EUMETSAT/15TH AMS SATELLITE CONFERENCE

Toward An Objective Enhanced-V Detection Algorithm

University of Wisconsin-Madison/CIMSS

Jason Brunner, Wayne Feltz, John Moses, Robert Rabin, and Steven Ackerman 27 September 2007

Introduction

• Many studies have observed and analyzed the enhanced-V feature (McCann 1983; Negri 1982; Heymsfield et al. 1983a, 1983b; Heymsfield and Blackmer 1988; Adler et al. 1985; Brunner et al. 2007)

• Enhanced longwave InfraRed (IR) satellite imagery of deep convection sometimes display this cloud-top V-shaped feature, in which an equivalent blackbody temperature (BT) region of a storm is enclosed by a V-shaped region of colder BT

• Enhanced-V important for severe weather warning decision-making because it is associated with severe weather (McCann 1983, Brunner et al. 2007). Presence of enhanced-V features signifies strong tropospheric shear and intense updrafts, both of which are also essential for severe thunderstorms (Heymsfield and Blackmer 1988)

Background of the Enhanced-V

* Enhanced-V develops when a strong updraft penetrates into the lower stratosphere, resulting in an overshooting thunderstorm top

Enhanced-V Quantitative Parameters Description

- <u>TMIN</u> Minimum cloud top BT observed in the overshooting top region
- <u>TMAX</u> Maximum cloud top BT detected within an embedded warm area downwind of TMIN

Enhanced-V Quantitative Parameters Description

- <u>TDIFF</u> Difference in cloud top BTs between TMIN and TMAX which forms a cold-warm couplet
- <u>DIST</u> Distance between TMIN and TMAX

Description of Enhanced-V Datasets

• Two Low Earth Orbit (LEO) satellite datasets that included the 10.7, 10.8, and 11 micron IR channels were obtained over the continental United States for the enhanced-V study

→ 2003 Season: NOAA AVHRR and EOS MODIS AQUA and TERRA overpasses from 4 May 2003 to 5 July 2003 (209 enhanced-V cases)

→ 2004 Season: NOAA AVHRR and EOS MODIS AQUA and TERRA overpasses from 1 May 2004 to 1 July 2004 (241 enhanced-V cases)

MeIDAS

Enhanced-V Quantitative Parameters Results

2003 SEASON:	209 CASES			
PARAMETER	MEAN	MEDIAN	MAXIMUM	MINIMUM
TMIN (K)	201	200	222	184
TMAX (K)	217	217	246	205
TDIFF (K)	16	16	35	5
DIST (km)	11	10	43	3
2004 SEASON:	241 CASES			
PARAMETER	MEAN	MEDIAN	MAXIMUM	MINIMUM
TMIN (K)	201	201	220	181
TMAX (K)	217	217	232	206
TDIFF (K)	16	15	41	5
DIST (km)	10	9	41	3

Impact of Spatial Resolution on Enhanced-V Temperature Parameters

Example MODIS Case Study

	1 km	2 km	4 km	8 km
TMIN	186 K	188 K	193 K	197 K
ТМАХ	219 K	218 K	216 K	215 K
TDIFF	33 K	30 K	23 K	18 K

- TMIN changes the most (11 K), while TMAX does not change much (only 4 K) when going from finer (1 km) to coarser (8 km) spatial resolution
- TDIFF changed significantly, mainly because of TMIN

2003 and 2004 Seasons TMIN VS TMAX 2D Scatter Plots

- 2-Dimensional scatter plots of TMIN (K) VS TMAX (K) for all enhanced-V cases in the 2003 and 2004 seasons
- Each enhanced-V case was assigned to one of eight different categories
 - Blue circle (category 0) indicates false detection of severe weather
 - All other cases (categories 1-7) indicate severe weather

Table of 2003 and 2004 TMIN VS TMAX 2D Scatter Plot Results (For TMIN < 205 K and TMAX >= 212 K)

Severe Weather Category	2003 Season	2004 Season
Tornado	54/103 (52%)	33/113 (29%)
Hail	82/103 (80%)	95/113 (84%)
Wind	54/103 (52%)	54/113 (48%)
Any of three severe types	99/103 (96%)	99/113 (88%)

Flow Chart for Overshooting Top/Temperature Couplet Algorithm

INPUT *BT(6.7) *BT(11) *Upper Left Image Line/Elem

OUTPUT

Cold Pixel Latitude/Longitude
 Location and Value

Warm Pixel Latitude/Longitude
 Location and Value

Temperature Couplet Value

Temperature Couplet
 Orientation

STEP 1

Overshooting Top AlgorithmTo IsolateOvershooting Top Pixels; $[BT(6.7) - BT(11) \ge 6K]$

STEP 2

Temperature Couplet Algorithm

For Each Identified Overshooting Top Pixel; Distance And Temperature/Temperature Difference Threshold Checks Performed): ***** Distance ≤ 20 km ***** BT(11) Difference ≥ 15 K And ≤ 35 K ***** BT(6.7) – BT(11) ≥ 0 K Of Potential Warm Pixel ***** BT(11) ≤ 205 K Of Cold Pixel

***** Warm pixel location has to be in eastern 180 degree quadrant compared to cold pixel location

* Additionally, Magnitude And Angle Orientation Of Detected Temperature Couplet Is Calculated.

CASE 1: 7 APRIL 2006 1710 UTC MODIS AND GOES OVER TENNESSEE

MODIS THRESHOLDS:

- * $BT(6.7) BT(11) \ge 6K$ Of Overshooting Pixel
- * BT(11) ≤ 205K Of Cold Pixel
- * BT(11) Difference \geq 15K And \leq 35K
- * $BT(6.7) BT(11) \ge 0K$ Of Warm Pixel
- * Distance ≤ 20 km

GOES THRESHOLDS: * $BT(6.5) - BT(10.7) \ge 0K$ Of Overshooting

- Pixel
- * BT(10.7) ≤ 215K Of Cold Pixel
- * BT(10.7) Difference \geq 6K And \leq 25K
- * BT(6.5) BT(10.7) ≥ -2K Of Warm Pixel
- * Distance ≤ 20 km

CASE 2: 25 MAY 2004 0430 UTC MODIS/0432 UTC GOES OVER OKLAHOMA AND ILLINOIS

Image data set - Image Display 2004-05-25-084150#662:002

-02008-05-41 32 : 00Z

Flow Chart For Next Step: Enhanced-V Algorithm

Future Work

• Revise overshooting top/temperature couplet algorithm to minimize false detection of temperature couplets and to detect more temperature couplets

• Develop enhanced-V cross-correlation algorithm by searching in the region of temperature couplets for correlations between the enhanced-V and the enhanced-V fabricated matrix

• Test overshooting top/temperature couplet/enhanced-V algorithm on several years of cases

• Main goal is for algorithm to be useful for operations with future sensors, such as GOES-R