Generation and Application of Local High Resofution AMV s

 for Operational \mathcal{N} WP in the Australian RegionJohn Le SMarshall ${ }^{1,4}$, ©. Howard ${ }^{1}$, S. Rennie ${ }^{1}$, D. Ren ${ }^{1}$, C.Tingwell , F. Smith ${ }^{1}$ J. Daniefs ${ }^{2}$, J. Jung ${ }^{3}$, S. Wanzong ${ }^{3}$, I. Morrow ${ }^{1}$, A. Lim ${ }^{4}$, §. Xiao ${ }^{1}$, RSNorman ${ }^{4}$ and X. Wang ${ }^{1}$
${ }^{1}$ Bureau of Meteorology, Melbourne, Australia ${ }^{2}$ NOAA/SESOIS/STAR, College Park USA ${ }^{3}$ UW/CIMSS, Madison. USA
${ }^{4}$ RSMIT University, Melbourne, Austrafia

Overview

- The Importance ofEOS in the SH
- Specification of the mass and wind field
- AMVs- MTSSat-1R/-2 Himawari-8/-9
- Application of the AMV data
- The Future
- Conclusions

The Importance of EOS (in the SH)

Observing System Experiments (OSEs)

With and Without Satellite Data

- Systems Examined
- ACCESS (APS1) - Operational data base (Australian Op. Sys)
- 28 October to 30 November 2011
- GFS (2010) - Operational data base (US Op. Sys)
- 15 August to 30 September 2010

Earth Observations From Space

Fig. 8(c). SH 500 hPa height anomaly correlation for the control (SAT) and no satellite (NOSAT), 28 October to 30 November 2011 using ACCESS and verifying against the control analysis

Fig. 8(f). NH 500 hPa height anomaly correlation for the control (SAT) and no satellite (NOSAT), 28 October to 30 November 2011 using ACCESS and verifying against the control analysis

Specification of the Mass and Wind Field

- Impact of Key Data

Ultraspectral Advanced Sounders
AIRS
IASI
CrIS

ACCESS APS2: Forecast Sensitivity to Observations

Global 24-hour forecast error reduction from each of the observation types assimilated in ACCESS

- Three months: April, May and June 2016. Himawari-8 AMVs included in full period.
- All types of observations are beneficial, i.e. reduce the forecast error.
- Total impact (LH panel) is dominated by satellite instruments (e.g. the IASI, AMSU and CrIS sounding instruments carried on polar orbiters and AMVs) - due to large numbers \& global coverage.
- Greater impact per observation (RH panel) comes from balloon upper air measurements plus surface measurements from drifting and fixed buoys.

Anstralian Government
Bureau of Meteorology
MTSAT-1R and 2
Himawari-8HFimawari-9
THEE GENERATION AND ASSIMILATION OF
CONTINUOUS ATMOSPHERIC MOTIONVECTORS WITH
$4 \mathcal{D V A R}$

Specification of "Himawari-8/9" Imager(AHI)
Full Disk Image
every 10 minutes

NEAR RT TRIAL

OPERATIONAL STSTEEM

27 January - 23 February 2011
Used
■ Real Time Local Satellite Winds MTSAT-2 (EE, hourly since 96, TDB)

- 2 sets of quarter hourly motion vectors every six hours.
- Hourly motion Vectors

■ Operational Regional
Forecast Model (ACCESS-R) and
Data Base (Inc JMA AMVs)

HIMAWARI-7 JNEAR RT TRIAL

GENERATIONAND

 ASSIMILATION OFCONTINUOUS (10 Minute) ATMOSPHERIC MOTIONVECTORS FROM MISAT-1R (HIMAWARI-6) USING 4DVAR

Fig. 1 A selection of Himawari-6 Atmospheric Motion Vectors over North-Eastern Australia generated from 10 min imagery between 0010 UTC and 0050 UTC 28 January 2014.

Fig. 13 Bureau of Meteorology Analysis for 12 UTC on 27 January 2014.

Fig. 15 The Bureau of Meteorology operational three-day MSLP (hPa) forecast valid 1200 UTC 30 January 2014, shown remapped over an MTSat infrared image, valid at the same time.

Fig. 14. Bureau of Meteorology Analysis for 12 UTC on 30 January 2014

Fig. 16 The Bureau of Meteorology three-day MSLP (hPa) forecast valid, 1200 UTC 30 January 2014 using the next generation operational regional forecasting system with ten, fiffeen and sixty minute AMV data from MT Sat-1R and MT Sat-2. The forecast remapped over the 1200 UTC MT Sat image.

Anstralian Government
Bureau of Meteorology

RECENT GENERATION

 AND ASSIMILATION OFCONTITNUOUS
(10 Minute)
$\mathcal{H}-8$ (9) ATMOSPHERTC MOTIONVECTORS, With GEOCAT $\mathcal{A N D}$ 4DVAR

Himawari-8 OperationalユAMV Generation

Uses all image triplets (separated by 10 min in HSF format).
Employs modified GEOCAT (Geostationary Cloud Algorithm Testbed) software in initial processing.

Height assignment methods similar to GOES-R ABI ATBD For Cloud Height (Heidinger, A. 2010)

AMV estimation is similar to GOES-R ABI ATBD for Derived Motion Winds (Daniels, 2010) / BoM system

Error characterization, data selection, QC via EE, QI, ERR etc. (Le Marshall et al., 2004, 2015) Height assignment verification Cloudsat/Calipso, RAOBS (System also used for $\mathcal{H}-7$)

TC IRIS 4 APRIL 2018

Fig. 8 AMVs generated around Australia 0000UTC 29 April 2015 - View from the south

Fig.10AMVs generated around Australia 0000UTC 29 April 2015 - Slant view from southwest.

Table 1 Verification Table for Himawari-8 IR (Channel 14) AMVs compared to radiosondes 1 March - 31 March 2017				
AMV Type	Category	m / s		NOBS
LowSep $<50 \mathrm{~km}$	MMVD	2.5161		
	RMSVD	2.9618		
	BIAS	-0.0991		
High Sep $<50 \mathrm{~km}$	MMVD	3.2834		
	RMSVD	3.9624		

Table 2 Verification Table for Himawari-8 VIS (Channel 3) AMVs compared to radiosondes 1 March - 31 March 2017 AMV Type	Category	m / s		NOBS
Low Sep $<50 \mathrm{~km}$	MMVD	2.4808		

Processing every 10 minutes

NRT Testing in ACCESS G2 Completed.
NB. 2018 Int. Study

LengthScale of the CorrelatedError

The correlation function used was the second order auto-regressive (SOAR) function (Daley 1991), namely

$$
R(r)=R_{00}+R_{0}(1+r / L) \mathrm{e}^{\mathrm{r} / \mathrm{L}}
$$

where $R(r)$ is the error correlation, with fitting parameters $\mathbb{R}_{00}, \mathcal{R}_{0}$ (greater than 0), and \mathcal{L} is the length scale, and ' r ' is the separation of the correlates.

Initial parameter estimates derived using the methods referenced in Le Marshall, 2004 (for example for low level Ch14 AMMVs;
$\mathrm{L}=128, \mathrm{R}_{0}=0.56$ and $\left.\mathrm{R}_{00}=0.01\right)$
are not inconsistent with the current analysis method. These estimates are still being improved as the match database being used is expanding rapidfy.

Fig. 3 Thinned Himawari-8 AMVs tracked using tracers from channel 14, 9 and 2 images at 00 UTC 24 July 2017.

Fig. 5 Coverage of AMVs from Himawari-8 in the tropics to the north of Australia around 0000 UTC 29 April 2015

Fig. 4. Measured error (m / s) vs Expected Error (m / s) for low-level Himawari-8 IR winds (1 31 August-29 2016).

Fig6 Himawari-8 level of best fit height assignment statistics for CH. 14 230-270 Hpa AMVs for September 2017

Australian BoM ACCESS-R Received observations coverage Satwind 201804120000 UTC
 Total number of obs $=410349$

Forecast Lead time Surface Mean sea level pressure Anomaly correlation coefficent (absolute) Northern Annulus Date: 20160304 00UTC to 20160326 00UTC 2.5×2.5 degree grid

Change-over Month - Triply Redundant system $\longrightarrow \quad$ G2-BNOC

Fig. 13 MSLP anomaly correlation coefficients for the Northern Hemisphere Annulus for the operational system (blue) and for the operational test system for 4-26 March 2016.

FSOI for major observation types \& instruments

total fsoi per obstype aus norm 201706-201708 per day (J/kg)

2017 Jun - Aug

Effective Utilisation of the AMV Database

Figure 10(a) shows Channel 14 (IR) low level AMVs Figure 10(b) shows Channel 14 (IR) low level AMVs (yellow) with expected errors less than $2.6 \mathrm{~m} / \mathrm{s}$ and upper (yellow) with expected errors less than $2.6 \mathrm{~m} / \mathrm{s}$ and upper level AMVs (red) with expected errors less than $6.0 \mathrm{~m} / \mathrm{s}$ generated by one image triplet. level AMVs (red) with expected errors less than $6.0 \mathrm{~m} / \mathrm{s}$ generated by six image triplets.

Fig. 8(a) Thinned IR Channel 1410 minute AMVs from Himawari-8 images at 00UTC 1 May 2017

Fig. 8(b) IR plus Visible Channel 210 minute AMVs from Himawari-8 images 00UTC 1 May 2017

IR Channel 14 (yellow) and Visible Channel 2 (Beige) 10 minute AMVs from Himawari-8 images at 00UTC 18 October 2017, IR Channel 14 (yellow) and Visible Channel 2 (Beige) 10 minute AMVs from Himawari-8 images at 00UTC 18 October 2017 and IR, Visible and WV AMVs from 17 April 2018.

An Example

Tropical Cyclone Quang

Visible image on April 29 at 06:35 UTC (2:35 a.m. EDT) from the MODIS instrument on NASA's Aqua satellite of Tropical Cyclone Quang in the Southern Indian Ocean.

TC Quang Himawari-8 AMM Generation

And Assimilation

Used Operational 4km res. 4DVar TCX system over Timor Sea
Used all Vis/IR image triplets (separated by $10 \mathrm{~min} / \mathrm{HSF}$ format). (2 km ch $14 \mathrm{IR}, 1 \mathrm{~km}$ ch 2 VIS)

Employs modified GEOCAT software in initial processing.
Height assignment methods similar to GOES-R ABI ATBD
AMV estimation is similar to GOES-R ABI ATBD and BoM system

Error characterization, selection, QC via EE, QI, ERR etc.

NR Ch 14 and VIS ch 2 image based AMVs 00U

Fig. 14(a) The forecast track of tropical cyclone Quang from 00 UTC 29 April 2015 (red) and the best track (Black), both in six hour intervals

Operational Assimilation of AMVs

- Global System APS3 (G3)
- 12 km Res.
- AMVs including local 10 minute winds assimilated with 4D Var every 6 hours.
- Capital City System APS3 (C3) and TC3 System
- 1.5 km Res.
- AMVs assimilated with 4D Var in 10 minute bundles every hour.
- Local ten minute AMVs can be the only Upper Air wind Obs. in a C3 assim. cycle.

CapitalCity Models

APS-3 City Domains

Inner 1.5 km region

APS-3 City Domains

Full domain showing transition to 4 km resolution

ACCESS APS2: Forecast Sensitivity to Observations

FSOI for major observation types \& instruments
2017 Jun - Aug

Satellite
 Upper-air Surface

ACCESS APS2: Forecast Sensitivity to Observations

Current/Near Future Local Operational AMV Applications

Operational C3 1.5 km Resolution Capital City Nested Model Operational TC3 1.5 km Tropical Cyclone Nested Model.

Products for high resolution City/TC Model, low latency requirement (also for G3)

10 minute Himawari Ch14 AMVs (operational)
10 minute Himawari visible AMVs (in transition)
10 minute water vapour AMVs (tested, under trial for transition) (GEO-KOMPSAT 2A AMVs)

Summary and Conclusions

10-minute winds are being operationally continuously generated and assimilated in the Australian region with 4D Var at 12 and 1.5 km resolution

H-8/9 10 minute AMVs have provided a necessary improved spatial and temporal resolution database for analysis and forecasting.

The quality of these higher spatial, temporal and spectral density data is of a level which renders them beneficial for NWP.

Local high spatial and temporal resolution winds are required in support of our 1.5 km high resolution operational analysis and forecast system and sometimes they are the only upper level wind data available for an analysis cycle.

Data assimilationtests have shown successful transfer of data into operations and successful use of the data by the NWP system.

Further quantification of the impact of these data in our current operational prediction systems is underway. This includes the use of all 10 minute data in the prediction of High Impact Weather and TC activity.

Future

Further improvement in the provision, use and error characterization of AMV data for NWP, at high temporal and spatial resolution.

Faster Processing to enable timely use of very high resolution data sets in high resolution NWP.

Stereo Processing to improve height assignment.
Optimisation of use of the AMV data in NWP in concert with other components of the database (such as clear wv radiances with 4DVar) at high temporal and spatial resolution.
...and finally

