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In recent years, the focus on weather and climate has intensified 
significantly.  Precipitation provides a critical link between 
climate, weather, and human activity.  However, the accurate 
measurement of precipitation on a global spatial scale and over 
long temporal scales remains a difficult prospect, even with the 
use of satellite-based remote sensing platforms. 

Especially troublesome to precipitation retrievals are the middle 
and high latitudes, where the variety and complexity of 
precipitating cloud systems decreases our ability to accurately 
discern precipitation properties of interest, such as particle size 
distribution [PSD] and precipitation rate [R]. 

The present research contains two primary components: 

●

 

Simulation: Simulate the microphysical and radiative 
properties of ice-phase hydrometeors (e.g., snow, graupel, 
aggregates, sleet, etc.).  Given these and other properties, simulate 
what a remote sensing instrument might observe. This is the goal 
of the forward model. 

●

 

Retrieval: Given a set of observations, infer information 
regarding the physical properties of precipitation-sized 
hydrometeors, while simultaneously “untangling” the desired 
information from other sources of noise.   The forward model is, 
loosely speaking, “inverted” to provide the precipitation retrieval.  
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Introduction
(1) Dual Wavelength Ratio Technique [DWR] (see Meneghini, et 
al., 1997)

●

 

Key principle: co-located radar observations of the same cloud 
at two wavelengths sees the same number of particles, whereas 
the reflectivity ratio is proportional to the size of the particles.  
(Fig. 1)  

Primary Unknowns: ice-phase hydrometeor density (�), and 
cloud liquid water content [CLWC]

●

 

Assumes spherical particles (Mie Theory)
●

 

Assumes exponential particle size distribution [PSD]:  
N(D) = N0 exp (-/ D)

(2) Brightness temperature (TB) constraint
●

 

Key principle:  For a given 1-D profile of DWR-retrieved PSD 
properties (N0 and /), �, and CLWC;  passive microwave 
TBs are simulated and compared to observed TBs. 

●

 

TB consistency is determined through RMSE (see examples 
below) comparison

●

 

Process in Fig. 2 repeats for all variations in particle density and 
CLWC
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Figure 2: Retrieval Flowchart

Observations and Retrieval Results,  29 January 2003 Snowfall Case, Wakasa Bay, Japan 
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Figure 1:  Relationship between DWR and 
median volume diameter (D0 = 3.67//) for 
various particle densities, (�)

Figure 7: (a) Particle densities providing “best fit” TB values, (b) 
Cloud liquid water content and distribution 

Figure 8: (a) D0, (b) N0, (c) R (liq. Equiv.),  (d) Z35 -R relationship 
(Noh & Liu, 2005). 

Figure 6:  Observed and best-fit simulated TBs at (a) 89 GHz, (b) 
150 GHz, and (c) 220 GHz.  Panel (d) shows the TB RMSE [K].  

Figure 3:  Observed Radar reflectivities at (a) Ku-band (13.4 
GHz) and (b) Ka-band (35.6 GHz).   Co-located MIR passive 
observations at (c) 183+/-1,3,7 GHz and (d) 89, 150, 220, 340 
GHz.

Figure 4:  Example 1-D snow profile: (a) observed reflectivities 
(smoothed), (b) DWR, (c-d) retrieved N0 and D0 given a fixed 
linear particle density profile. 

Figure 5:  Range of unconstrained DWR-only retrievals (colors), 
black lines indicate the 20 best TB constrained quantities. 

On 29 January 2003 around 0318 UTC during the 
Wakasa Bay 2003 Field experiment (WBAY03), 
observations of a convective snow storm over the 
ocean were made using the advanced precipitation 
radar [APR-2] (Ku- and Ka-band) and the 
Millimeter Wave Imaging Radiometer [MIR]. 
Figure 3 shows these observations.

Figure 4 shows an example 1-D profile retrieval 
(c,d) with the DWR retrieval technique applied.   
A 9-bin smoothing window has been applied to 
the reflectivity data to reduce noise.   

However, there are a large number of solutions to 
the ill-posed DWR-only retrieval (fig. 5).   The 
key unknowns are particle density and cloud liquid 
water content.   TB constraints (black lines) 
provide a tighter set of retrieved profiles , and 
thus, provide ranges of possible densities/CLW 
parameters.

Figure 6 illustrates the best-fit TBs and the 
associated RMS error across the entire scan.  
Associated with these best fit values are the 
density profiles (fig. 7a) and CLW data (7b).

Figure 8 shows the TB constrained retrieved 
profiles of N0 and D0 , with the derived 
precipitation rate (c) compared to a Z35 -R rate 
from Noh and Liu (2005) in panel (d).

●

 

The DWR retrieval method is ill-posed, requiring additional constraints
●

 

Passive microwave TBs provide an additional constraint, but is more sensitive to 
environmental parameters (WV, CLW, SST, Wind Speed)

●

 

Particle densities vary over a fairly wide range from scan-to-scan, also the TB constraint is 
less sensitive to particle density in optically dense clouds
●

 

Additional validation data is needed from other field campaigns to assess the global 
applicability of the present retrieved microphysical properties

Discussion and Conclusions
●

 

Sensitivity analyses (not shown here) indicate that the largest sources of uncertainty in the retrieval arises from 
the noise term in the reflectivities (+/-1 dBZ at Ku and +/-2 dBZ at Ka).

●

 

Current Work: realistic particle shapes (DDA), rainfall case w/ melting layer
●

 

Future Work: over-land algorithm, GPM geometry/field of view considerations, robust error analysis 
(optimal estimation?) 
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