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What is Dense Optical Flow?

Connecting Models and Observations

"+ Optical Flow Definition:

GOES-16 OF Aug 26, 2020 21:00:30 UTC
93.4°W 93.2°W 93.0°W 92.8°W 92.6°W 92.4°W 92.2°W

“The distribution of apparent velocities
of movement of brightness patterns in
an image” (Horn and Schunck 1981)

28.4°N

+ “Dense” optical flow (DOF) is motion
retrieval at EVERY image pixel 282N [

28.2°N

* Contrast w/ sparse optical flow,
where motion is tracked at specific
targets in the image (e.g. AMVs;
Velden et al. 1997; Bresky et al.
2012.) 27.8°N

28.0°N gt 28.0°N

- 27.8°N

 Routine rapid scanning (< 5 min) now
enables new and advanced DOF
retrieval techniques for most cloud-
motions in geostationary satellite
imagery, and there are numerous
applications
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Optical Flow Benchmarks T ——
_—— , %moommmm ® cp
mlidaﬁon and training datasets designed to J , q

quantify progress and uncertainty in algorithm development
* Three Examples are Middlebury, MPI-Sintel, and KITTI

* Benchmarks ensure optical flow quality, and provide
challengmg tracking scenes to drive research forward
MPI-Sintel

Middlebury * Arm‘y S ence
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Motivation =

The quality of DOF applications (Like AMVs) depend on accurate retrieval

Most DOF algorithms were designed to track large, “quasi-rigid” scenes

 Obstacle detection for self-driving cars (Fortun et al. 2016)

« Automated Surveillance of moving pedestrians (e.g. Ring Doorbells)

* Feature or Gesture Tracking (For virtual/augmented reality)

The fluid motions in satellite imagery are a different tracking problem than what
ordinary DOF validation datasets focus on

DOF validation datasets can be used to

1.

2.

3.

Set benchmarks that result in measurable DOF development progress

Help to identify strengths/weaknesses of different DOF retrieval techniques

Inform on instrument design and scanning strategies (e.g. temporal
/radiometric resolutions) for future satellite missions



Optical Flow Validation Methods comectig Modst: o at

1)

Validation with Wind Measurements (We use the Aeolus CAL/VAL DAWN data w/ GOES-17 1-min
imagery; Bedka et al. 2020 in review; Validation includes Bias/Mean Vector Difference; MVD)

» In many applications, it is assumed that optical flow = winds

» Winds can be validated with in situ measurements (rawinsondes) or remote sensing tools (e.g.
Doppler Radar/Lidar) wind profilers nearby in space/time

» Key disadvantage: Not all brightness features move w/ the wind motion
o E.G. gravity waves, surface features, outflow boundaries

Validation with Image Interpolation (We use Hurricane Michael 30-sec 0.64-um GOES-16 imagery
from 1700-1830 UTC; Following interpolation approach in Baker et al. 2011)

» In many other applications, it may be beneficial to better track features

» Optical Flow estimates can be combined with a simple interpolation algorithm to estimate
intermediate frames and evaluate feature tracking performance

o Performance is determined by comparing estimated image to a known image typically with
a gradient normalized sum-of-square error

o In most cases, this can be done w/ 1-min and 30-sec mesoscale sectors

Citation: Bedka, K. M and Co-Authors, 2020: Airborne Lidar Observations of Wind, Water Vapor, and Aerosol Profiles During The
NASA Aeolus Cal/Val Test Flight Campaign [Preprint]. Atmos. Mea. Tech., In Review. https://doi.org/10.5194/amt-2020-475 5



Sun Et Al. (2014) Optical Flow

= N

ew optical flow methods do handle motion discontinuities, illumination changes, and large
displacements, Brox et al. (2004) for example minimizes this with a coarse-to-fine strategy:

Connecting Models an

E(u(x),v(x)) = ﬂ pa(BC +vy GC) + a p;,(SC)dx
Q

BC = Brightness Constancy -> |[I(x + U, t + At) — I(x, t)|? Miti .
5 > : ~ Mitigates motion caused
GC = Gradient Constancy -> |VI(x + U, t + At) — VI(x,t)|“ , y = weight of GC

SC = Smoothness Constraint -> |Vu|? + |Vv|?, a = weight of SC

. _ Preserves motion
The pg(x?) = ps(x?) = Vx?2 + £2 are “Robust Functions” sy Wt :
discontinuities in image field

~ by illumination changes

» We will use a method by Sun et al. (2014), minimizing:
A
E Givh 0 =FEuv) i (u alPtle-9> 1 Z 2 Wi (|6 = B 1] + B0 = B 1))
17 (i et
T Jo(i,j )eNi’j T

Weighted Median Smoothing Term
(within a neighborhood of N; ;)

Coupling Term (penalizes
Brox Equation deviations from auxiliary field &, v )

 This better resolves motion discontinuities 3
 Has aux. flow field which we can set to known values e A{ i— P+ 1j—j'% |l —1pp]

w
2 2
201 20,

* Weighted median can be based on GOES-R fields Lj



Wind lidation Results-

» Optical flow validated by channel, for all case studies,
fine-spatial resolution red-band (CH-2) validated the
best, short-wave IR (CH-7) the worst

 Validation statistics here are comparable to recent
validations of the Derived Motion Wind algorithm

* Sum-of-square-error tracking performs worse than
the dense-optical flow algorithms here (NOTE: NO
AMV QUALITY CONTROL PERFORMED HERE)

Case Study Bias (Sun | SOSE ; m s™) MVD (Sun | SOSE ; ms?) Samples

April 17-18 -0.86 | -0.13 2.56 | 3.78 31

April 22-23 -0.48 | -0.81 1.68 | 3.78 208

April 25-26 -0.27 | 0.32 1.55 | 2.81 365

April 27-28 -0.31 | -0.09 3.32 | 5.62 582

April 29-30 -0.25 | 0.751 218 | 7.4 679

Total -0.306 | 0.100 2.36 | 5.38 1865
| | | |

30.0°N

28.0°N

GOES-17 Sun OF Apr 23, 2019 01:00:30 UTC
130.0°W 128.0°W 126.0°W 124.0°W 122.0°W

Optical Flow

130.0°W 128.0°W 126.0°W 124.0°wW 122.0°wW

Figure 2. GOES-17 Ch-02 0.64 um imagery plotted with Sun
optical flow, along with the NASA-DC-8 location carrying
the DAWN Lidar used for the ground-truth winds in the
table on the left.
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GOES-16 Sun OF Oct 10, 2018 17:01:31 UTC
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GOES-16 Sun OF Oct 10, 2018 17:01:31 UTC
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ﬁcal Flow

.

CIRA-SUN method
slightly outperforms
Farneback
Non-linear/
Occluding motions
give DOF algorithms
problems

GNSSE
Farneback = 0.0293
CIRA Sun =0.0286
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In Summary...

*A validation dataset is being developed for new dense-optical flow algorithms
specifically for satellite meteorology datasets/applications (includes both winds and
image interpolation-based validation)

*6 cases were demonstrated (5 for winds/one with interpolation)

*Thus far, the CIRA-SUN optical flow method is outperforming sum-of-square error
minimization for tracking clouds in the validation dataset (MVD ~ 2 m s™ for visible

imagery)
*CIRA-SUN Test interpolation does slightly better than open-source optical flow

methods (and more work is underway to improve optical flow datasets using
satellite data not available from typical imagers)

*DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DCS8 1
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Future Work ‘

*Seeking to establish an open-source framework for benchmark delivery

ecting Models and Observations

*Will include current statistics of cutting-edge optical flow techniques
*Will be designed with data/code sharing in mind

*The benchmark is planned to include a set of optical flow challenges common in
satellite remote sensing

Scenes containing motions that are transparent, texture-less, fast moving,
deforming, propagating vs. advecting, convective vs. stratiform, clouds vs.
snow/ice, dust vs. ground, small targets/boundaries edges (Any new suggestions
are welcome!)

*Supplement winds validations with synthetic IR/WV imagery examples

*As many OF techniques today are Machine-Learning-based, we will also seek to
establish training datasets for all to use

10
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Acknowledgements

» Work was funded under NESDIS GOES-R Program Office award number:
NA140AR4320125 and NOAA Grant NA19gOAR4320073.

Citations

Apke, J. M., J. R. Mecikalski, and C. P. Jewett, 2016: Analysis of Mesoscale Atmospheric Flows above Mature Deep Convection Using Super Rapid Scan Geostationary Satellite Data. J. Appl. Meteorol.
Climatol., 55, 1859-1887, doi:10.1175/JAMC-D-15-0253.1. http://journals.ametsoc.org/doi/10.1175/JAMC-D-15-0253.1.

——, ——, K. M. Bedka, E. W. McCaul Jr., C. R. Homeyer, and C. P. Jewett, 2018: Relationships Between Deep Convection Updraft Characteristics and Satellite Based Super Rapid Scan Mesoscale
Atmospheric Motion Vector Derived Flow. Mon. Wea. Rev., 146, 3461-3480. https://doi.org/10.1175/MWR-D-18-0119.1.

Brox, T., A. Bruhn, N. Papenberg, and J. Weickert, 2004: High accuracy optical flow estimation based on a theory for warping. 2004 Eur. Conf. Comput. Vis., 4, 25-36.
Farneback, G., 2001: Two-Frame Motion Estimation Based on Polynomial Expansion. Proceedings: Eighth IEEE International Conference on Computer Vision, Vol. 1 of, 171-177.

Fortun, D., P. Bouthemy, C. Kervrann, D. Fortun, P. Bouthemy, and C. Kervrann, 2015: Optical flow modeling and computation : a survey To cite this version : Optical flow modeling and computation : a
survey. Comput. Vis. Image Underst., 134, 1-21. https://hal.inria.fr/hal-01104081/file/CVIU_survey.pdf.

Horn, B. K. P, and B. G. Schunck, 1981: Determining optical flow. Artif. Intell., 17, 185203, doi:10.1016/0004-3702(81)90024-2.

Sun, D., S. Roth, and M. J. Black, 2014: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis., 106, 115-137, doi:10.1007/s11263-013-
0644-x.

Wu, Q., H.-Q. Wang, Y.-J. Lin, Y.-Z. Zhuang, and Y. Zhang, 2016: Deriving AMVs from Geostationary Satellite Images Using Optical Flow Algorithm Based on Polynomial Expansion. J. Atmos. Ocean.
Technol., 33, 1727-1747, d0i:10.1175/JTECH-D-16-0013.1. http://journals.ametsoc.org/doi/10.1175/JTECH-D-16-0013.1.

11



Thank You For Listening!

For additional questions, contact:
Jason Apke

3925A West Laporte Ave. Fort Collins, CO 80523-1375
DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DC8 1
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Extra Slides

For additional questions, contact:
Jason Apke

3925A West Laporte Ave. Fort Collins, CO 80523-1375
DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DC8 1
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GOES-16 Sun OF Jan 13, 2020 17:30:30 UTC
58.0°W 57.5°W 57.0°W 56.5°W 56.0°W 55.5°W 55.0°W

e Connecting Models and Observations

Dense optical flow meso-
winds products see vertical
growth in clouds as
acceleration in cloud-top
horizontal motion, see color
scale below (where
grey=stationary)

Hodograph (below) indicates
GFS analysis wind speed and
direction as a function of
height for this scene

57.0°W 56.5°W 56.0°W 55.5°W 55.0°W




Connecting Models and Observations

m&)oling

GOES-16 10.3-um IR Jan 10, 2020 14:36:28 UTC GOES-16 10.3-um 5-min CTC OF warped Jan 10, 2020 14:36:28 UTC GOES-16 10.3-um IR Jan 10, 2020 14:36:28 UTC
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i = —
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10.3-um Brightness Temp (K) 10.3-um Brightness Temp Cooling (K/5-min)

*Time-rates of change can dramatically complement the native
16-channels on GOES-R ABIs for Al/Machine Learning



DNB Imagery

SNPP/NOAA20 DNB Jun 29, 2019 13:43:18 UTC

| Sea-ice texture
highlighted with
CIRA-Sun method

-m ] : U e L &
Rotation is resolved

{ with larger glaciers




Winds Validation o .

/ . . . .
~+ Two optical flow retrieval systems are run on 1-min GOES-17 images:

e Sun etal. (2014), and a sum-of-square error minimization technique
(following AMV methods; 5x5 pixel target box sizes; 9gxg search regions)

 Algorithm output is compared to NASA Aeolus Cal/Val aircraft field campaign
data (Bedka et al. 2020)
 Five DC-8 research flights over a two-week period in Spring, 2019

e DC-8 carried the Doppler Aerosol Wind Profiling Lidar (DAWN; outputs
winds and signal-to-noise ratio, SNR) under a GOES-17 1-min meso-sector

* Assuming highest altitude SNR=10 value is the cloud-top wind derived by the
optical flow approaches

* We test winds by Bias and Mean Vector Difference (MVD)

s — s Uor T Vpr UpawnN T Vpawn

1
MVD = Ez J(uof o uDAWN)Z +(Vof w VDAWN)Z



Connecting Models and Observa tions

Interpolation Validation o

* We test two optical flow algorithms with interpolation error, Sun et al. (2014) and an open source
method by Farneback (2001)

« Optical Flow Interpolation follows Baker et al. (2011)

 Inputs: Two sequential images, forward calculated (time 1 -> time 2) optical flow, intermediate
time for new frame (in our case, t = 0.5), Interpolation is a four-step process:

1. Warp optical flow forward to the time to be interpolated, so u,, (round(x + t uy(x)) = ug(x)
2. Fill in any holes on the warped optical flow field with an outside-in strategy

3. Estimate Occlusion Masks (where only one image is visible at one time) using forward flow
reasoning

4. Where both pixels are visible, blend the two images using I;(x) = (1 — t)Iy(x¢) + t I;(x1)
where [ is the image brightness, xg = x — t u,,(x), x; = x + (1 — t) u,,(x) , t is the time
between each image normalized such that the total time difference =1,

otherwise set pixel to forward/backward warped image which is not occluded

* Optical flow is run with 1-min cadence on 30-sec visible imagery, interpolated 30-sec image is then

compared to the actual image w/ the gradient-normalized sum-of-square error, -
o (12 (1) = 1:(xy) )
Citation: Baker, S., D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, 2011: A database and n VI(x, y) +0.1
evaluation methodology for optical flow. Int. J. Comput. Vis., 92, 1-31, doi:10.1007/s11263-010-0390-2.
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arnebick Optical Flow

Here, a scheme similar to Farneback (2001) and Wu et al. (2016) is used
* Identifies flow by fitting image intensity I in windows to polynomial functions, that is:
[(x) =xTAx+Bx+C
e Where I is a function of the position in the image window x=[x,y] and constant coefficient matrices A, Band C

e With linear algebra, the coefficients of the polynomial in two subsequent image windows can be used to solve for the flow u
assuming brightness constancy, that is, at time t+1

I(x,t)=I(x+ut+1)
And it can be shown that

Sy
u= —§A1 (B, — By)
* Note: u cannot be found 4, if is not invertible (e.g. when there is no texture)!

OpenCV (opencv.org) Farneback function used with the following settings
* Window: 5 x 5 pixels, local optimization window: 25x25 pixels
e Pyramid Depth- 3 levels, Scaling- 0.5
e Smoothing Std. Dev.- 1.0, Farneback Gaussian Smoothing Used

e Sets u = [0,0] when no texture is available to find a solution!

Citation: Wu, Q., H.-Q. Wang, Y-J. Lin, Y.-Z. Zhuang, and Y. Zhang, 2016: Deriving AMVs from Geostationary Satellite Images Using Optical Flow

Algorithm Based on Polynomial Expansion. J. Atmos. Ocean. Technol., 33, 1727-1747, doi:10.1175/JTECH-D-16-0013.1. 19



Attribute

Value

Airplanes Flown

DC-8 and UC-12B

Solid-State Laser Crystal and Wavelength

Ho:Tm:LuliF, 2.053 Microns

Laser Architecture

Master Oscillator Power Amplifier (MOPA)

ing Source, Wavelength, Duration

Laser Diode Arrays (LDA), 792 nm, 1 ms

Laser Pulse Energy E, Rate f, FWHM Duration t

80-100 mJ, 10 Hz, 180 ns

Telescope Diameter D

15cm

Light Detection Material, Technique

InGaAs, Coherent, Dual-Balanced

Scanner Diameter, Type, Deflection

15 cm, Step-Stare Rotating Wedge, 30° About Nadir

Eye Safety

Safe at any Range When DAWN Closed Up for Flight

Pointing Knowledge Technique

Dedicated INS/GPS on Lidar; dry land returns

LOS Wind Measurement Precision

<1m/s

Vertical Resolution

60m

Doppler Aerosol Wind (DAWN) Lidar System

Pl: Michael J. Kavaya, NASA LaRC

/ Precision =<1 m/s

DAWN Capabilities

2.053 micron wavelength, 80-100 mJ/pulse. High
sensitivity to aerosol backscatter, enables excellent
vertical resolution, accuracy, and atmospheric coverage

Provides vertical profiles of LOS wind, horizontal wind
vectors, and aerosol backscatter

Optional number of azimuth angles (up to 12) permits
trade of wind variability determination vs. horizontal
resolution

Optional number of laser shots averaged for each LOS
wind profile permits trade of atmospheric coverage vs.
horizontal resolution

Data may be processed multiple ways to provide
various combinations of vertical and horizontal
resolution, atmospheric coverage, and accuracy

Successful field campaigns: Polar Winds | and II,
Convective Processes Experiment (CPEX), ADM Aeolus
Cal/Val Test Flight Campaign




