mask(irData, 'lt', temperatureThreshold, 1)

finalDataSet = mul(irData, maskedData)

Import enhancement table

IRColorTableFile = os.path.join(enhancementPath, 'Tornado-IR.xml')

IRTable = importEnhancement(IRColorTableFile)

IRTableName = IRTable.getName()

Build a window and turn off the wireframe box

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add layers to the existing window set enhancement table and data ranges

irLayer = panel[0].createLayer('Image Display', finalDataSet)

irLayer.setLayerLabel('GOES-13 Temperatures less than ' + str(temperatureThreshold) + 'K %timestamp%')

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

Set the center latitude, longitude and scale

panel[0].setProjection('US>States>N-Z>Oklahoma')

panel[0].setCenter(33, -97, scale=.5)

fileName=os.path.join(imagePath, 'ir-image.gif')

panel[0].captureImage(fileName)

Page 32 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

image-movie.py
import os

The ** before the dictionary tells python to evaluate the contents of the

dictionary and include the keyword=parameter with the request to

loadADDEImage. Note, the dictionary must be the last parameter specified.

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Initialize a python list

myLoop=[]

Create a dictionary for requesting images

irLocalDataSet = getLocalADDEEntry(dataset='TORNADO', imageType='GOES-13 IR')

parms = dict(

 server='localhost',

 localEntry=irLocalDataSet,

 position='ALL'

)

Page 33 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Create a list of all available Images using listADDEImageTimes

dateTimeList = listADDEImageTimes(**parms)

listADDEImages was successful, so now try loadADDEImage for each of the

directories returned. There may be occasions when the loadADDEImage fails

but we want to continue

for dateTime in dateTimeList:

 imageTime = dateTime['time']

 print dateTime['time']

 ADDE_IR_loadRequest = dict(

 localEntry=irLocalDataSet,

 day=dateTime['day'],

 time=(imageTime,imageTime),

 band=4,

 unit='TEMP',

 size='ALL',

)

 irData = loadADDEImage(**ADDE_IR_loadRequest)

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporaary data object

Second, multiply the first results to the temporary data object

 maskedData = mask(irData, 'lt', temperatureThreshold, 1)

 finalDataSet = mul(irData, maskedData)

 myLoop.append(finalDataSet)

Import enhancement table

IRColorTableFile=os.path.join(enhancementPath,'Tornado-IR.xml')

IRTable=importEnhancement(IRColorTableFile,overwrite=True)

IRTableName=IRTable.getName()

Page 34 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Build a window and turn off the wireframe box

bwLines = irData['lines'] / 2

bwEles = irData['elements'] / 2

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add layers to the existing window set enhancement table and data ranges

irLayer = panel[0].createLayer('Image Sequence Display', myLoop)

irLayer.setLayerLabel('GOES-13 Temperatures less than ' + str(temperatureThreshold) + ' %timestamp%')

irLayer.setEnhancement(IRTableName, range=(temperatureThreshold,200))

Set the center latitude, longitude and scale

panel[0].setProjection('US>States>N-Z>Oklahoma')

panel[0].setCenter(33,-97,scale=.5)

fileName = os.path.join(imagePath, 'ir-loop.gif')

writeMovie(fileName, globalPalette=False)

Page 35 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

image-exercise.py
import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

enhancementPath = os.path.join(scriptingPath, 'Color-Enhancements')

areaPath = os.path.join(scriptingPath, 'tornado-areas')

irPath = os.path.join(areaPath, 'IR')

basePath = os.path.join(areaPath, 'BASE')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

assign a temperature threshold used with mask() function

temperatureThreshold = 250.0

Create a dictionary for a basemap image

baseMapDataSet = makeLocalADDEEntry(dataset='TORNADO', imageType='Land Sea Mask', mask=basePath, format='McIDAS Area',

save=True)

baseMapParms = dict(

 server='localhost',

 localEntry=baseMapDataSet,

 size='ALL'

)

baseMapData = loadADDEImage(**baseMapParms)

irLocalDataSet = getLocalADDEEntry('TORNADO', 'GOES-13 IR')

ADDE_IR_loadRequest = dict(

 debug=True,

 server='localhost',

 localEntry=irLocalDataSet,

 size='ALL',

 mag=(1,1),

 position='ALL',

 unit='TEMP',

)

Page 36 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

irData = loadADDEImage(**ADDE_IR_loadRequest)

Initialize a python list

myLoop=[]

Create a list of all available Images using listADDEImageTimes

dateTimeList = listADDEImageTimes(**ADDE_IR_loadRequest)

listADDEImages was successful, so now try loadADDEImage for each of the

directories returned. There may be occasions when the loadADDEImage fails

but we want to continue

for dateTime in dateTimeList:

 imageTime = dateTime['time']

 print dateTime['time']

 ADDE_IR_loadRequest = dict(

 localEntry=irLocalDataSet,

 day=dateTime['day'],

 time=(imageTime,imageTime),

 band=4,

 unit='TEMP',

 size='ALL',

)

 irData = loadADDEImage(**ADDE_IR_loadRequest)

Applying a mask is a two part process.

First we assign a value of 1 or missing value to a temporary data object

Second, multiply the first results to the temporary data object

 maskedData = mask(irData, 'lt', temperatureThreshold, 1)

 finalDataSet = mul(irData, maskedData)

 myLoop.append(finalDataSet)

Page 37 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

Import enhancement tables

basemapTableFile = os.path.join(enhancementPath, 'Tornado-Basemap.xml')

basemapTable = importEnhancement(basemapTableFile, overwrite=True)

basemapTableName = basemapTable.getName()

IRColorTableFile=os.path.join(enhancementPath,'Tornado-IR.xml')

IRTable=importEnhancement(IRColorTableFile,overwrite=True)

IRTableName=IRTable.getName()

Build a window and turn off the wireframe box

bwLines = 700

bwEles = 1000

panel = buildWindow(height=bwLines, width=bwEles)

panel[0].setWireframe(False)

Add individual layers to the existing window and set enhancement table and data ranges

Note that the layer order is important

baseMapLayer = panel[0].createLayer('Image Display', baseMapData)

baseMapLayer.setEnhancement(basemapTableName, range=(0,255))

baseMapLayer.setLayerLabel(' ', visible=False)

irLayer = panel[0].createLayer('Image Sequence Display', myLoop)

irLayer.setLayerLabel('%longname% Joplin Tornado Temperatures less than ' + str(temperatureThreshold) + 'K

%timestamp%', size=14)

irLayer.setEnhancement(IRTableName,range=(temperatureThreshold, 200))

irLayer.setColorScale(visible=True, placement='Top', size=28, showUnit=True)

Set the center latitude, longitude and scale

panel[0].setProjection('US>Central U.S.')

panel[0].setCenter(35, -97, scale=1.5)

panel[0].annotate('Joplin, Missouri - >',lat=37.15, lon=-94.5,size=18,

font='SansSerif',alignment=('left','center'),color='White')

fileName=os.path.join(imagePath,'image-exercise.gif')

writeMovie(fileName, globalPalette=False)

Page 38 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

sandwich_example.py
import os

Setting up a variable to specify the location of your final images

makes your script easier to read and more portable when you share it

with other users

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

imagePath is the directory to store final images

and/or animated gif files

imagePath = os.path.join(scriptingPath, 'Images')

generic Python dictionary for loadADDEImage as bands 3 and 13

will both use the same server, dataset, descriptor, and position

addeParms = dict(

 server = 'adde.ucar.edu',

 dataset = 'EAST',

 descriptor = 'CONUS',

 position = -1,

)

create a data source for the visible band 3 data

size and mag are specified to make the resolution of

this band (1km) match that of the band 13 infrared data (2km)

b3Data = loadADDEImage(band=3, unit='ALB', size=(1500,2500), mag=(-2,-2), **addeParms)

create a data source for the infrared band 13 data

b13Data = loadADDEImage(band=13, unit='TEMP', size='ALL', **addeParms)

use the sandwich function to create a rgb data soruce

rgbData = sandwich(b13Data,b3Data)

build a window to display the data

panel = buildWindow(height=600, width=600)

display visible data, then overlay with the rgb layer

visLayer = panel[0].createLayer('Image Display', b3Data)

rgbLayer = panel[0].createLayer('RGB Composite', rgbData)

Page 39 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

lower the gamma value of the RGB layer to make it brighter

rgbLayer.updateGamma(0.6)

capture an image of the display

fileName=os.path.join(imagePath, 'Sandwich.jpg')

panel[0].captureImage(fileName)

load_grid.py
import the jython library used

import os

homeDirectory=expandpath('~')

dataDirectory=os.path.join(homeDirectory,'Data','Scripting','H8')

Add the filename to the data

band1File=os.path.join(dataDirectory,'HS_H08_20150715_0100_B01_FLDK_subset.nc')

Initialize the loadGrid parameters.

parms = dict(

 time=0,

 field='albedo',

 xStride = 5,

 yStride = 5,

 xRange = (100,200),

 yRange = (100,200)

)

load the data from the file

h8b1=loadGrid(filename=band1File,**parms)

Page 40 of 40

McIDAS-V Tutorial – An Introduction to Jython Scripting and Data Analysis April 2024 – McIDAS-V version 1.9

user-band.py
define band as the argument allowed to be passed

through the scriptargs flag

from argparse import ArgumentParser

parser=ArgumentParser()

parser.add_argument('-b', '--band', action='store', dest='bnd', type=str, help='Band Number')

args = parser.parse_args()

define directories to capture image

homePath = expandpath('~')

dataPath = os.path.join(homePath, 'Data')

scriptingPath = os.path.join(dataPath, 'Scripting')

imagePath = os.path.join(scriptingPath, 'Images')

fileName = os.path.join(imagePath, 'scriptargs.jpg')

dictionary for loadADDEImage

addeParms = dict(

 server = 'adde.ucar.edu',

 dataset = 'EAST',

 descriptor = 'CONUS',

 size = 'ALL',

 position = -1,

)

load data and include the user-specified band

data = loadADDEImage(band=args.bnd, **addeParms)

build window and display data

panel = buildWindow(800, 600)

layer = panel[0].createLayer('Image Display',data)

layer.setLayerLabel('GOES-16 band %s - %s' % (str(args.bnd), data['nominal-time']), size=20)

capture image

fileName = ('%s/band_%s.jpg' % (imagePath, str(args.bnd)))

panel[0].captureImage(fileName)

