

Current status of the EUMETSAT MTG-FCI AMV prototype

Manuel Carranza, Regis Borde

The MTG-FCI AMV prototype

Comparison with MSG

Comparison with GEO-KOMPSAT-2A

Comparison with L2PF

Conclusions

The MTG-FCI AMV prototype

- Largely based on the MSG AMV processor, with important differences:
 - three images instead of four;
 - centre image used as reference, with backward and forward tracking;
 - no intermediate product averaging; second component used as final product instead.
- CCC method used for tracking, with final AMV coordinates set to the position of the tracked feature, not the centre of the target box.
- OCA or CTTH may be used as main height assignment method.
- AMVs derived from channels VIS0.8, IR3.8, WV6.3, WV7.3 and IR10.5.
- Prototype adapted to MSG, Himawari-8, GEO-Kompsat-2A and GOES-R (next).

Comparison with MSG

Average number of AMVs per channel (QI > 80) – 14th May to 14th June 2016

	VIS 0.8 μm		
	MTG 24	MSG 24	MTG – MSG
all	3,832	3,426	+11.9%
high	829	830	-0.1%
mid	713	596	+19.6%
low	2,290	2,000	+14.6%

	WV 6.2 µm (cloudy)			
	MTG 24	MSG 24	MTG – MSG	
all	4,077	4,057	+0.5%	
high	3,858	3,897	-1.0%	
mid	219	160	+37.7%	
low	-	-	-	

	WV 7.3 μm (cloudy)			
	MTG 24	MSG 24	MTG – MSG	
all	5,138	5,175	-0.7%	
high	4,028	4,091	-1.5%	
mid	1,110	1,084	+2.5%	
low	-	-	-	

	IR 10.8 µm		
	MTG 24	MSG 24	MTG – MSG
all	8,231	7,614	+8.1%
high	3,317	3,358	-1.2%
mid	1,363	1,199	+13.7%
low	3,551	3,057	+16.2%

Comparison with MSG Vertical distribution of AMV speed bias and NRMS (QI > 80) – 14th May to 14th June 2016

VIS 0.8 µm

WV 7.3 μm

IR 10.8 µm

Comparison with MSG

- More AMVs for MTG than MSG (especially for channels VIS 0.8 μm and IR 10.8 μm).
- Normalised AMV histograms very similar for all channels, with slightly faster and higher AMVs for MSG for channels VIS 0.8 μm and IR 10.8 μm .
- AMV speed bias and NRMS against forecast very similar for both algorithms, for all levels and geographical areas.
- For channel IR 10.8 µm, the larger the target box size, the slower the AMVs and, thus, the larger the speed bias (in absolute value).
- All in all, there seems to be no significant advantage in the averaging of intermediate products, as done for MSG.

Comparison with GEO-KOMPSAT-2A Introduction

- Collaboration between EUMETSAT and KMA. Visit of Hee-Ae Kim and In-Chul Shin from 2nd to 12th 2019.
- Input data: triplet of images around 15th August 2019 at 0:00.
- Cloudy AMVs extracted from channels VIS 0.6 μm (GK2A) / VIS 0.8 μm (MTG), WV 6.2 $\mu m,$ WV 7.3 μm and IR 10.5 $\mu m.$
- Two GK2A datasets generated using CCC and EBBT + IR/WV as height assignment methods. EUMETSAT dataset generated using CCC.

Comparison with GEO-KOMPSAT-2A

Pressure histograms and speed biases for channel VIS 0.8 μ m

 See paper entitled "Development and Intercomparison Study of an Atmospheric Motion Vector Retrieval Algorithm for GEO-KOMPSAT-2A", Oh, S.M., R. Borde, M. Carranza, I.C. Shin, Remote Sens. 2019, 11, 2054.

Comparison with GEO-KOMPSAT-2A

Pressure histograms and speed biases for channel IR 10.5 µm

 See paper entitled "Development and Intercomparison Study of an Atmospheric Motion Vector Retrieval Algorithm for GEO-KOMPSAT-2A", Oh, S.M., R. Borde, M. Carranza, I.C. Shin, Remote Sens. 2019, 11, 2054.

Comparison with L2PF

- Verification against operational processor from industry currently ongoing.
- Simulated images from MSG-SEVIRI.
- Input data: triplets of images around 10th April 2017 at 12:00 and 23:00.
- AMVs extracted from channels VIS 0.8 μm , IR 3.8 μm , WV 6.3 μm , WV 7.3 μm and IR 10.5 $\mu m.$

Comparison with L2PF

Normalised AMV histograms for channel IR 10.5 µm

Conclusions

- The MTG-FCI AMV prototype is in good shape.
- Comparison with the operational MSG processor yields very similar results, with a slight improvement for the MTG-FCI algorithm due to the lack of averaging.
- Comparison with the operational GEO-KOMPSAT-2A AMV products using the CCC method yields very similar results.
- Comparison with the operational MTG-FCI L2PF processor yields mixed results, with noticeable differences in wind speed and pressure. Investigations are ongoing in order to understand the origin of the differences and correct them.
- The MTG-FCI AMV prototype will be further adapted to GOES-R data in the frame of the upcoming 4th AMV Intercomparison Study.

Thank you!

