

On the Development of a Dense Optical Flow Benchmark Dataset for Satellite Meteorology Applications

Jason Apke¹, Kris Bedka², Matt Rogers¹ and Steven Miller¹ ¹ Cooperative Institute for Research in the Atmosphere (CIRA), Fort Collins, CO ² NASA Langley Research Center, Hampton, Virginia

International Winds Working Group Meeting

What is Dense Optical Flow?

Optical Flow Definition:

"The distribution of apparent velocities of movement of brightness patterns in an image" (Horn and Schunck 1981)

- "Dense" optical flow (DOF) is motion retrieval at EVERY image pixel
 - Contrast w/ sparse optical flow, where motion is tracked at specific targets in the image (e.g. AMVs; Velden et al. 1997; Bresky et al. 2012)
- Routine rapid scanning (≤ 5 min) now enables new and advanced DOF retrieval techniques for most cloudmotions in geostationary satellite imagery, and there are numerous applications

Figure 1. GOES-16 Ch-02 0.64 µm imagery plotted with Farnebäck optical flow (wind barbs colored by speed) over Hurricane Laura in the Gulf of Mexico.

Optical Flow Benchmarks

- Benchmarks are validation and training datasets designed to quantify progress and uncertainty in algorithm development
- Three Examples are Middlebury, MPI-Sintel, and KITTI
- Benchmarks ensure optical flow quality, and provide challenging tracking scenes to drive research forward

Ground-Truth

<image>

Middlebury "Army" Sequence

Baker, S., D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, 2011: A database and evaluation methodology for optical flow. Int. J. Comput. Vis., 92, 1–31, doi:10.1007/s11263-010-0390-2.

Butler, D. J., J. Wulff, G. B. Stanley, and M. J. Black, 2012: A naturalistic open source movie for optical flow evaluation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 7577 LNCS, 611–625, doi:10.1007/978-3-642-33783-3_44.

Geiger, A., P. Lenz, and R. Urtasun, 2012: Are we ready for autonomous driving? the KITTI vision benchmark suite. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 3354–3361, doi:10.1109/CVPR.2012.6248074.

Motivation

- The quality of DOF applications (Like AMVs) depend on *accurate* retrieval
- Most DOF algorithms were designed to track large, "quasi-rigid" scenes
 - Obstacle detection for self-driving cars (Fortun et al. 2016)
 - Automated Surveillance of moving pedestrians (e.g. Ring Doorbells)
 - Feature or Gesture Tracking (For virtual/augmented reality)
- The fluid motions in satellite imagery are a different tracking problem than what ordinary DOF validation datasets focus on
- DOF validation datasets can be used to
 - 1. Set benchmarks that result in measurable DOF development progress
 - 2. Help to identify strengths/weaknesses of different DOF retrieval techniques
 - 3. Inform on instrument design and scanning strategies (e.g. temporal /radiometric resolutions) for future satellite missions

Connecting Models and Observations

Optical Flow Validation Methods

- 1) Validation with Wind Measurements (We use the Aeolus CAL/VAL DAWN data w/ GOES-17 1-min imagery; Bedka et al. 2020 *in review;* Validation includes Bias/Mean Vector Difference; MVD)
 - In many applications, it is assumed that optical flow = winds
 - Winds can be validated with in situ measurements (rawinsondes) or remote sensing tools (e.g. Doppler Radar/Lidar) wind profilers nearby in space/time
 - Key disadvantage: Not all brightness features move w/ the wind motion
 - E.G. gravity waves, surface features, outflow boundaries
- 2) Validation with Image Interpolation (We use Hurricane Michael 30-sec 0.64-μm GOES-16 imagery from 1700-1830 UTC; Following interpolation approach in Baker et al. 2011)
 - In many other applications, it may be beneficial to better track features
 - Optical Flow estimates can be combined with a simple interpolation algorithm to estimate intermediate frames and evaluate feature tracking performance
 - Performance is determined by comparing estimated image to a known image typically with a gradient normalized sum-of-square error
 - In most cases, this can be done w/ 1-min and 30-sec mesoscale sectors

Citation: Bedka, K. M and Co-Authors, 2020: Airborne Lidar Observations of Wind, Water Vapor, and Aerosol Profiles During The NASA Aeolus Cal/Val Test Flight Campaign [Preprint]. *Atmos. Mea. Tech., In Review.* https://doi.org/10.5194/amt-2020-475

Sun Et Al. (2014) Optical Flow

New optical flow methods do handle motion discontinuities, illumination changes, and large displacements, Brox et al. (2004) for example minimizes this with a coarse-to-fine strategy:

$$E(u(\mathbf{x}), v(\mathbf{x})) = \iint_{\Omega} \rho_d(BC + \gamma GC) + \alpha \rho_s(SC)d\mathbf{x}$$

BC = Brightness Constancy -> $|I(\mathbf{x} + \mathbf{U}, t + \Delta t) - I(\mathbf{x}, t)|^2$
GC = Gradient Constancy -> $|\nabla I(\mathbf{x} + \mathbf{U}, t + \Delta t) - \nabla I(\mathbf{x}, t)|^2$, γ = weight of GC
SC = Smoothness Constraint -> $|\nabla u|^2 + |\nabla v|^2$, α = weight of SC
The $\rho_d(x^2) = \rho_s(x^2) = \sqrt{x^2 + \varepsilon^2}$ are "Robust Functions" Preserves motion
discontinuities in image field

• We will use a method by Sun et al. (2014), minimizing:

$$E_{Sun}(u, v, \hat{u}, \hat{v}) = E(u, v) + \lambda_{c}(||u - \hat{u}||^{2} + ||v - \hat{v}||^{2}) + \lambda_{n} \sum_{i,j} \sum_{(i',j') \in N_{i,j}} w_{ij}^{i'j'}(|\hat{u}_{ij} - \hat{u}_{i'j'}| + |\hat{v}_{ij} - \hat{v}_{i'j'}|)$$

$$Coupling Term (penalizes deviations from auxiliary field \hat{u}, \hat{v})$$

$$Weighted Median Smoothing Term (within a neighborhood of N_{i,j})$$

$$Weighted Median Smoothing Term (within a neighborhood of N_{i,j})$$

 $w_{ij}^{i'j'} = e^{\left\{-\frac{|i-i'|^2 + |j-j'|^2}{2\sigma_1^2} - \frac{|I_{i,j} - I_{i'j'}|}{2\sigma_2^2}\right\}$

- Has aux. flow field which we can set to known values
- Weighted median can be based on GOES-R fields

Winds Validation Results

- Optical flow validated by channel, for all case studies, fine-spatial resolution red-band (CH-2) validated the best, short-wave IR (CH-7) the worst
- Validation statistics here are comparable to recent validations of the Derived Motion Wind algorithm
- Sum-of-square-error tracking performs worse than the dense-optical flow algorithms here (NOTE: NO AMV QUALITY CONTROL PERFORMED HERE)

Error Minimization to the DAWN lidar wind.

Case Study	Bias (Sun SOSE ; m s ⁻¹)	MVD (Sun SOSE ; m s ⁻¹)	Samples
April 17-18	-0.86 -0.13	2.56 3.78	31
April 22-23	-0.48 -0.81	1.68 3.78	208
April 25-26	-0.27 0.32	1.55 2.81	365
April 27-28	-0.31 -0.09	3.32 5.62	582
April 29-30	-0.25 0.751	2.18 7.14	679
Total	-0.306 0.100	2.36 5.38	1865

Table 2. Comparison statistics of CIRA/Sun optical flow algorithm and the Sum-Of-Square-

Figure 2. GOES-17 Ch-02 0.64 µm imagery plotted with Sun optical flow, along with the NASA-DC-8 location carrying the DAWN Lidar used for the ground-truth winds in the table on the left.

- CIRA-SUN method slightly outperforms Farnebäck
- Non-linear/ Occluding motions give DOF algorithms problems
 - GNSSE Farneback = **0.0293** CIRA Sun =**0.0286**

8

In Summary...

•A validation dataset is being developed for new dense-optical flow algorithms specifically for satellite meteorology datasets/applications (includes both winds and image interpolation-based validation)

•6 cases were demonstrated (5 for winds/one with interpolation)

•Thus far, the CIRA-SUN optical flow method is outperforming sum-of-square error minimization for tracking clouds in the validation dataset (MVD $\sim 2 \text{ m s}^{-1}$ for visible imagery)

•CIRA-SUN Test interpolation does slightly better than open-source optical flow methods (and more work is underway to improve optical flow datasets using satellite data not available from typical imagers)

•DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DC8_1

Future Work

•Seeking to establish an open-source framework for benchmark delivery

- •Will include current statistics of cutting-edge optical flow techniques
- •Will be designed with data/code sharing in mind

•The benchmark is planned to include a set of optical flow challenges common in satellite remote sensing

•Scenes containing motions that are transparent, texture-less, fast moving, deforming, propagating vs. advecting, convective vs. stratiform, clouds vs. snow/ice, dust vs. ground, small targets/boundaries edges (Any new suggestions are welcome!)

Supplement winds validations with synthetic IR/WV imagery examples
As many OF techniques today are Machine-Learning-based, we will also seek to establish training datasets for all to use

Acknowledgements

• Work was funded under NESDIS GOES-R Program Office award number: NA14OAR4320125 and NOAA Grant NA19OAR4320073.

Citations

- Apke, J. M., J. R. Mecikalski, and C. P. Jewett, 2016: Analysis of Mesoscale Atmospheric Flows above Mature Deep Convection Using Super Rapid Scan Geostationary Satellite Data. J. Appl. Meteorol. *Climatol.*, **55**, 1859–1887, doi:10.1175/JAMC-D-15-0253.1. http://journals.ametsoc.org/doi/10.1175/JAMC-D-15-0253.1.
- ---, ---, K. M. Bedka, E. W. McCaul Jr., C. R. Homeyer, and C. P. Jewett, 2018: Relationships Between Deep Convection Updraft Characteristics and Satellite Based Super Rapid Scan Mesoscale Atmospheric Motion Vector Derived Flow. *Mon. Wea. Rev.*, **146**, 3461–3480. https://doi.org/10.1175/MWR-D-18-0119.1.
- Brox, T., A. Bruhn, N. Papenberg, and J. Weickert, 2004: High accuracy optical flow estimation based on a theory for warping. 2004 Eur. Conf. Comput. Vis., 4, 25–36.
- Farnebäck, G., 2001: Two-Frame Motion Estimation Based on Polynomial Expansion. Proceedings: Eighth IEEE International Conference on Computer Vision, Vol. 1 of, 171–177.
- Fortun, D., P. Bouthemy, C. Kervrann, D. Fortun, P. Bouthemy, and C. Kervrann, 2015: Optical flow modeling and computation : a survey To cite this version : Optical flow modeling and computation : a survey. *Comput. Vis. Image Underst.*, **134**, 1–21. https://hal.inria.fr/hal-01104081/file/CVIU_survey.pdf.
- Horn, B. K. P., and B. G. Schunck, 1981: Determining optical flow. Artif. Intell., 17, 185–203, doi:10.1016/0004-3702(81)90024-2.
- Sun, D., S. Roth, and M. J. Black, 2014: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis., 106, 115–137, doi:10.1007/s11263-013-0644-x.
- Wu, Q., H.-Q. Wang, Y.-J. Lin, Y.-Z. Zhuang, and Y. Zhang, 2016: Deriving AMVs from Geostationary Satellite Images Using Optical Flow Algorithm Based on Polynomial Expansion. J. Atmos. Ocean. Technol., **33**, 1727–1747, doi:10.1175/JTECH-D-16-0013.1. http://journals.ametsoc.org/doi/10.1175/JTECH-D-16-0013.1.

Thank You For Listening!

For additional questions, contact: Jason Apke <u>jason.apke@colostate.edu</u>

3925A West Laporte Ave. Fort Collins, CO 80523-1375 DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DC8_1

Extra Slides

For additional questions, contact: Jason Apke <u>jason.apke@colostate.edu</u>

3925A West Laporte Ave. Fort Collins, CO 80523-1375 DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DC8_1

Connecting Models and Observations

Dense optical flow mesowinds products see vertical growth in clouds as acceleration in cloud-top horizontal motion, see color scale below (where grey=stationary)

Hodograph (below) indicates
 GFS analysis wind speed and
 direction as a function of
 height for this scene

Cloud-Top Cooling

*Time-rates of change can *dramatically* complement the native 16-channels on GOES-R ABIs for AI/Machine Learning

direction/speed of derived motion

Winds Validation

- Connecting Models and Observations
- Two optical flow retrieval systems are run on 1-min GOES-17 images:
 - Sun et al. (2014), and a sum-of-square error minimization technique (following AMV methods; 5x5 pixel target box sizes; 9x9 search regions)
- Algorithm output is compared to NASA Aeolus Cal/Val aircraft field campaign data (Bedka et al. 2020)
 - Five DC-8 research flights over a two-week period in Spring, 2019
 - DC-8 carried the Doppler Aerosol Wind Profiling Lidar (DAWN; outputs winds and signal-to-noise ratio, SNR) under a GOES-17 1-min meso-sector
 - Assuming highest altitude SNR=10 value is the cloud-top wind derived by the optical flow approaches
 - We test winds by Bias and Mean Vector Difference (MVD)

$$Bias = \frac{1}{n} \sum \sqrt{u_{of}^2 + v_{of}^2} - \sqrt{u_{DAWN}^2 + v_{DAWN}^2}$$

$$MVD = \frac{1}{n} \sum \sqrt{(u_{of} - u_{DAWN})^2 + (v_{of} - v_{DAWN})^2}$$

Interpolation Validation

- We test two optical flow algorithms with interpolation error, Sun et al. (2014) and an open source method by Farneback (2001)
- Optical Flow Interpolation follows Baker et al. (2011)
 - Inputs: Two sequential images, forward calculated (time 1 -> time 2) optical flow, intermediate • time for new frame (in our case, t = 0.5), Interpolation is a four-step process:
 - Warp optical flow forward to the time to be interpolated, so $u_w(round(x + t u_0(x)) = u_0(x)$ 1.
 - Fill in any holes on the warped optical flow field with an outside-in strategy 2.
 - Estimate Occlusion Masks (where only one image is visible at one time) using forward flow 3. reasoning
 - Where both pixels are visible, blend the two images using $I_t(\mathbf{x}) = (1 t)I_0(\mathbf{x_0}) + t I_1(\mathbf{x_1})$ 4. where *I* is the image brightness, $x_0 = x - t u_w(x)$, $x_1 = x + (1 - t) u_w(x)$, t is the time between each image normalized such that the total time difference = 1,

otherwise set pixel to forward/backward warped image which is not occluded

Optical flow is run with 1-min cadence on 30-sec visible imagery, interpolated 30-sec image is then compared to the actual image w/ the gradient-normalized sum-of-square error, $GNSSE = \left(\frac{1}{n}\sum \frac{\left(I(x,y) - I_t(x,y)\right)^2}{\nabla I(x,y) + 0.1}\right)^2$

Connecting Models and Observations

Farnebäck Optical Flow

- Here, a scheme similar to Farnebäck (2001) and Wu et al. (2016) is used
 - Identifies flow by fitting image intensity *I* in windows to polynomial functions, that is:

$$l(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \, \mathbf{x} + \mathbf{B} \, \mathbf{x} + \mathbf{C}$$

- Where I is a function of the position in the image window **x**=[x,y] and constant coefficient matrices **A**, **B** and **C**
- With linear algebra, the coefficients of the polynomial in two subsequent image windows can be used to solve for the flow **u** assuming brightness constancy, that is, at time *t*+1

$$l(\boldsymbol{x},t) = l(\boldsymbol{x} + \boldsymbol{u}, t + 1)$$

And it can be shown that

$$u = -\frac{1}{2}A_1^{-1}(B_2 - B_1)$$

* Note: \boldsymbol{u} cannot be found \boldsymbol{A}_1 if is not invertible (e.g. when there is no texture)!

- OpenCV (opencv.org) Farnebäck function used with the following settings
 - Window: 5 x 5 pixels, local optimization window: 25x25 pixels
 - Pyramid Depth- 3 levels, Scaling- 0.5
 - Smoothing Std. Dev.- 1.0, Farnebäck Gaussian Smoothing Used
 - Sets u = [0,0] when no texture is available to find a solution!

Citation: Wu, Q., H.-Q. Wang, Y.-J. Lin, Y.-Z. Zhuang, and Y. Zhang, 2016: Deriving AMVs from Geostationary Satellite Images Using Optical Flow Algorithm Based on Polynomial Expansion. J. Atmos. Ocean. Technol., **33**, 1727–1747, doi:10.1175/JTECH-D-16-0013.1.

Doppler Aerosol Wind (DAWN) Lidar System

PI: Michael J. Kavaya, NASA LaRC

< 1 m/s

60 m

Scanner Diameter, Type, Deflection

Eve Safety

Pointing Knowledge Technique

LOS Wind Measurement Precision

Vertical Resolution

15 cm, Step-Stare Rotating Wedge, 30° About Nadir

 Safe at any Range When DAWN Closed Up for Flight

 Dedicated INS/GPS on Lidar; dry land returns

DAWN Capabilities

- 2.053 micron wavelength, 80-100 mJ/pulse. High sensitivity to aerosol backscatter, enables excellent vertical resolution, accuracy, and atmospheric coverage
- Provides vertical profiles of LOS wind, horizontal wind vectors, and aerosol backscatter
- Optional number of azimuth angles (up to 12) permits trade of wind variability determination vs. horizontal resolution
- Optional number of laser shots averaged for each LOS wind profile permits trade of atmospheric coverage vs. horizontal resolution
- Data may be processed multiple ways to provide various combinations of vertical and horizontal resolution, atmospheric coverage, and accuracy
- Successful field campaigns: Polar Winds I and II, Convective Processes Experiment (CPEX), ADM Aeolus Cal/Val Test Flight Campaign