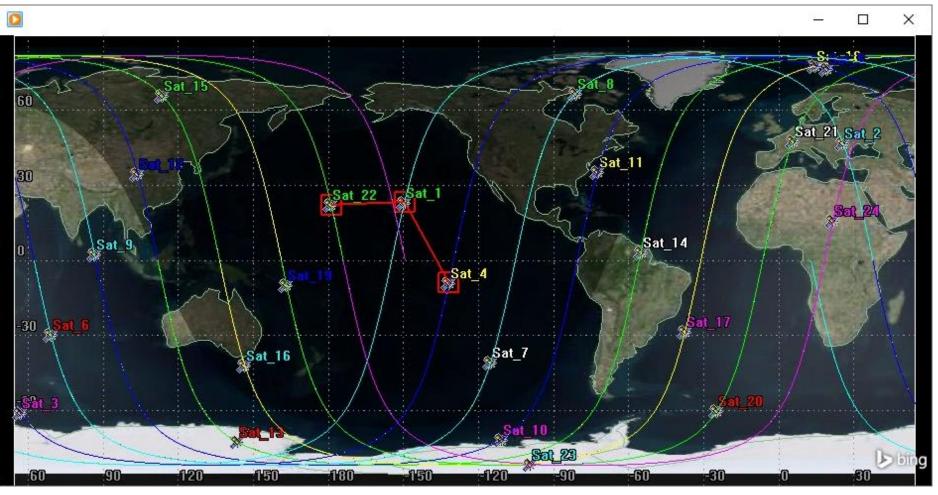

Miniature IR Sounder Constellation for Thermodynamic and Wind Vertical Profiles

POC:kevin.maschhoff@baesystems.com


Cost and Concept Study Builds on BAE's MISTiC Winds Distributed Micro-Satellite Approach

- MISTiC[®] Winds Temperature and Humidity Sounding Constellation Options.
 - 1. Frequent-Sounding Constellation
 - e.g. 90 min refresh-globally (8)
 - e.g. 30 min refresh-globally (24)
 - 2. Wind-Vector Formations
 - e.g. 4 3-Satellite Formations for Cloud-Drift and Water Vapor Motion-Vector Winds
 - Both Provide More Frequent Atmospheric Soundings (T, H₂O)

Miniature Spectrometers Operated in Constellations Offer Lower Cost /Lower Risk Approach than GEO for Frequent-Refresh IR Soundings & 3-D Winds 90 min Refresh of IR Soundings Provided by Spectrometers in 8 Orbital Planes (gold) (example)

Motion-Vector Winds Formation (blue)

A 24-Node SSO Constellations Provides 30-Minute Global Refresh of IR Sounding Observations

Operational Constellation Can Be Built Up Incrementally-Providing Value at Each Stage

- e.g. Initiated During LEO Sounder-Sat Demonstration Period
- e.g.-Expanded together with Numerical Weather Prediction Refresh Rate Upgrades

Next-Gen IR Vertical Profiling Constellation Employs Suite of Miniature Hyperspectral Sounders

MISTiC Profiles Temperature and Water Vapor in the Troposphere

- Spectral Range: 1750-2450 cm⁻¹
- Spectral Resolving Power > 725:1 •
- NESR < .01 mW/m²/str/cm⁻¹ @ 2393 cm⁻¹

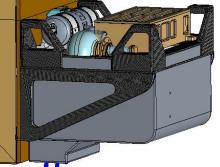
LISSTIC Profiles Temperature in the **Troposphere and Stratosphere**

- Spectral Range: 680-1050 cm⁻¹
- Spectral Resolving Power > 900:1
- NESR < 1.03 mW/m²/str/cm⁻¹ @ 740 cm⁻¹ $30.5 \times 23.5 \times 20.7$ cm OAP: 80 W

For any Observing Node, the two instruments can operate together, or MISTiC can be used alone, providing flexibility on stratosphere refresh rate, deployment, and cost.

(MISTIC = Midwave Infrared Sounding of Temperature and humidity in a Constellation)

LISSTiC®


TRL-6*

Mass: 20 kg

Size (Stowed):

OAP: 50 W TRL-6 * 80 W OAP achieved with 2-stage active cooler, TRL-4. Initial demonstration could employ TRL-6 single-stage pulse tube cooler

Mass: 15 kg Size (Stowed): 30.5 × 23.5 × 20.7 cm

BAE SYSTEMS INSPIRED

Elements of a New Paradigm for Weather Observation in a Distributed Architecture

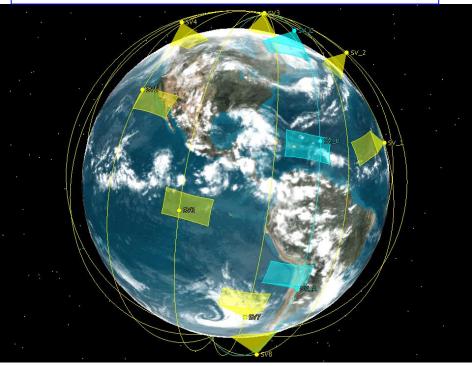
Element	Benefit for NOAA	Example	
Miniature Robust but Single-String IR Sounding Instruments –5 yr life plan	Leveraging NASA Investment and Moore's Law to Lower Cost		
Standard Micro-Satellite Hosts—Selected for DoD Constellations	Multiple Sources, Leveraging NASA and DoD Investments and Need for Large Numbers		
Sun-Synchronous Low Earth Orbit Selection	 More Stable for Calibration Lower-Cost Access than GEO 50 x closer—Small Optics 		
Commercial Small-LV – Based Services	Multiple Sources- Driven by DoD and Commercial Space Market		
Low Impact SSO Plane Change Capability (SSO _A →Polar→SSO _B)	Enables Multiple Observing Nodes per Launch, Reducing Cost and Deployment Period		

Distributed Architecture of Small Instruments

- Increases Resilience and Fault Tolerance
- Reduces and Spreads Cost
- Increases Flexibility and Technology Infusion Potential

Global Observations Provided by 24-Node SSO

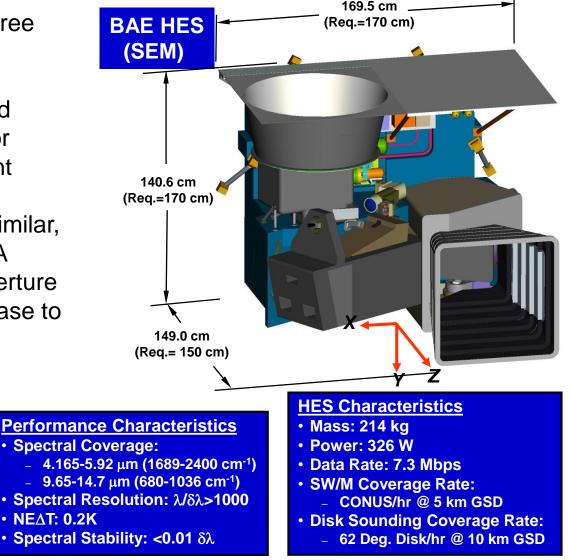
Observation Product (Baseline)	Refresh Rate	(N) Spatial Sampling	Comments
LEO IR Vertical Profiles of Temperature and Water Vapor and Radiances (two CO ₂ Bands)	12 hours	9 km (6x6 sub- sampling)	 For Each Plane Added Cloud-Cleared Radiances
Rapid Refresh IR Vertical Profiles of T and WVand Radiances	30 min	3 km	HES PORD Spectral Quality
Vertically Resolved Water Vapor Motion-Vector Winds (assuming wind triplet observation)	90 min	15 km (5x5 sample tracer)	Also Improves and Height Assignment for GEO Cloud AMVs
High Latitude Multi-Spectral Meterological Imaging	5 min;>80° 10min;>70°	1.5 km	Similar to an ABI in Tundra Orbit
Low-Impact Options			
Day/Night Band (visible)	30 min	0.5 km	0.5 kg Add to MISTiC
Host for T and WV $\mu Wave$ Sound	30 min	e.g. 30 km	e.g 4 kg Add to S/C


LEO SSO Constellation Provides Substantial Observation Value In Addition to Temperature and Water Vapor Vertical Profiles-With Potential for More

Additional Notes on Hyperspectral AMVs

- Vertically Resolved Wind Observations are Provided by the IR Sounding Constellation at Rates Typical of GOES-R Water-Vapor Wind Observations
 - 30-minute image refresh
 - 90 minute wind-triplet refresh
 - or 60-minute refresh, using "Optical Flow" methods
- LEO Hyperspectral Constellation Offers Improved Height Assignment for GEO Meteorological Imager Cloud AMVs
 - IR Sounding Retrieval Identification of Cloud-Top Pressure for Wind-Tracer Clouds
 - Cross-correlation between GEO Imager and LEO Sounder Features Facilitated by Common Band Coverage and Comparable Spatial Resolution

Motion-Vector Winds Formation (blue)



MISTiC Winds Initial Demonstration Configuration

- Three Hyperspectral Sounders in a Wind-Triplet Configuration
 - 10-15 minute Time Separation
- Possible Implementation of NOAA's SounderSAT (Distributed Architecture)

BAE SYSTEMS GOES-R Sounder (HES) after Formulation Phase INSPIRED Forms Basis of a Cost Model Comparison for Next-Gen Sounder

- BAE Systems Led One of Three **Contractor Teams in HES Formulation Phase**
 - **Dilts Associates Provided** Model Cost Estimates for **GOES-R HES Instrument** Program
- HES PORD Requirements Similar, but Not Identical to GEO BAA
 - **FPA Size and Optics Aperture** • (and mass) Would Increase to Meet GEO BAA Rates
- Some Technology Advances since 2007 Could Allow Reduced Cost (Additive Manufacturing, FPA Technology, Elect.)
- → Cost Impacts Assumed to Counter-Balance

WORK

IR Sounding Requirement Summary (Level 2)

Attributes	LEO Target (Baseline) Source: NOAA LEO BAA	GEO/XO Target Source: NOAA GEO BAA	Current Program of Record (CrIS/N-20) Source: JPSS Level 1 Requirements Document	MISTiC + LW/VLW Instrument Suite Constellation Pro-jected Capability		
Update Rate						
Full Disk (62 deg LZA) CONUS MESO	(12 Hours Assumed)	30 min 30 min 5 min	12 Hours	30 min for Surf to 30 mb, 90 min for 30 mb-0.5 mb		
A. Horizontal Resolution (Horizontal Cell Size or Spatial Resolution)	10 km(at nadir)	3 km(at nadir)	14 km	3 km –CF, S-30 mb 6 km –PC, S-30 mb 9 km-PC, 30-0.5mb		
B1. Temperature Measurement Precision Expressed as an error in layer average temperature						
1. Cloud-Free (CF) to Partly Cloudy (PC), Surface (S) to 850 mb over ocean	1.6 K per 1 km Layer	0.75 K (Accuracy)	1.6 K per 1 km Layer	1.6 K per 1 km Layer		
2. Cloud-Free to Partly Cloudy, 850 to 300 mb over ocean	1.6 K per 1 km Layer	per 2 km layer	1.6 K per 1 km Layer	1.6 K per 1 km Layer		
3. Cloud-Free to Partly Cloudy, 300 mb to 30 mb	1.5 K per 3 km layer	(Vertical	1.5 K per 3 km Layer	1.5 K per 3 km layer		
4. Cloud-Free to Partly Cloudy, 30 mb to 1 mb	1.5 K per 5 km layer	Coverage Range Not	1.5 K per 5 km Layer	1.5 K per 5 km layer		
5. Cloud-Free to Partly Cloudy, 1 mb to 0.5 mb	3.5 K per 5 km layer	Specified)	3.5 K per 5 km Layer	3.5 K per 5 km layer		
B2. Moisture Measurement Precision (exp	pressed as a pe	rcent of avera	ge mixing ratio in 2 km la	yers)		
1. Cloud-Free to Partly Cloudy, Surface to 600 mb	Greater of 20 % or 0.2 g kg-	10% (Accuracy) per 2 km	Greater of 20% or 0.2 g/ kg	Greater of 20 % or 0.2 g kg-1		
2. Cloud-Free to Partly Cloudy, 600 mb to 300 mb	Greater of 35 % or 0.1 g kg-	layer	Greater of 35% or 0.1 g/ kg	Greater of 35 % or 0.1 g kg-1		
3. Cloud-Free to Partly Cloudy, 300 mb to 100 mb	Greater of 35 % or 0.1 g kg-	(Vertical Coverage Range Not Specified)	Greater of 35% or 0.1 g/ kg	Greater of 35 % or 0.1 g kg-1		
Latency	-	10 min	-	10 min		
C. Horizontal coverage from 832 km orbit	2000 km	NA	2200 km	2000 km		
D. Lifetime of the Sensor (in years)	5	5	7	5 (With partial constellation refresh)		

Not export controlled per ES-C4ISR-111620-0207

BAE SYSTEMS

INSPIRED WORK

Considerations for Complementary DWL and IR Hyperspectral Wind Observations

- Both DWL and IR Hyperspectral AMVs Should Each Provide Valuable Constraints on Numerical Weather Models
 - OSSEs for Each show Forecast Accuracy Improvements
 - AEOLUS Demonstration Encouraging
- However, a Dedicated US Demonstration Mission Would Face Substantial Barriers
 - Aggregate Cost would Exceed NASA Earth Venture Budget Cap
 - Preferred Orbit Conditions for Hyperspectral AMVS and DWL are Not Compatible
 - HSI AMV (MISTIC): LEO SSO, 650-850 km altitude
 - Multi-Platform Observation--Micro-Sat Hostable
 - DWL: LEO 300-400 km, can be SSO, but not required
 - Medium-Sized (or Larger) Satellite with High-Power -Demand Payload

Notes on Use of Simultaneous Nadir Overpasses for Cross-Calibration and Observation Comparison

- Cross-Calibration of IR Sounders is a Long-Standing Priority of the Science Operational Weather Communities—and Could be used for Comparison of 3D Wind Observations
 - Most-Valued Approach: Observation Comparison at Simultaneous Nadir Overpasses
 - In the Case of Two Observatories in SSOs...
 - SNOs occur at high latitudes (70-80 Deg.)
 - Rate of SNOs Proportional to Orbit Period *Difference*
 - SNOs Available for any LTAN and Height, but only observe polar zone conditions
 - AEOLUS is in a 300 km SSO with 1-week repeat
 - While MISTiC Winds is Designed to be in SSO, a DWL may not require this orbit type—changing the SNO Opportunities in frequency and latitude

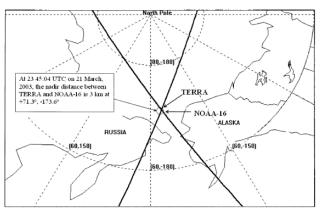


FIG. 1. Simultaneous (1 s) nadir overpass (SNO) between NOAA-16 and Terra.

Summary

- NOAA is Studying Options for its Next Generation Observing System
 - LEO-Focused initially on Vertical Thermodynamic Profiling "SounderSAT"
 - GEO/XO---Including Interest BAE's LEO Sounding Constellation
 - Vertically Resolved Atmospheric Motion-Vector Wind Observations Enabled
 - NOAA has Included Interest in the Vertical Wind Profile In This Planning
- BAE Systems LEO IR Sounding Constellation Study Shows that Observations of the Needed Science Data Quality are Achievable and Affordable, and Lower Cost than GEO Implementation
 - Including Vertically Resolved AMVs
- Comparisons of Hyperspectral AMVs with DWL More Likely Through Cross-Platform Comparisons Rather than a Joint, Co-manifested Mission
 - Both Observation Types Would Add Significant Value for NOAA