

## OVERVIEW OF CIMSS ACTIVITIES IN SUPPORT OF THE U.S. GOES-R Algorithm Working Group

Allen Huang & Colleagues Cooperative Institute for Meteorological Satellite Studies Space Science & Engineering Center University of Wisconsin-Madison, USA



The joint 2007 EUMETSAT Meteorological Satellite Conference And the 15th American Meteorological Society (AMS) Satellite Meteorology & Oceanography Conference 24-28 September 2007 Amsterdam, The Netherlands

## **GOES-R** baseline instruments/Systems

- ABI Advanced Baseline Imager
- GLM Geostationary Lightning Mapper
- SIS Solar Imaging Suite
- SEISS Space Environment In-Situ Suite
- MAG Magnetometer
- AUX Auxiliary Services
- LRIT--Low Rate Information transmission
- EMWIN--Emergency Managers Weather
- Information Network
- DCS--Data Collection System
- SAR-- Search and Rescue

## **GOES Current & -R Imagers** Spectral Band and Coverage



ABI (blue) and current GOES sounder (green) spectral coverage over a high spectral resolution brightness temperature spectrum.

# **GOES-R ABI:** An Improved Environmental Imaging Capability

| Parameter                                               | Current GOES<br>Imager      | Future GOES<br>Imager                                                                          | Comments                                                            |
|---------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                         |                             |                                                                                                |                                                                     |
| Number of<br>Visible bands                              | 1                           | 3                                                                                              | Cloud cover, plant health and surface features during the day, etc. |
| Number of Near<br>IR bands                              | 0                           | 3                                                                                              | Cirrus clouds, Low cloud/fog and fire detection, etc.               |
| Number of<br>Infrared bands                             | 4                           | 10                                                                                             | Upper-level water vapor, clouds, SO <sub>2</sub> ,<br>SST, etc.     |
| Coverage Rate                                           | 25 minutes for full<br>disk | 15 minutes for full<br>disk, plus CONUS<br>images every 5<br>minutes, plus<br>meso-scale scans | ABI is approximately five times faster                              |
| Spatial<br>resolutions of<br>the 0.6 um<br>visible band | Approximately<br>1 km       | 0.5 km                                                                                         | At the sub-satellite point                                          |
| Spatial<br>resolutions of<br>the infrared<br>bands      | Approximately<br>4-8 km     | 2 km                                                                                           | At the sub-satellite point                                          |
| On-orbit visible calibration                            | No                          | Yes                                                                                            |                                                                     |

**GOES-R ABI:** An Improved Environmental Imaging Capability

# **GOES-R Imager ABI** Current GOES Imager



IMAGE START

GOES-8 COVERAGE IN 5 MINUTES

ORA/ASP1

## **Coverage within 5 minutes**

## **GOES-12 Imager Observation - CONUS**



## Simulated ABI 16 Band Image Loop



ABI band data for 2005 June 04 15:00 UTC

## GOES-R Observational Requirements: Alternative 1 (no sounder)

| Aerosol Detection                       | Dust/Aerosol *                  | Surface Albedo                             |
|-----------------------------------------|---------------------------------|--------------------------------------------|
| Aerosol Particle Size                   | Probability of Rainfall         | Surface Emissivity *                       |
| Suspended Matter                        | Rainfall Potential              | Vegetation Fraction                        |
| Volcanic Ash *                          | Rainfall Rate                   | Vegetation Index                           |
| Aircraft Icing Threat                   | Derived Stability Indices *     | Currents                                   |
| Cloud Imagery                           | Total Precipitable Water *      | Sea & Lake Ice / Displacement & Direction  |
| Cloud & Moisture Imagery                | Total Water Content *           | Sea & Lake Ice / Age                       |
| Cloud Layers / Heights & Thickness *    | Clear Sky Masks                 | Sea & Lake Ice / Concentration             |
| Cloud Ice Water Path *                  | Radiances *                     | Sea & Lake Ice / Extent & Characterization |
| Cloud Liquid Water                      | Absorbed Shortwave Radiation    | Sea & Lake Ice / Extent & Edge             |
| Cloud Optical Depth                     | Downward Longwave Radiation     | Sea & Lake Ice / Surface Temp              |
| Cloud Particle Size Distribution        | Downward Solar Insolation       | Sea & Lake Ice / Motion                    |
| Cloud Top Phase                         | Reflected Solar Insolation      | Sea & Lake Ice / Thickness                 |
| Cloud Top Height *                      | Upward Longwave Radiation *     | Ice Cover / Landlocked                     |
| Cloud Top Pressure *                    | Ozone Total *                   | Snow Cover                                 |
| Cloud Top Temperature *                 | SO <sub>2</sub> Detection *     | Snow Depth                                 |
| Cloud Type                              | Derived Motion Winds *          | Sea Surface Temps                          |
| Convection Initiation                   | Fire / Hot Spot Imagery         | Energetic Heavy lons                       |
| Enhanced "V"/Overshooting Top Detection | Flood / Standing Water          | Mag Electrons & Protons: Low Energy        |
| Hurricane Intensity                     | Land Surface (Skin) Temperature | Mag Electrons & Protons: Med & High Energy |
| Imagery: All-Weather / Day - Night      |                                 | Solar & Galactic Protons                   |
| Lightning Detection                     |                                 | Solar Flux: EUV                            |
| Low Cloud & Fog                         |                                 | Solar Flux: X-Ray                          |
| Turbulence *                            |                                 | Solar Imagery: X-Ray                       |
| Visibility                              |                                 |                                            |

**Geomagnetic Field** 

\*D1 = Degraded from original GOES-R requirements in Alternative 1 (no HES, nor Sounder)

ABI – Advanced Baseline Imager SEISS – Space Env. In-Situ Suite SIS – Solar Instrument Suite

Magnetometer

- Task 1. GOES-R Proxy Data Sets and Models to Support a Broad Range of Algorithm Working Group (AWG) Activities
- Task 2. GOES-R Analysis Facility Instrument for
- Impacts on Requirements (GRAFIIR) •
- Task 3. Development of Generalized Radiative Transfer Model for Multilayer Clouds
- Task 4. Algorithm Integration Team (AIT) Technical Support
- Task 5. Total Ozone retrieval from ABI
- Task 6. Cloud Products
- Task 7. Development of Static Libraries for Retrieval of Cloud Optical and Microphysical Properties
- **Task 8. GEOCAT** Enhancements and Documentation

Task 9. GOES-R ABI Fire Detection and Characterization Algorithm Development and Evaluation

- Task 10. GOES-R Legacy Profile Algorithm Evaluation and Selection
- Task 11. Sounding Product Evaluation and Validation Task 12. Winds from GOES-R ABI
- Task 13. Hurricane Intensity Estimation from GOES-R ABI
- **Task 14. Aviation Weather Products** 
  - A. Turbulence
  - **B. Volcanic Ash/SO2 Detection**
  - C. Low Cloud and Fog

Task 15. Snow and Ice Products

Task 16. Aerosol imagery from GOES-R ABI

**Task 17.** Data Analysis and Visualization for GOES-R



# ABI Proxy Data Animations UW/CIMSS June 4, 2005 15:00 & 20:00 UTC

Updated September 10, 2007







Date: June 4, 2005 Time: 15:00 and 20:00 UTC Spectral Loop Bands 1-16

# All Bands 15:00 UTC June 4, 2005





# All Bands 20:00 UTC June 4, 2005





## **ABI Full-disk Animations**



## Using ABI for continuation of GOES-N class sounder legacy products



Experiments show that retrievals of atmospheric instability from high-spectral (e.g., HES) data are much improved over current broadband (GOES-12+forecast).

## Using ABI for continuation of GOES-N class sounder legacy products



Experiments show that retrievals of Total Precipitable Water (TPW) from highspectral (e.g., HES) data are much improved over current broadband (GOES-12+forecast).



Total precipitable water (mm)



UW/CIMSS (Jin & Li, 2007)



## **GOES-R AWG Applications Software and Products** Atmospheric Motion Vectors (AMV) – Processing Overview



**Pre-processing** 

#### **Check Image Registration**

- Find clear landmarks
- Determine average shift between images
- Adjust images if necessary

#### Target Selection and Height Assignment

- Sectorize middle image into target scenes
- Analyze scenes; select suitable targets
- Estimate target heights

#### **Feature Tracking**

- Read in targets
- Use forecast to guide match search
- Find best match in first and third images
- Calculate displacements and compute average vector and final AMV

#### **Quality Control**

- Apply acceleration and gross error checks
- Compute Quality Indicators (QI)
- Recursive filter editing
- Assign final vector heights
- Compute Expected Error (EE) values

#### **Target Field**



#### **AMV Field**



## Simulated ABI AMVs from heritage and new channels

**3D** view

## **Vertical distribution**



# Simulated HES AMVs from retrieval height-resolved moisture analyses





Simulated HES retrieval moisture field (683hPa)

Marine boundary layer vertical distribution of height-resolved AMVs derived from the simulated HES moisture fields 3D view of simulated HES AMVs compared to operational GOES clear sky WV AMVs

### • Adapt WF\_ABBA contextual algorithm/code to GOES-R ABI

- Build on current contextual algorithms (WF\_ABBA, MODIS)
- Utilize GOES-RRR research efforts (CIMSS and UMD) to update current techniques that address emissivity, transmissivity, and solar reflectivity corrections.
- Update WF\_ABBA code for sub-pixel characterization requirements (Dozier technique and Fire Radiative Power). Base changes on user needs and current specs for ABI measurement range, spectral response, data quantization, band-to-band coregistration, MTF, etc.
- Update code to provide meta data with fire mask (opaque cloud coverage; block-out zones due to solar reflectance, clouds, extreme view angles, biome type, etc..)
- Identify proxy test data sets (e.g. GOES, MODIS, SEVIRI, MTSAT (2km), model simulated ABI, biome data, model output of TPW, etc.) and apply modified WF\_ABBA to these data sets. Coordinate with Cloud and Proxy Team AWGs.
- Iterate algorithm/code and assess capabilities using proxy data case studies and higher resolution data (MODIS, ASTER, etc). Coordinate with NPOESS VIIRS fire team and UMD (Justice, Csiszar, Giglio).

## Application of Prototype ABI WF\_ABBA to Simulated ABI Data in North America

Application of Prototype ABI WF\_ABBA to Model Simulated Data over the Great Plains

### Variable Fire - No Cloud Case Study



CIRA Model Simulated ABI 3.9 µm band



CIMSS ABI WF\_ABBA Fire Product Biome Block-Out Zone

## Experimental ABI WF\_ABBA Fire Legend



# Application of Prototype ABI WF\_ABBA to MODIS Simulated ABI Data in South America

Date: 7 September 2004

Time: 17:50 UTC



CIMSS MODIS Simulation of ABI 3.9 µm band



**CIMSS ABI WF\_ABBA Fire Mask Product** 

## Experimental ABI WF\_ABBA Fire Legend



# **GOES-R** Analysis Facility for Instrument Impacts on Requirements (GRAFIIR)

**GRAFIIR** is a facility established to leverage existing capabilities and those under development for both current GOES and its successor in data processing and product evaluation to support GOES-R analysis of instruments impacts on meeting user and product requirements.

GRAFIIR is for "connecting the dots", the components that have been built and/or are under development, to provide a flexible frame work to effectively adopt component algorithms toward analyzing the sensor measurements with different elements of sensor characteristic (i.e. noise, navigation, band to band co-registration, diffraction, etc.) and its impact on products.

**GRAFIIR** is to assess and evaluate many of the GOES-R data and products (i.e. imagery, clouds, derived products, soundings, winds, etc.) in a consistent way to ensure the instrument effects on the products can be fully accounted for, characterized and product performance could be optimized.

**GRAFIIR** is a coordinated team effort from GOES-R Risk Reduction and Algorithm Working Group and other related projects. It will not independently develop any new algorithms or processing that are available or already under developed.

## GRAFIIR Connecting the Dots



## **GRAFIIR Error Budget**



**CIMSS/UW Working with NOAA GOES-R AWG Chairs** 

# **NOAA AWG Chair – Mitch Goldberg**

**Tim Schmit, Sounding Jaime Daniels, Wind** 

Mark Demaria, Tropical Cyclone Andy Heidinger, Cloud

Jeff Key, Cryosphere Shoba Kondragunta, Aerosol Mike Pavolonis, GEOCAT, Cloud Dan Tarpley, Land

Gary Wade, Sounding Study Fuzhong Weng, Proxy

# CIMSS/UW-Madison (47)

Proxy/Model: 10; Sounding: 4; Ozone: 3; Cloud Pro.: 3; Validation: 2; Cloud Micro.: 1; Aerosol: 1; Fires: 4; Winds: **3**; Tropical Cyclone: **3**; Aviation Wx: **4**; Snow/Ice: **3**; Visualization: 3; Algo. Eval.: 3

# Simulated ABI 16 Band Image Loop



ABI band data for 2005 June 04 15:00 UTC