

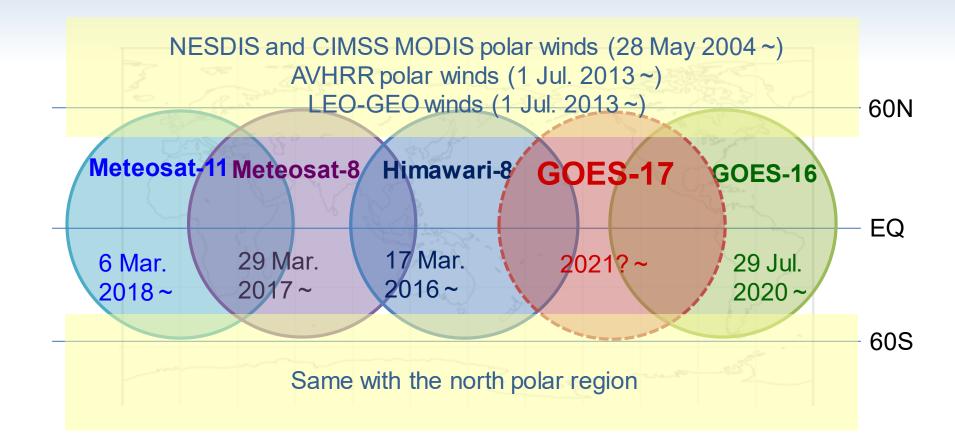
15th International Winds Workshop, April 12-16, 2021 virtual

Use of GOES-17 AMV in the JMA's Global NWP System

NONAKA Kenichi Japan Meteorological Agency Numerical Prediction Division @Tsukuba, Japan *Numerical Prediction Development Center*

気象庁 Japan Meteorological Agency

Outline


- Overview of JMA's global NWP system and AMVs utilized in the system
- Comparison between GOES-17 and GOES-16 AMVs
 - Time filtering for GOES-17 AMV
- Optimizing QI thresholds
 - From OBS-FG statistics
- Results of observing system experiments (OSEs)
- Summary and plan

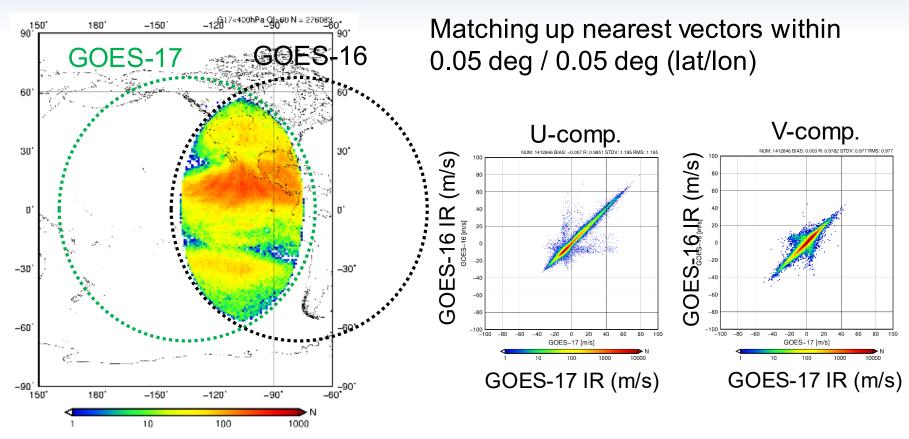
JMA's global NWP system configuration

	Global NWP System	
Purposes	Daily forecasts Tropical cyclone information One-week forecasts	
Forecast: Global Spectral Model (GSM)		
Grid Size	0.1875 deg. (TL959)	
Vertical Levels/Top	100 / 0.01 hPa	
Forecast Range (Initial Time)	132 hours (06, 18 UTC) 264 hours (00, 12 UTC)	
Analysis: Hybrid LETKF/4D-Var Assimilation		
Grid Size	Outer: TL959 (~20 km) Inner: TL319 (~55 km)	
Vertical Levels/Top	100 + surface / 0.01 hPa	
Iterations	Outer: 2 Inner: Approx. 35	
Ensemble Size for LETKF	50 members	
Data Cut Off Time	Early Analysis: +2h20m Cycle Analysis: +7h50m (06, 18 UTC) +11h50m (00, 12UTC)	

Status of operational AMVs usage for NWP in JMA

GOES-16 AMV has been assimilated into JMA's operational global NWP system since 29 July 2020.

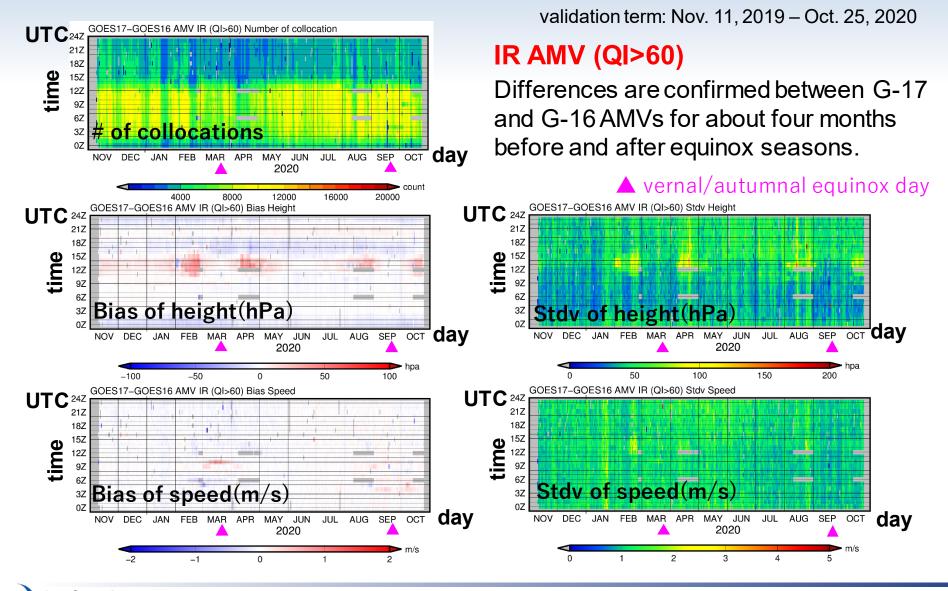
気象庁 Japan Meteorological Agency


Preliminary investigation to use GOES-17 AMV in NWP

It is announced that there is an issue in cooling system of GOES-17/ABI and some degradation are emerged in the imagery during some hours before and after the vernal and autumnal equinoxes.

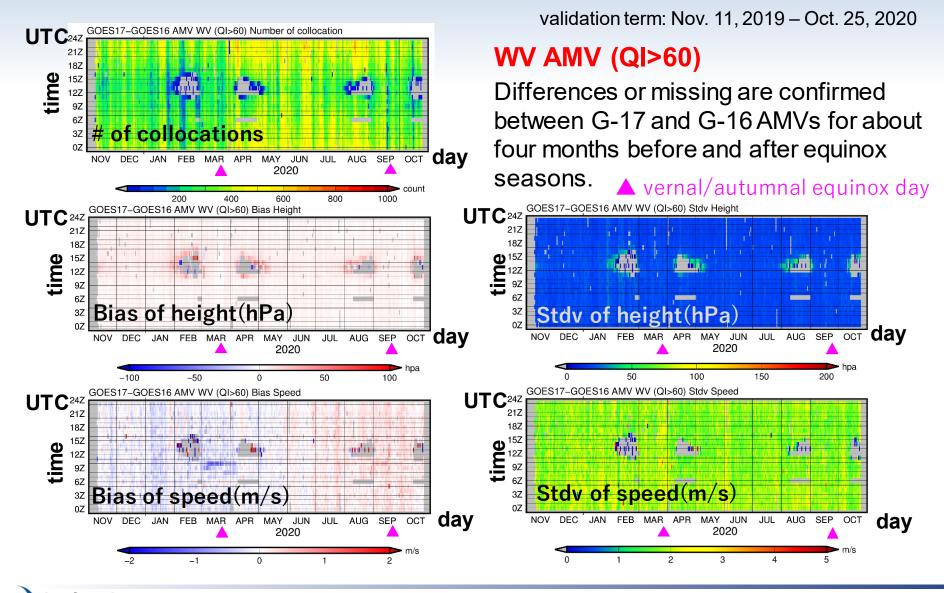
https://www.goes-r.gov/users/GOES-17-ABI-Performance.html

Before running observing system experiment (OSE) of the GOES-17 AMV, we investigated the difference from the GOES-16 AMV and examined a preprocess method for use in the operational NWP system.


Comparison between GOES-17 and GOES-16 AMVs

Number of matched-up AMVs (1 – 31 Aug. 2020) (GOES-16 and -17 IR AMV, <400hPa)

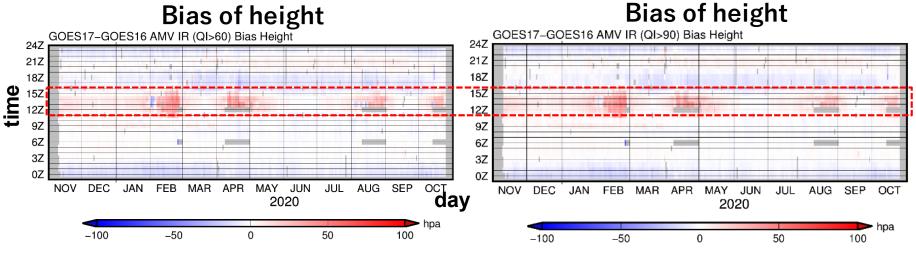
Comparison between GOES-17 and GOES-16 AMVs


Residual statistics for every hour (GOES-17 - GOES-16)

Japan Meteorological Agency

Comparison between GOES-17 and GOES-16 AMVs

Residual statistics for every hour (GOES-17 - GOES-16)



Japan Meteorological Agency

Time filtering for "estimated not good" AMVs

GOES-17 – GOES-16 IR AMV QI>60

GOES-17 – GOES-16 IR AMV QI>90

validation term: Nov. 11, 2019 - Oct. 25, 2020

- Difference between GOES-16 and 17 AMVs were seen 11-16 UTC in even months except for June and December.
- QI threshold -> not very effective for the degradation

• to use GOES-17 AMV except during 11-16UTC throughout the year

Optimizing QI threshold for GOES-17 and GOES-16 AMVs

QI dependency of OBS-FG statistics

» ۳/s

s/m

2

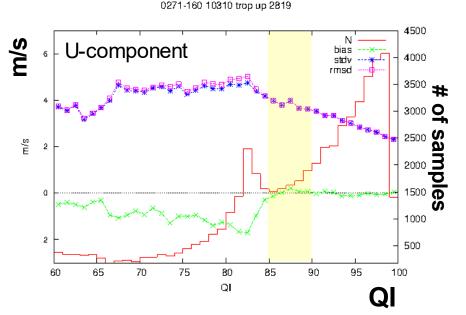
2

GOES-17 IR AMV (tropics <400hPa)

GOES-16 IR AMV(*tropics* <400hPa)

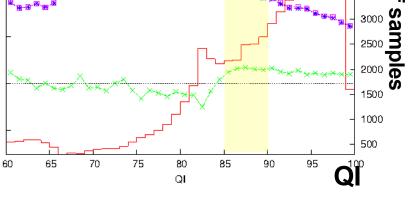
5000

4500


4000 🗮

3500 <u>Q</u>

bias


stdv

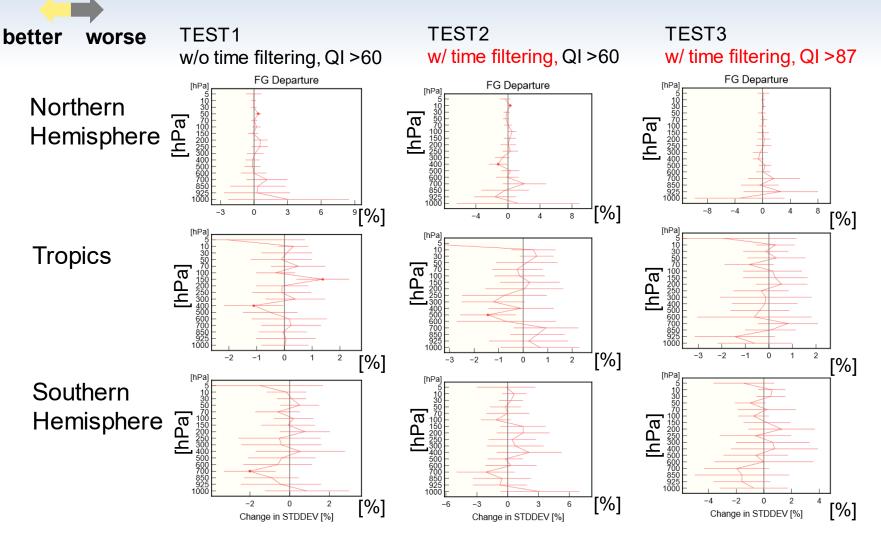
rmsd

0270-160 10310 trop up 2819

U-component

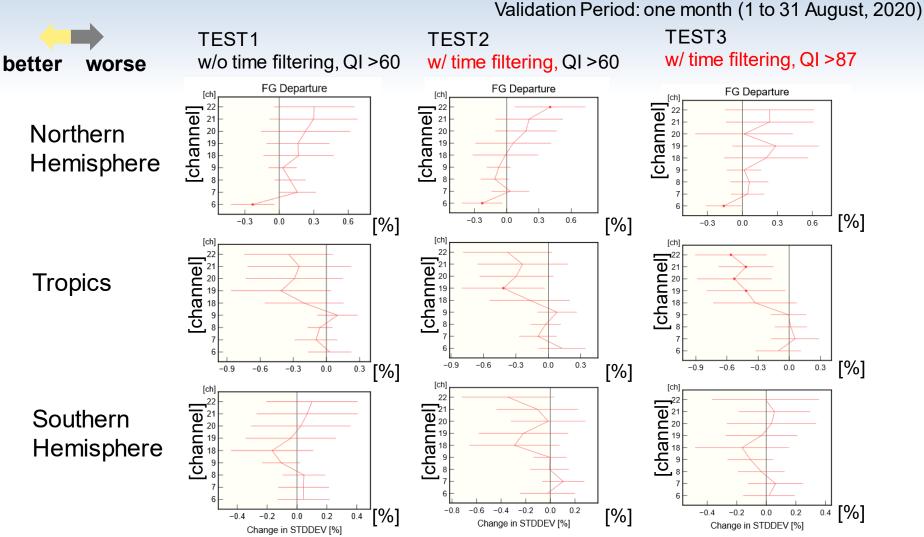
Speed bias and standard deviation are reduced where QI is above about 85. QI thresholds are selected from 85 to 90 for both GOES-16 and -17 AMVs.

N: QI histogram OBS-FG Bias of U (m/s) OBS-FG Standard dev. (m/s) OBS-FG RMSD (m/s)

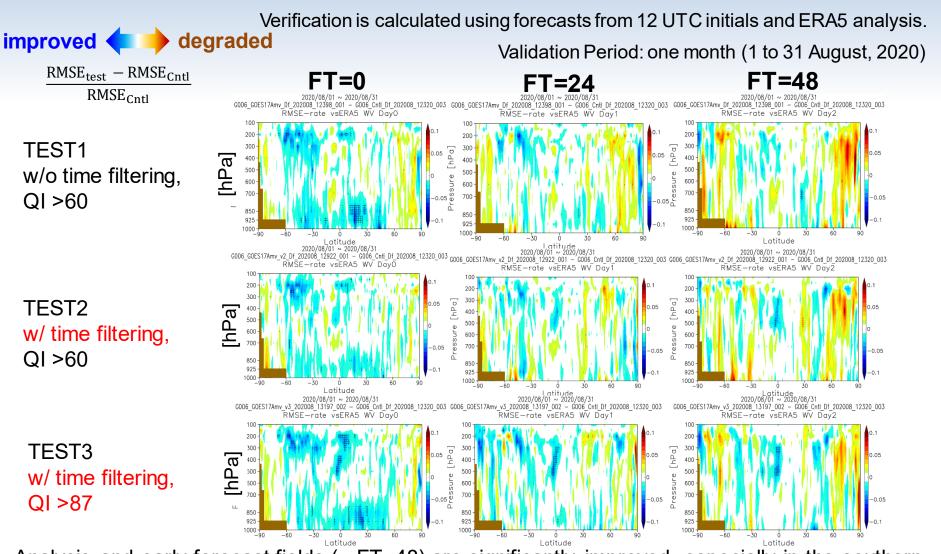

OSEs settings

	Specification (Main differences)
Control (CNTL)	A scheme of the 200 km thinning of OPE-AMVs in the 6 hour time window
TEST1	CNTL + GOES-17 AMV (Not Use of AMVs in the middle troposphere)
TEST2	CNTL + GOES-17 AMV (Not Use of AMVs in the middle troposphere) + Not using GOES-17 AMV during 11-16UTC
TEST3	CNTL + GOES-17 AMV (Not Use of AMVs in the middle troposphere) + Not using GOES-17 AMV during 11-16UTC + Quality control using with QI (QI > 87)

Period: 2020 Summer Assimilation from 10 July to 11 September, 2020 Forecast from 21 July to 11 September, 2020


Change of standard deviation of OBS-FG against CNTL (U component wind of RAOB)

Validation Period: one month (1 to 31 August, 2020)


Consistency between first guess and RAOB winds were almost neutral using GOES-17 AMV.

Change of standard deviation of OBS-FG against CNTL (ATMS radiances)

Time filtering and increasing QI threshold were effective in improving consistency with microwave radiance (ATMS) especially in the tropics.

Change of Analysis and forecast fields RMSE improvement ratio (Wind Vector)

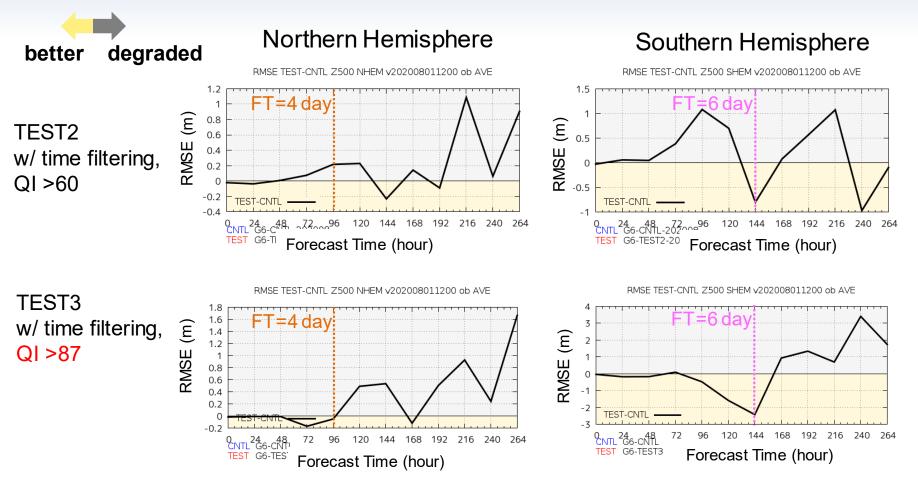
Analysis and early forecast fields (~ FT=48) are significantly improved, especially in the southern hemisphere and tropical troposphere.

氨象庁 Japan Meteorological Agency

Change of Analysis and forecast fields RMSE improvement ratio (Geopotential Height)

Verification is calculated using forecasts from 12 UTC initials and ERA5 analysis.

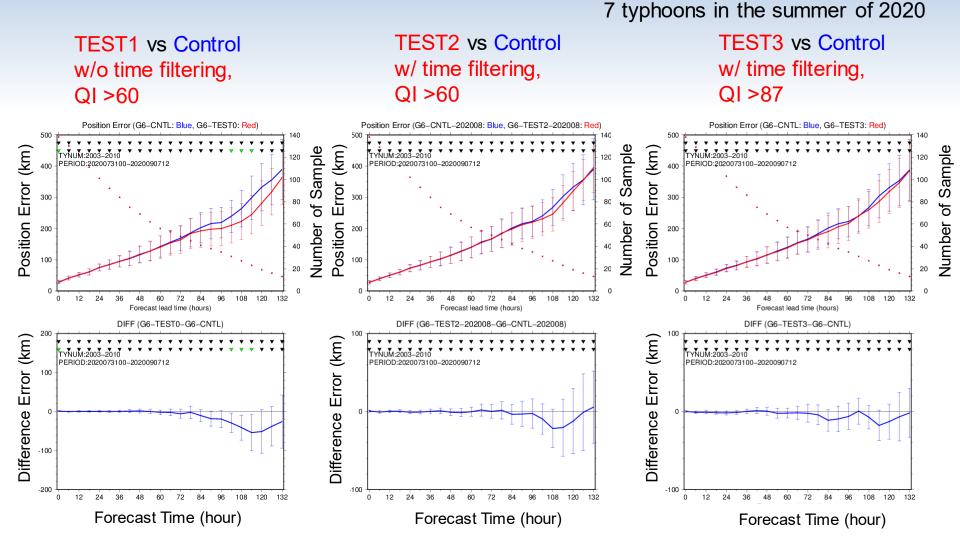
improved **()** degraded Validation Period: one month (1 to 31 August, 2020) $RMSE_{test} - RMSE_{Cntl}$ FT=48 FT=0FT=24 **RMSE**_{Cntl} 2020/08/01 ~ 2020/08/01 ~ 2020/08/31 2020/08/01 ~ 2020/08/31 2020/08/01 ~ 2020/08/31 2020/08/01 ~ 2020/08/01 RMSE-rate vsERA5 Z Dav0 RMSE-rate vsERA5 Z Day2 RMSE-rate vsERA5 Z Day1 100 200 200 TEST1 200 [hPa] 300 -300 300 400 -0.05 d ______ 400 w/o time filtering, 400 500 -500 500 600 600 600 QI >60 ess 700 700 700 -0.05 850 850 850 925 925 925 1000 -1000 1000 -3030 -90 -30- ġn -60 Latitude l atitude Lotitude Lotitude Lotitude Lotitude Lotitude Lotitude Lotitude Lotitude Lotitude 2020/08/01 ~ 20 RMSE-rate vsERA5 Z Day2 200 200 200 TEST2 300 [hPa] 300 6 400 d d 400 400 w/ time filtering, 500 essure 500 500 600 600 600 700 QI > 600.05 700 700 850 850 850 925 925 925 1000 -1000 -301000 -60-30-90 -30 100 200 TEST3 200 [hPa] 300 300 300 [hPa] σ ĩ 400 400 400 w/ time filtering, 500 500 500 600 600 600 QI >87 Press 700 -700 0.05 Ŭ 0.05 850 -850 850 925 925 925 1000 1000 -1000 -30 Latitude Latitude Latitude


Degraded trend seen at mid-latitudes in forecast field is suppressed by increasing QI threshold.

気象庁 Japan Meteorological Agency

RMSE differences between Test and Control (Z500)

Verification is calculated using RAOB as a reference


Validation Period: one month (1 to 31 August, 2020)

QC using QI (not forecast) has a positive effect on relatively long term forecast (~2-6 days).

Japan Meteorological Agency

Track forecast error of typhoons (northwest pacific)

The impact of GOES-17 AMVs seem not to be significant for typhoon position prediction (in northwest pacific area) in these OSEs.

访 Japan Meteorological Agency

Summary and Plan

Result of OSEs with GOES-17 AMV

- The analysis and short-term forecast field have a positive effect especially in the troposphere.
- Consistency between first guess and other observations, especially microwave sounders such as ATMS and MHS, is improved.
- Time filtering and raising QI threshold reduce the degradation trends seen at mid-latitude in the forecast field.
- The time filtering and the optimized QI thresholds will be applied in 2021 to preprocessing to use GOES-17 AMV in JMA's operational global NWP system.