SST Temperature Algorithms

By

R. Chris Wilson^{a,b} and Simon Hook^{a,b}

a. NASA Jet Propulsion Laboratoryb. California Institute of Technology

Outline

- Radiative transfer for Thermal Infrared (TIR) satellites
- Linear Algorithms
- Types of Coefficients
- Skin measurements vs. bulk measurements
- Non-linear algorithms
- Cloud and aerosols

Radiation at the Sensor

Atmosphere

Water surface

~.10*mm*

$$T_s, \varepsilon \qquad L_w(\lambda) = \varepsilon B(T_s, \lambda)$$

Radiation at the Sensor

Single Channel SST

 $L_{sat}(\lambda) = L_{w}(\lambda)\tau(\lambda) + L_{atm}(\lambda)$

How it Works

Computes L_{atm} and $\tau(\lambda)$ from Radiative Transfer model (e.g. MODTRAN) fed with atmospheric profiles $(T,q)^*$

*Requires Satellite or radiosonde profiles

Uncertainties

- Uncertainties from satellite fed profiles
- Modeling water vapor absorption is has limitations which can affect the single channel estimation of SST

Multiple Channel Sea Surface Temperature (MCSST)

Two Unknowns: Sea Surface Temperature (SST), water vapor absorption

 $SST = T_i + \gamma(T_i - T_j)$ $\gamma \rightarrow$ water vapor absorption

Types of MCSST's

Algorithm Name	Thermal Bands	Day/Night usage
Dual Window	3.7 and 11 μm	Daytime
Split Window	11 and 12 μm	Day and Night
Triple Window	3.7, 11, and 12 μm	Daytime

- 3.7 < 11 < 12 in terms of water vapor absorption
- 3.7 is affected by sunlight and generally not used in daytime measurements

Split Window Example

Coefficient Development

$$Ts = a + bT_i + c(T_i - T_j) + d(T_i - T_j)(1 - \sec \theta)$$

Reduces errors due to large view angles which arise because of the radiative transfer equation's inherent non-linearity

Types of Regression Coefficients

Method	Skin/Bulk	Instruments	Issues	Studies
Regression to radiometers	Skin	ATSR2, AATSR, MODIS	Lack of Lakes with radiometer measurements	Hook et. al. 2003
Regression to Buoys	Bulk	Pathfinder (AVHRR)	Uncertainty in skin effect	Kilpatrick et. al. 2001
Physical Simulations	Skin	ATSRx, MODIS	Ensuring physical simulations capture natural variability	Hulley et. al 2001, Wan and Dozier 1997

Coefficient Development

Lake to lake variation of surface temperature, elevation and water vapor necessitate custom lake coefficients

$$Ts = a + bT_i + c(T_i - T_j) + d(T_i - T_j)(1 - \sec \theta)$$

Reduces errors due to large view angles which arise because of the radiative transfer equation's inherent non-linearity

Types of Regression Coefficients

Method	Skin/Bulk	Instruments	Issues	Studies
Regression to radiometers	Skin	ATSR2, AATSR, MODIS	Lack of Lakes with radiometer measurements	Hook et. al. 2003
Regression to Buoys	Bulk	Pathfinder (AVHRR)	Uncertainty in skin effect	Kilpatrick et. al. 2001
Physical Simulations	Skin	ATSRx, MODIS	Ensuring physical simulations capture natural variability	Hulley et. al 2001, Wan and Dozier 1997

Skin Temperature vs. Bulk Temperature

- Satellite senses radiation from the skin (~10µm)
- Sensible and latent heat fluxes cool the skin in relation to the bulk
- Stratification of thermal profile occurs during daytime
- Strong winds can act to mix the daytime profile to resemble the nighttime (dashed)

* From Donlon et. al. 2002

Typical Skin Bulk Differences

- Low wind speeds corresponds to larger variance in skin effect
- Positive skin effect shows some correlation to higher air temperatures
- Variance of the Skin effect for Tahoe is larger than typical values found in Oceans
- Daytime skin effect has largest variance and many positive values

Typical Skin Bulk Differences

- Low wind speeds corresponds to larger variance in skin effect
- Positive skin effect shows some correlation to higher air temperatures
- Variance of the Skin effect for Tahoe is larger than typical values found in Oceans
- Daytime skin effect has largest variance and many positive values

Take home message

Nighttime bulk measurements from a satellite are more accurate than daytime bulk measurements

Non-linearity Issues

- MCSST assumes that water vapor absorption is a constant
- Water vapor absorption is non-linear function of temperature
- Leads to problems in dry polar regions and hot regions
- Radiative transfer equation is non linear with high amounts of water vapor e.g.. $\exp(-kx) \neq (1-kx)$

3 Robert Wilson, 6/20/2012

Non-linearity Issues

- MCSST assumes that water vapor absorption is a constant
- Water vapor absorption is non-linear function of temperature
- Leads to problems in dry polar regions and hot regions
- Radiative transfer equation is non linear with respect to high amounts of water vapor e.g. $\exp(-kx) \neq (1-kx)$

NLSST Equations

$$T_s = aT_{11} + bT_{guess}(T_{3.7} - T_{12}) + c(1 - \sec\theta) + d \rightarrow \text{NLSST}(\text{triple})$$

 $T_s = a + bT_i + c(T_i - T_j)T_{guess} + d(T_i - T_j)(1 - \sec\theta) \rightarrow \text{NLSST(split)}$

2 Robert Wilson, 6/20/2012

Non-linearity Issues

- MCSST assumes that water vapor absorption is a constant
- Water vapor absorption is non-linear function of temperature
- Leads to problems in dry polar regions and hot regions

1

• Radiative transfer equation is non linear with respect to high amounts of water vapor e.g. $\exp(-kx) \neq (1-kx)$

NLSST Equations

$$T_s = aT_{11} + bT_{guess}(T_{3.7} - T_{12}) + c(1 - \sec\theta) + d \rightarrow \text{NLSST}(\text{triple})$$

$$T_s = a + bT_i + c(T_i - T_j)T_{guess} + d(T_i - T_j)(1 - \sec\theta) \rightarrow \text{NLSST(split)}$$

- T_{guess} can be climatological, modeled, or from the MCSST equation
- Operational MODIS and NOAA AVHRR both use NLSST equations
- MODIS creates separate coefficients for low and high water amounts, and different viewing geometries
- Hulley et. al. 2011 demonstrated that the non-linear equations do not yield much different results from linear equations over Tahoe and Salton Sea

1 Robert Wilson, 6/20/2012

Bayesian Retrieval of SST

What is it?	Inputs
 Performs a simultaneous retrieval of skin temperature and total water content Uses Bayesian (Rodgers) statistical methods and radiative transfer models for each SST measurement 	 First guess SST (T_a) expected variance of the state variables (SST and TPW) error variance of each channel Measurements and Radiative Transfer

Bayesian Retrieval of SST

What is it?	Inputs
 Performs a simultaneous retrieval of skin temperature and total water content Uses Bayesian (Rodgers) statistical methods and radiative transfer models for each SST measurement 	 First guess SST (T_a) expected variance of the state variables (SST and TPW) error variance of each channel Measurements and Radiative Transfer

Further Examination

- Each Coefficients represents a weighted derivative
- Weights are determined by the variances

Reformatted Equation

$$SST = T_a + a_i [T_i - F_i(T_a)] + a_j [T_j - F_j(T_a)]$$

Coefficient

$$a_{i} \rightarrow \left(w_{SST} \frac{\partial T_{i}}{\partial SST}\right)^{-1} - \left(w_{TPW} \frac{\partial T_{i}}{\partial TPW}\right)^{-1}$$

Bayesian Retrieval of SST

What is it?	Inputs
 Performs a simultaneous retrieval of skin temperature and total water content Uses Bayesian (Rodgers) statistical methods and radiative transfer models for each SST measurement 	 First guess SST (T_a) expected variance of the state variables (SST and TPW) error variance of each channel Measurements and Radiative Transfer

Further Examination

- Each Coefficients represents a weighted derivative
- Weights are determined by the variances

Reformatted Equation

$$SST = T_a + a_i [T_i - F_i(T_a)] + a_j [T_j - F_j(T_a)]$$

Coefficient

$$a_{i} \rightarrow \left(w_{SST} \frac{\partial T_{i}}{\partial SST}\right)^{-1} - \left(w_{TPW} \frac{\partial T_{i}}{\partial TPW}\right)^{-1}$$

Take Home Message

- Creates coefficients for each satellite scene that accounts for water vapor influence, a priori statistics of SST, and error statistics of satellite
- Highly sensitive to tuning parameters (error variances, state variances) and first guess SST

Clouds and Aerosols

Clouds and Aerosols

T_s>T_{satelitte}

T_{satellite}

Τς

Aerosol Summary

- Radiation in Thermal bands (11 and 12 μm) have little sensitivity to aerosols distribution
- 3.7 µm is slightly affected
- Volcanic eruptions will affect the retrievals

Cloud Summary

- Clouds absorb outgoing radiation and re-emit it back to the ground
- Each satellite channel is affect differently by the structure and location of clouds
- Clouds can effect adjacent clear sky measurements

Summary

- Single channel works best when you have good atmospheric profile information
- Split Window is most widely used because of its ease of use and Robustness
- Custom coefficients for each individual lake increases accuracy of SST measurements from space
- Skin effect causes greater uncertainty for bulk measured temperatures
- Schemes are developed for AVHRR, MODIS, and ATSR which address non-linearity issues in the split window and triple window

References

- Donlon, C. J., P.J. Minnett, C. Gentemann, T.J. Nightingale, I.J. Barton, B. Ward, and M.J. Murray, 2002: Toward improved validation of satellite sea surface temperature measurements for climate research. *J. Climate*, **15**, 353-369.
- 2. Hulley, G.C. et al., Optimized split-window coefficients for deriving surface temperatures from inland water bodies, *Remotes Sensing of Environment* (2011), doi:10.1016/j.rse.2011.09.014
- Hook, S.J., Prata, F.J., Alley, R.E., Abtahi, A., Richards, R.C., Schladow, S.G., et al. (2003). Retrieval of lake bulk and skin temperatures using Along-Track Scanning Radiometer (ATSR-2) data: A case study using Lake Tahoe, California. *Journal of Atmospheric and Oceanic Technology*, 20(4), 534-548.
- 4. Kilpatrick, K.A., Podesta, G.P., and Evans, R. (2001). Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for Sea Surface temperature and associated matchup database. *Journal of Geophysical Research-Oceans*, 106(C5), 9179-9197.
- Wan, Z.M. and Dozier, J. (1996). A generalized split-window algorithm for retrieving landsurface temperature from space. *IEEE Transactions on Geoscience and Remote Sensing*, (34)(4), 892-905.