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What is Dense Optical Flow?
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• Optical Flow Definition:
“The distribution of apparent velocities 
of movement of brightness patterns in 
an image”  (Horn and Schunck 1981)

• “Dense” optical flow (DOF) is motion 
retrieval at EVERY image pixel
• Contrast w/ sparse optical flow, 

where motion is tracked at specific 
targets in the image (e.g. AMVs; 
Velden et al. 1997; Bresky et al. 
2012)

• Routine rapid scanning (≤ 5 min) now 
enables new and advanced DOF 
retrieval techniques for most cloud-
motions in geostationary satellite 
imagery, and there are numerous 
applications

Hurricane Laura

Figure 1. GOES-16 Ch-02 0.64 μm imagery plotted with Farnebäck optical flow (wind barbs 
colored by speed) over Hurricane Laura in the Gulf of Mexico. 

Winds



• Benchmarks are validation and training datasets designed to 
quantify progress and uncertainty in algorithm development

• Three Examples are Middlebury, MPI-Sintel, and KITTI
• Benchmarks ensure optical flow quality, and provide 

challenging tracking scenes to drive research forward
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Optical Flow Benchmarks
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• The quality of DOF applications (Like AMVs) depend on accurate retrieval
• Most DOF algorithms were designed to track large, “quasi-rigid” scenes
• Obstacle detection for self-driving cars (Fortun et al. 2016)
• Automated Surveillance of moving pedestrians (e.g. Ring Doorbells)
• Feature or Gesture Tracking (For virtual/augmented reality)

• The fluid motions in satellite imagery are a different tracking problem than what 
ordinary DOF validation datasets focus on 

• DOF validation datasets can be used to
1. Set benchmarks that result in measurable DOF development progress
2. Help to identify strengths/weaknesses of different DOF retrieval techniques
3. Inform on instrument design and scanning strategies (e.g. temporal 

/radiometric resolutions) for future satellite missions
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Motivation



1) Validation with Wind Measurements (We use the Aeolus CAL/VAL DAWN data w/ GOES-17 1-min 
imagery; Bedka et al. 2020 in review; Validation includes Bias/Mean Vector Difference; MVD)
Ø In many applications, it is assumed that optical flow = winds
Ø Winds can be validated with in situ measurements (rawinsondes) or remote sensing tools (e.g.

Doppler Radar/Lidar) wind profilers nearby in space/time
Ø Key disadvantage: Not all brightness features move w/ the wind motion

o E.G. gravity waves, surface features, outflow boundaries
2) Validation with Image Interpolation (We use Hurricane Michael 30-sec 0.64-μm GOES-16 imagery 

from 1700-1830 UTC; Following interpolation approach in Baker et al. 2011)
Ø In many other applications, it may be beneficial to better track features
Ø Optical Flow estimates can be combined with a simple interpolation algorithm to estimate 

intermediate frames and evaluate feature tracking performance
o Performance is determined by comparing estimated image to a known image typically with 

a gradient normalized sum-of-square error
o In most cases, this can be done w/ 1-min and 30-sec mesoscale sectors
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Optical Flow Validation Methods

Citation: Bedka, K. M and Co-Authors, 2020: Airborne Lidar Observations of Wind, Water Vapor, and Aerosol Profiles During The 
NASA Aeolus Cal/Val Test Flight Campaign [Preprint]. Atmos. Mea. Tech., In Review. https://doi.org/10.5194/amt-2020-475 



� New optical flow methods do handle motion discontinuities, illumination changes, and large 
displacements, Brox et al. (2004) for example minimizes this with a coarse-to-fine strategy:
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• This better resolves motion discontinuities
• Has aux. flow field which we can set to known values
• Weighted median can be based on GOES-R fields
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• We will use a method by Sun et al. (2014), minimizing:

Mitigates motion caused 
by illumination changes

Preserves motion 
discontinuities in image field

Sun Et Al. (2014) Optical Flow



Case Study Time (UTC) Bias 
(CH 1 | 2 | 7 ; m s-1)

MVD (CH1 | 2 | 7;  m s-1) Samples (CH 1,2 | 7)

April 17-18 2330-0100 -0.16 | -0.86 | -0.13 2.5 | 2.56 | 3.09 31

April 22-23 0040-0220 | 
0040-0400

-1.24 | -0.48 | -0.81 1.92 | 1.68 | 2.31 208 | 443

April 25-26 1940-2230 0.11 | -0.27 | 0.32 1.67 | 1.55 | 2.21 365

April 27-28 1700-0100 -0.21 | -0.31 | -0.09 3.64 | 3.32 | 3.27 582

April 29-30 2000-0300 0.09 | -0.25 | 0.751 2.352 | 2.18 | 2.65 679

Total - -0.153 | -0.306 | 0.100 2.57 | 2.36 | 2.68 1865 | 2100

Case Study Bias (Sun | SOSE ; m s-1) MVD (Sun | SOSE ;  m s-1) Samples

April 17-18 -0.86 | -0.13 2.56 | 3.78 31

April 22-23 -0.48 | -0.81 1.68 | 3.78 208

April 25-26 -0.27 | 0.32 1.55 | 2.81 365

April 27-28 -0.31 | -0.09 3.32 | 5.62 582

April 29-30 -0.25 | 0.751 2.18 | 7.14 679

Total -0.306 | 0.100 2.36 | 5.38 1865

Winds Validation Results

Optical Flow
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Figure 2. GOES-17 Ch-02 0.64 μm imagery plotted with Sun  
optical flow, along with the NASA-DC-8 location carrying 
the DAWN Lidar used for the ground-truth winds in the 
table on the left.

• Optical flow validated by channel, for all case studies, 
fine-spatial resolution red-band (CH-2) validated the 
best, short-wave IR (CH-7) the worst

• Validation statistics here are comparable to recent 
validations of the Derived Motion Wind algorithm

• Sum-of-square-error tracking performs worse than 
the dense-optical flow algorithms here (NOTE: NO 
AMV QUALITY CONTROL PERFORMED HERE)

Table 1. Comparison statistics of CIRA/Sun optical flow algorithm to the DAWN lidar wind. 
Table 2. Comparison statistics of CIRA/Sun optical flow algorithm and the Sum-Of-Square-
Error Minimization to the DAWN lidar wind. 
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GNSSE
Farneback = 0.0293
CIRA Sun =0.0286

• CIRA-SUN method 
slightly outperforms 
Farnebäck

• Non-linear/ 
Occluding motions 
give DOF algorithms 
problems

Original Visible Interpolated Visible

Interpolation Error Optical Flow



In Summary…
•A validation dataset is being developed for new dense-optical flow algorithms 
specifically for satellite meteorology datasets/applications (includes both winds and 
image interpolation-based validation)
•6 cases were demonstrated (5 for winds/one with interpolation)
•Thus far, the CIRA-SUN optical flow method is outperforming sum-of-square error 
minimization for tracking clouds in the validation dataset (MVD ~ 2 m s-1 for visible 
imagery)
•CIRA-SUN Test interpolation does slightly better than open-source optical flow 
methods (and more work is underway to improve optical flow datasets using 
satellite data not available from typical imagers)
•DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DC8_1
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Future Work
•Seeking to establish an open-source framework for benchmark delivery
•Will include current statistics of cutting-edge optical flow techniques
•Will be designed with data/code sharing in mind

•The benchmark is planned to include a set of optical flow challenges common in 
satellite remote sensing
•Scenes containing motions that are transparent, texture-less, fast moving, 
deforming, propagating vs. advecting, convective vs. stratiform, clouds vs. 
snow/ice, dust vs. ground, small targets/boundaries edges (Any new suggestions 
are welcome!)

•Supplement winds validations with synthetic IR/WV imagery examples
•As many OF techniques today are Machine-Learning-based, we will also seek to 
establish training datasets for all to use
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Thank You For Listening!

For additional questions, contact:
Jason Apke

jason.apke@colostate.edu
3925A West Laporte Ave. Fort Collins, CO 80523-1375

DAWN Data DOI: 10.5067/AIRBORNE/AEOLUS-CALVAL-DAWN_DC8_1

mailto:jason.apke@colostate.edu
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• Dense optical flow meso-
winds products see vertical 
growth in clouds as 
acceleration in cloud-top 
horizontal motion, see color 
scale below (where 
grey=stationary)

• Hodograph (below) indicates 
GFS analysis wind speed and 
direction as a function of 
height for this scene

0.64-μm Visible Sun Optical Flow



Cloud-Top Cooling

Developing Deep 
Convection

Cooling Derived with 
Dense Optical Flow

Cooling Missed without 
Dense Optical Flow

*Time-rates of change can dramatically complement the native 
16-channels on GOES-R ABIs for AI/Machine Learning
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Sea-ice texture 
highlighted with 
CIRA-Sun method

Color-Shaded Optical Flow ComparisonDNB Imagery

Rotation is resolved 
with larger glaciers
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Color/saturation dependent on 
direction/speed of derived motion



• Two optical flow retrieval systems are run on 1-min GOES-17 images:
• Sun et al. (2014), and a sum-of-square error minimization technique 

(following AMV methods; 5x5 pixel target box sizes; 9x9 search regions)
• Algorithm output is compared to NASA Aeolus Cal/Val aircraft field campaign 

data (Bedka et al. 2020)
• Five DC-8 research flights over a two-week period in Spring, 2019
• DC-8 carried the Doppler Aerosol Wind Profiling Lidar (DAWN; outputs 

winds and signal-to-noise ratio, SNR) under a GOES-17 1-min meso-sector 
• Assuming highest altitude SNR=10 value is the cloud-top wind derived by the 

optical flow approaches
• We test winds by Bias and Mean Vector Difference (MVD)

𝐵𝑖𝑎𝑠 =
1
𝑛
( 𝑢!"# + 𝑣!"# − 𝑢$%&'# + 𝑣$%&'#

𝑀𝑉𝐷 =
1
𝑛
( (𝑢!" − 𝑢$%&')# +(𝑣!" − 𝑣$%&')# 17

Winds Validation



• We test two optical flow algorithms with interpolation error, Sun et al. (2014) and an open source 
method by Farneback (2001) 

• Optical Flow Interpolation follows Baker et al. (2011)
• Inputs: Two sequential images, forward calculated (time 1 -> time 2) optical flow, intermediate 

time for new frame (in our case, 𝑡 = 0.5), Interpolation is a four-step process:

1. Warp optical flow forward to the time to be interpolated, so 𝒖𝒘(𝑟𝑜𝑢𝑛𝑑 𝒙 + 𝑡 𝒖𝟎 𝒙 = 𝒖𝟎 𝒙
2. Fill in any holes on the warped optical flow field with an outside-in strategy
3. Estimate Occlusion Masks (where only one image is visible at one time) using forward flow 

reasoning
4. Where both pixels are visible, blend the two images using  𝐼* 𝒙 = 1 − 𝑡 𝐼+ 𝒙𝟎 + 𝑡 𝐼, 𝒙𝟏

where 𝐼 is the image brightness, 𝒙𝟎 = 𝒙 − 𝑡 𝒖𝒘(𝒙), 𝒙𝟏 = 𝒙 + (1 − 𝑡) 𝒖𝒘(𝒙) , t is the time 
between each image normalized such that the total time difference = 1,
otherwise set pixel to forward/backward warped image which is not occluded

• Optical flow is run with 1-min cadence on 30-sec visible imagery, interpolated 30-sec image is then 
compared to the actual image w/ the gradient-normalized sum-of-square error, 
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Interpolation Validation

Citation: Baker, S., D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, 2011: A database and 
evaluation methodology for optical flow. Int. J. Comput. Vis., 92, 1–31, doi:10.1007/s11263-010-0390-2.
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Farnebäck Optical Flow
� Here, a scheme similar to Farnebäck (2001) and Wu et al. (2016) is used

� Identifies flow by fitting image intensity I in windows to polynomial functions, that is:
𝐼 𝒙 = 𝒙$𝑨 𝒙 + 𝑩 𝒙 + 𝑪

� Where I is a function of the position in the image window x=[x,y] and constant coefficient matrices A, B and C
� With linear algebra, the coefficients of the polynomial in two subsequent image windows can be used to solve for the flow u

assuming brightness constancy, that is, at time t+1

𝐼 𝒙, 𝑡 = 𝐼(𝒙 + 𝒖, 𝑡 + 1)
And it can be shown that

𝒖 = −
1
2
𝑨%&%(𝑩! − 𝑩%)

* Note: 𝒖 cannot be found 𝑨% if is not invertible (e.g. when there is no texture)!

� OpenCV (opencv.org) Farnebäck function used with the following settings
� Window: 5 x 5 pixels, local optimization window: 25x25 pixels
� Pyramid Depth- 3 levels, Scaling- 0.5
� Smoothing Std. Dev.- 1.0, Farnebäck Gaussian Smoothing Used
� Sets 𝒖 = [0,0] when no texture is available to find a solution! 

Citation: Wu, Q., H.-Q. Wang, Y.-J. Lin, Y.-Z. Zhuang, and Y. Zhang, 2016: Deriving AMVs from Geostationary Satellite Images Using Optical Flow 
Algorithm Based on Polynomial Expansion. J. Atmos. Ocean. Technol., 33, 1727–1747, doi:10.1175/JTECH-D-16-0013.1.



Doppler Aerosol Wind (DAWN) Lidar System
PI: Michael J. Kavaya, NASA LaRC

DAWN Capabilities
• 2.053 micron wavelength, 80-100 mJ/pulse. High 

sensitivity to aerosol backscatter, enables excellent 
vertical resolution, accuracy, and atmospheric coverage

• Provides vertical profiles of LOS wind, horizontal wind 
vectors, and aerosol backscatter

• Optional number of azimuth angles (up to 12) permits 
trade of wind variability determination vs. horizontal 
resolution

• Optional number of laser shots averaged for each LOS 
wind profile permits trade of atmospheric coverage vs. 
horizontal resolution

• Data may be processed multiple ways to provide 
various combinations of vertical and horizontal 
resolution, atmospheric coverage, and accuracy

•

• Successful field campaigns: Polar Winds I and II, 
Convective Processes Experiment (CPEX), ADM Aeolus 
Cal/Val Test Flight Campaign
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Attribute Value 
Airplanes Flown DC-8 and UC-12B 

Solid-State Laser Crystal and Wavelength Ho:Tm:LuLiF, 2.053 Microns 

Laser Architecture Master Oscillator Power Amplifier (MOPA) 

Pumping Source, Wavelength, Duration Laser Diode Arrays (LDA), 792 nm, 1 ms 

Laser Pulse Energy E, Rate f, FWHM Duration t 80-100 mJ, 10 Hz, 180 ns 

Telescope Diameter D 15 cm 

Light Detection Material, Technique InGaAs, Coherent, Dual-Balanced 

Scanner Diameter, Type, Deflection 15 cm, Step-Stare Rotating Wedge, 30° About Nadir 

Eye Safety Safe at any Range When DAWN Closed Up for Flight 

Pointing Knowledge Technique Dedicated INS/GPS on Lidar; dry land returns 

LOS Wind Measurement Precision < 1 m/s 

Vertical Resolution 60 m 

 

Precision = < 1 m/s


