

GOES-R Baseline Instruments

Timothy J. Schmit tions and Research

Steve Goodman

Steven Hill

James J. Gurka and Thomas M. Renkevens

Mathew M. Gunshor ical Satellite Studies

GOES-R Baseline Instruments:

- ABI Advanced Baseline Imager
- GLM Geostationary Lightning Mapper
- SUVI Solar UV Imager
- EXIS Extreme UV/X-Ray Irradiance Sensor
- SEISS Space Environmental In-Situ Suite

MAG Magnetometer

- Unique Payload Services:
 - LRIT--Low Rate Information transmission EMWIN--Emergency Managers Weather Information Network

DCS--Data Collection System SAR-- Search and Rescue

GRB-- GOES Re-Broadcast

Parameter	Current GOES Imager	Future GOES Imager	Comments
Number of Visible bands	1	2	Cloud cover, plant health and surface features during the day, etc.
Number of Near IR bands	0	4	Cirrus clouds, Low cloud/fog and fire detection, etc.
Number of Infrared bands	4	10	Upper-level water vapor, clouds, SO ₂ , SST, etc.
Coverage Rate	26 minutes for full disk	15 minutes for full disk, plus CONUS images every 5 minutes, plus meso-scale scans	ABI is approximately five times faster
Spatial resolutions of the 0.6 um visible band	Approximately 1 km	0.5 km	At the sub-satellite point
Spatial resolutions of the infrared bands	Approximately 4-8 km	2 km	At the sub-satellite point
On-orbit visible calibration	No	Yes	

Payload Services

Additional GOES-R services include GOES-R ReBroadcast (GRB), Search and Rescue (SAR), Data Collection System (DCS), Emergency Managers Weather Information Network and Low Rate Information Transmission (LRIT).

Cougar Ace incident off of Alaska (24 rescued) was detected by GOES-11 at 0830UTC (and NOAA-17 at 0831UTC). Figure courtesy of Thomas. M. Wrublewski.

"More than one-half of the currently operating [streamflow] stations have equipment that permits immediate transmission of data by means of satellite from the data-collection site. By using the telemetry, data are transmitted telemetry, data are transmitted around the clock by means of two geostationary operations environmental satellites (GOES). http://water.usgs.gov/nsip/ http://pubs.usgs.gov/circ/circ1123/ collection.html#HDR12

GLM – Geostationary Lightning Mapper

 Detects Total Strikes: In Cloud, Cloud To Cloud, And Cloud To Ground · Complements land based Systems that only measures cloud to ground (about 15% of the total lightning)

- Increased Coverage Over Land and Ocean
- Currently limited land coverage in "dead zones", and no ocean coverage

GLM Applications and Benefits

· Predict the onset of tornadoes, hail, microbursts, flash floods: Tornado lead time -13 min national average, improvement desired · Track thunderstorms and warn of approaching lightning threats;

 Lightning strikes responsible for >500 injuries per year, 90% of victims suffer permanent disabilities and long term health problems Chiefly neurological in nature
Lightning responsible for 80 deaths per year (second leading source after flooding)

 Improve airline routing around thunderstorms; improving safety, saving fuel, and reducing delays Provide real-time hazardous weather information, improving the efficiency of emergency management;

NWP/Data Assimilation;

Locate lightning strikes known to cause forest fires and reduce response times:

Multi-sensor precipitation algorithms

. Thunderstorms and deep convection in global climate; Seasonal to interannual variability Provide a new data source to improve air quality / chemistry forecasts.

Isabelle. Figure courtesy of C. Schmidt, CIMSS

ABI – Advanced Baseline Imager

Wwwelength (jum)	ABI Weighting Functions: US Standard Atmosphere / Nadi
	Ber 19 Ser - 2005 Ber 19 Ser -

The great amount of information from GOES-R will both offer a continuation of current product and services, but also allow for improved or new capabilities. These products will cover a wide range of phenomena, relating to: weather, climate, ocean, land, hazards, solar and space. The instruments and services on GOES-R will enable much improved monitoring compared to current capabilities.

NOAA Goals

otect, restore, and manage the use of coastal and ocean sources through ecosystem-based management

Serve society's needs for weather and water information

Understand climate variability and change to enhance society's ability to plan and respond

upport the Nation's commerce with information for ife, efficient, and environmentally sound transportation

> GOES-R Space Weather Instruments

Space Environmental In Situ Suite (SEISS)

- proton, electron, and heavy ion fluxes
- Extreme UV/ X-Ray Irradiance Sensor (EXIS)

- solar X-ray flux magnitude

- solar EUV flux from 5 to 129 nm Solar extreme UV Image (SUVI)
 - coronal holes locations
 - solar flares

- coronal mass elections

Magnetometer

> GOES-R Improvements

- Solar UV image dynamic range, resolution, and sensitivity
- EUV measurements using 3 channels in improved modeling of ionosphere and thermosphere
- Low energy radiation environment responsible for spacecraft charging.

Simulated SUVI (Solar extreme UV Imager) GOES-R will produce multi-band "color" images at the same rate as GOES N/P produces single band images.

Images courtesy of SOHO EIT, a joint NASA/ESA program

GOES-R Observational Requirements:

Aerosol Detection (including Smoke and Dust)	Geomagnetic Field	Surface Albedo	
Aerosol Particle Size	Probability of Rainfall	Surface Emissivity *	
Suspended Matter / Optical Depth	Rainfall Potential	Vegetation Fraction: Green	
Volcanic Ash *	Rainfall Rate / QPE	Vegetation Index	
Aircraft Icing Threat	Legacy Afm. Vertical Moisture Profile *	Currents	
Cloud Imagery: Coastal	Legacy Afm. Vertical Temperature Profile *	Sea & Lake Ice / Age	
Cloud & Moisture Imagery	Derived Stability Indices *	Sea & Lake Ice / Concentration	
Cloud Layers / Heights & Thickness *	Total Precipitable Water *	Sea & Lake Ice / Extent & Edge	
Cloud Ice Water Path *	Total Water Content *	Sea & Lake Ice / Motion	
Cloud Liquid Water	Clear Sky Masks	Ice Cover / Landlocked	
Cloud Optical Depth	Radiances *	Snow Cover	
Cloud Particle Size Distribution	Absorbed Shortwave Radiation: Surface	Snow Depth	
Cloud Top Phase	Downward Longwave Radiation: Surface	Sea Surface Temps	
Cloud Top Height *	Downward Solar Insolation: Surface	Energetic Heavy Ions	
Cloud Top Pressure *	Reflected Solar Insolation: TOA	Mag Electrons & Protons: Low Energy	
Cloud Top Temperature *	Upward Longwave Radiation *: Surface & TOA	Mag Electrons & Protons: Med & High Energy	
Cloud Type	Ozone Total *	Solar & Galactic Protons	
Convection Initiation	SO ₂ Detection *	Solar Flux: EUV	
Enhanced "V" / Overshooting Top Detection	Derived Motion Winds *	Solar Flux: X-Ray	
Hurricane Intensity	Fire / Hot Spot Characterization	Solar Imagery: extreme UV / X-Ray	
Low Cloud & Fog	Flood / Standing Water		
Lightning Detection	Land Surface (Skin) Temperature *		
Turbulence	A Budata da midado matemá	0050 5	
Visibility	= Products degraded from original	GUES-R requirements (e.g.; now no HES)	
	-		
ABI – Advanced Baseline Imager Continuity of GOES Legacy Sounder Products from ABI	SEISS – Space Env. In-Situ Suite Sensors Sensors	M - Magnetometer SUVI - Solar extreme UltraViole Mapper	

1

Combined 10-yr LIS/OTD for July