AMV reprocessing activity for JRA-3Q at MSC/JMA

Miki ABE¹, Kazuki SHIMOJI², Yuki KOSAKA¹, Shinya KOBAYASHI¹

1. Japan Meteorological Agency (JMA)
2. Meteorological Satellite Center of JMA (MSC)

16 April, 2021
15th International Winds Workshop @WebEx
1. Long term reanalysis and importance of AMV reprocessing
2. Overview of JRA-3Q (Japanese Reanalysis for Three Quarters of a Century)
3. Accuracy evaluation comparison between the reprocessed AMV for JRA-3Q and the others
4. Introduction of impact experiment results using reprocessed AMVs as input data
5. Summary
1. Long term reanalysis and importance of AMV reprocessing
2. Overview of JRA-3Q (Japanese Reanalysis for Three Quarters of a Century)
3. Accuracy evaluation comparison between the reprocessed AMV for JRA-3Q and the others
4. Introduction of impact experiment results using reprocessed AMVs as input data
5. Summary
Climate related issues demand for **long-term homogeneous and high-quality datasets** to quantitatively assess past and current climates.

(For examples of climate related issues)
Climate research and seasonal forecasts, extreme weather analysis, climate monitoring, and so on...

Existing analysis products are not homogeneous due to improvements of assimilation systems and algorithms for deriving physical quantities from satellite data.

Long-term re-analysis required !!
Long-term Reanalysis

Reanalysis: Analysis of the past atmospheric conditions using a constant, state-of-the-art NWP model and data assimilation system with the latest observation to produce a high-quality, spatially and temporally consistent dataset.
Importance of reprocessing for long-term reanalysis

GMS (Geostationary Meteorological Satellite) nicknamed “Himawari”

Number of Collocations (Sonde statistics)

Speed BIAS (Sonde statistics)

AMV derivation algorithm changed

GMS-2 Himawari-2
GMS-3 Himawari-3
GMS-4 Himawari-4
GMS-5 Himawari-5
GOES-9
Himawari-8 Himawari-9
MTSAT-1R Himawari-6
MTSAT-2 Himawari-7

1. Long term reanalysis and importance of AMV reprocessing

2. Overview of JRA-3Q (Japanese Reanalysis for Three Quarters of a Century)

3. Accuracy evaluation comparison between the reprocessed AMV for JRA-3Q and the others

4. Introduction of impact experiment results using reprocessed AMVs as input data

5. Summary
The long-term re-analysis projects of JMA

- **1st JRA-25**
 - By JMA and CRIEPI* (1979 to 2004, 26 years)
 - * Central Research Institute for Electric Power Industry
 - Near real-time extension using the same system (JCDAS) was conducted by JMA and terminated in February 2014

- **2nd JRA-55**
 - By JMA (1958 to 2012, 55 years)
 - Near-real-time extension from 2013 to present

- **3rd JRA-3Q**
 - Next project (currently conducting)

The Japanese Reanalysis for

Three Quarters of a Century

*In Japanese, “5” is pronounced as “Go”.
3Q is called “San-kyu”
-> “Thank you”*
Overview of JRA-3Q

- **Reanalysis period**: 1947 to present
- **Provisional specifications**
 - **Resolution**: 55 km, 60 layers (JRA-55) -> **40 km, 100 layers (JRA-3Q)**
 - Incorporating many improvements from the operational NWP system
 - Overall upgrade of physical processes
 - New types of observation (ground-based GNSS, hyperspectral sounders)
 - **Improved SST**
 - COBE-SST2 (1-deg, up to 1985) & MGDSST (0.25 deg, from 1985 onward)
 - **Improved observations**
 - Observations newly rescued and digitised by ERA-CLIM and other projects
 - Improved satellite observations through reprocessing
 - JMA’s own tropical cyclone bogus data
- **Production schedule**
 - **Q3 2019**: start production
 - **Q2 2021**: complete production for the 1991 – 2020 normal period
 - **Q1 2022**: complete production for the whole period
CONTENTS

1. Long term reanalysis and importance of AMV reprocessing
2. Overview of JRA-3Q (Japanese Reanalysis for Three Quarters of a Century)
3. Quality evaluation comparison between the reprocessed AMVs for JRA-3Q and the others
4. Introduction of impact experiment results using reprocessed AMVs as input data
5. Summary
The algorithm used AMV reprocessing

IR/WV bands for Height Assignment of AMV

AMV reprocessing for JRA-3Q using the latest algorithm for Himawari-8

<table>
<thead>
<tr>
<th>Bands of the Advanced Himawari Imager (AHI) to be carried by Himawari-8/9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band Number</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

6 IR/WV bands are simultaneously used in Himawari-8 algorithm

Target Satellites of reprocessing for JRA-3Q
- MTSAT-2 (2010-2015)
- MTSAT-1R (2005-2010)

WV bands:
- Including upper level information

Window bands: All level information

CO2 band: upper and middle level information

Have water vapor images
Confirmation of quality of the reprocessed AMV

Period: **January** 2008 (MTSAT-1R)

Band: IR (10.3 – 11.3 μm)

Sonde statistics (against Sonde observation value)

O-B statistics (against JRA-55 analysis fields)

- **Operational**: AMV created by the operational algorithms
- **JRA-55**: AMV created for JRA-55 project
 - Upgraded from operational
 - The height assignment schemes for IR and WV AMV are changed
 - Resizing target box
 - Expansion of AMV derivation region
- **JRA-3Q**: AMV created by the latest algorithm
 - Upgraded from **JRA-55**
 - Target selection processing is designed to avoid correlated AMV errors.
 - Averaging of similarity surfaces is utilized for noise reduction in the tracking process.
 - The height assignment method uses maximum likelihood estimation.

15th International Winds Workshop
Sonde statistics (Statistics values)

MTSAT-1R (January 2008), Upper Layer (< 400hPa), without forecast QI (>85)

<table>
<thead>
<tr>
<th></th>
<th>Operational</th>
<th>JRA-55</th>
<th>JRA-3Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL</td>
<td>NH</td>
<td>TROP</td>
</tr>
<tr>
<td>Upper</td>
<td>-1.67</td>
<td>-3.32</td>
<td>-0.12</td>
</tr>
<tr>
<td>Middle</td>
<td>-2.55</td>
<td>-2.84</td>
<td>0.47</td>
</tr>
<tr>
<td>Low</td>
<td>1.51</td>
<td>1.74</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Wind speed bias (m/s)

Operational

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>NH</th>
<th>TROP</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>8.59</td>
<td>10.48</td>
<td>6.62</td>
<td>7.03</td>
</tr>
<tr>
<td>Middle</td>
<td>12.38</td>
<td>12.74</td>
<td>6.76</td>
<td>6.08</td>
</tr>
<tr>
<td>Low</td>
<td>7.29</td>
<td>8.01</td>
<td>6.44</td>
<td>4.89</td>
</tr>
</tbody>
</table>

JRA-55

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>NH</th>
<th>TROP</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>7.74</td>
<td>9.49</td>
<td>6.47</td>
<td>7.13</td>
</tr>
<tr>
<td>Middle</td>
<td>10.50</td>
<td>10.88</td>
<td>5.58</td>
<td>6.41</td>
</tr>
<tr>
<td>Low</td>
<td>8.23</td>
<td>7.80</td>
<td>8.28</td>
<td>5.71</td>
</tr>
</tbody>
</table>

JRA-3Q

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>NH</th>
<th>TROP</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>6.32</td>
<td>7.04</td>
<td>5.92</td>
<td>6.28</td>
</tr>
<tr>
<td>Middle</td>
<td>6.93</td>
<td>7.09</td>
<td>6.39</td>
<td>6.25</td>
</tr>
<tr>
<td>Low</td>
<td>5.07</td>
<td>5.02</td>
<td>5.03</td>
<td>4.49</td>
</tr>
</tbody>
</table>

Root mean square vector difference

NH: Northern Hemisphere (N60-N20), TR: Tropical (N20-S20), SH: Southern Hemisphere (S20-S60)

JRA-3Q: For wind speed biases, the negative bias in the upper and middle layers of the northern hemisphere has improved, and Rmsvd has improved over the entire coverage.
Sonde statistics (Vertical distribution)

MTSAT-1R (January 2008), Upper Layer (< 400hPa), without forecast QI (>85)

Wind speed bias

- **NH**: Northern Hemisphere (N60-N20)
- **TR**: Tropical (N20-S20)
- **SH**: Southern Hemisphere (S20-S60)

Root mean square vector difference

JRA-3Q: Both wind speed bias and rmsvd are smaller than the others, especially, in wind speed biases, the negative bias in the upper layer on the northern hemisphere is closing 0. Additionally, the altitude change is also the smallest.
Sonde statistics (Altitude distribution of zonal mean)

MTSAT-1R (January 2008), Upper Layer (< 400hPa), without forecast QI (>85)

Wind speed bias

- **White is better**
- **Blue is better**

JRA-3Q
- Coverage is wider than the others.
- Both wind speed bias and rmsvd are smaller than the others.
- It can be seen that the negative bias for wind speed in the upper layer on the northern hemisphere has improved.

15th International Winds Workshop
O-B statistics (Wind Speed Bias)

MTSAT-1R (January 2008), Upper Layer (< 400hPa), without forecast QI (>85)

<table>
<thead>
<tr>
<th></th>
<th>Operational (m/s)</th>
<th>JRA-55 (m/s)</th>
<th>JRA-3Q (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL</td>
<td>NH</td>
<td>TROP</td>
</tr>
<tr>
<td>Upper</td>
<td>-0.91</td>
<td>-5.19</td>
<td>0.80</td>
</tr>
<tr>
<td>Middle</td>
<td>-0.92</td>
<td>-3.50</td>
<td>2.18</td>
</tr>
<tr>
<td>Low</td>
<td>1.12</td>
<td>1.13</td>
<td>0.88</td>
</tr>
</tbody>
</table>

JRA-3Q: Coverage is wider than the others and wind speed bias is spatially uniform over the entire coverage, especially, the negative bias near a jet stream in the northern hemisphere has changed to positive significantly.
O-B statistics (Root Mean Square Vector Difference)

MTSAT-1R (January 2008), Upper Layer (< 400hPa), without forecast QI (>85)

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>NH</th>
<th>TROP</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>7.65</td>
<td>11.91</td>
<td>5.53</td>
<td>6.61</td>
</tr>
<tr>
<td>Middle</td>
<td>11.69</td>
<td>12.95</td>
<td>7.18</td>
<td>9.77</td>
</tr>
<tr>
<td>Low</td>
<td>6.15</td>
<td>5.48</td>
<td>6.86</td>
<td>4.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>NH</th>
<th>TROP</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRA-55</td>
<td>6.47</td>
<td>9.28</td>
<td>5.41</td>
<td>6.24</td>
</tr>
<tr>
<td></td>
<td>8.85</td>
<td>10.65</td>
<td>5.89</td>
<td>6.68</td>
</tr>
<tr>
<td></td>
<td>6.08</td>
<td>5.13</td>
<td>7.48</td>
<td>4.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>NH</th>
<th>TROP</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRA-3Q</td>
<td>4.33</td>
<td>4.73</td>
<td>4.22</td>
<td>4.45</td>
</tr>
<tr>
<td></td>
<td>5.67</td>
<td>4.98</td>
<td>6.20</td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td>2.79</td>
<td>2.87</td>
<td>2.77</td>
<td>2.67</td>
</tr>
</tbody>
</table>

JRA-3Q: Coverage is **wider** than the others and root mean square vector difference is **spatially uniform** and **close 0** over the entire coverage, especially, the errors near a jet stream in the northern hemisphere has **improved** significantly.
CONTENTS

1. Long term reanalysis and importance of AMV reprocessing
2. Overview of JRA-3Q (Japanese Reanalysis for Three Quarters of a Century)
3. Quality evaluation comparison between the reprocessed AMV for JRA-3Q and the others
4. Introduction of impact experiment results using reprocessed AMVs as input data
5. Summary
The period of impact experiments

<table>
<thead>
<tr>
<th>Name of satellite</th>
<th>AMVs for comparison</th>
<th>Winter experiment</th>
<th>Summer experiment</th>
</tr>
</thead>
</table>

To decide whether to use reprocessed AMVs for JRA-3Q, JRA team conducted impact experiments on each satellite for above periods.

Next

* Introduction of the winter experiment for reprocessed MTSAT AMVs (as an example of all experiments)

* Meaning of CNTL and TEST appearing from next slide
 CNTL: the data using the operational AMBs
 TEST: the data using the reprocessed AMVs for JRA-3Q

15th International Winds Workshop
The difference of RMS errors for three days forecast (CNTL-TEST) of the winter experiment for MTSAT-2

The forecast error decreases not only zonal wind, but also mean-sea-level barometric pressure and height, especially in the northern hemisphere, there are big improvements.

Mean-sea-level barometric pressure (hPa)

850hPa zonal wind (m/s)

500hPa height (m)

850hPa Temperature (K)

RMS errors in northern hemisphere decrease

RMS errors in the observation area for MTSAT-2 decrease

These are differences of three days forecast RMS errors. * CNTL: operational AMVs, TEST: reprocessed AMVs for JRA-3Q

The left figure shows the difference of RMS errors (CNTL-TEST), the right one shows the zonal mean.
Both against first-guess and sonde score clearly improve for early forecast in northern hemisphere.

- 250hPa wind, 850hPa wind
- 500hPa height, mean-sea-level barometric pressure, 850hPa Temperature, 700hPa relative humidity

850hPa wind score against first-guess also improve in tropical.

500hPa height and mean-sea-level barometric pressure score against first-guess improve in Japanese area which is the observation area for MTSAT-2

Yellow means improvement, Gray means worsen.
Summary of impact experimental results

MTSAT (against operational AMVs)
- Number of assimilation usage increases below 950hPa.
- FG departure decrease above 500hPa.

Winter experiment
- A jet stream speed increase in mid latitudes of northern hemisphere.
- **The forecast error decreases** not only zonal wind, but also mean-sea-level barometric pressure and height, especially in the northern hemisphere.
- The forecast error decreases in Japanese area which is the observation.

<table>
<thead>
<tr>
<th>GOES-9 (against JRA-55 analysis fields)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Number of assimilation usage increases below 950hPa, but slightly decreases above 850hPa.</td>
</tr>
<tr>
<td>- FG departure decrease.</td>
</tr>
</tbody>
</table>

Winter experiment
- **The forecast error decreases** not only zonal wind, but also mean-sea-level barometric pressure and height in the southern hemisphere.

<table>
<thead>
<tr>
<th>GMS-5 (against JRA-55 analysis fields)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Number of assimilation usage increases below 950hPa, but slightly decreases above 850hPa.</td>
</tr>
<tr>
<td>- FG departure decrease.</td>
</tr>
</tbody>
</table>

Winter experiment
- **The forecast error decreases** not only zonal wind, but also mean-sea-level barometric pressure and height in the northern hemisphere.
- The forecast error decreases in Japanese area which is the observation.

<table>
<thead>
<tr>
<th>Common to all experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer experiment - Mostly neutral</td>
</tr>
</tbody>
</table>

JRA team is currently conducting JRA-3Q using the reprocessed AMVs for JRA-3Q !!
CONTENTS

1. Long term reanalysis and importance of AMV reprocessing
2. Overview of JRA-3Q (Japanese Reanalysis for Three Quarters of a Century)
3. Quality evaluation comparison between the reprocessed AMV for JRA-3Q and the others
4. Introduction of impact experiment results using reprocessed AMVs as input data
5. Summary
Summary

1. Long term reanalysis and importance of AMV reprocessing
2. Overview of JRA-3Q (Japanese Reanalysis for Three Quarters of a Century)
3. Quality evaluation comparison between the reprocessed AMV for JRA-3Q and the others
 We showed that the quality of the reprocessed AMVs for JRA-3Q is better than that of the existing AMVs by confirming the statistics against JRA-55 analysis fields and sonde observation values.
4. Introduction of impact experiment results using reprocessed AMVs as input data
 In the winter experiment using each reprocessed AMV, JRA team confirmed that the forecast errors decreased, and they are currently conducting JRA-3Q using the reprocessed AMVs for JRA-3Q.

15th International Winds Workshop
Thank you for your time!!
15th International Winds Workshop
Reference

Meteorological Satellite Center Technical Note
March 2017, No.62 (The author is Mr. Shimoji of JMA)
“Introduction to the Himawari-8 Atmospheric Motion Vector Algorithm”

Meteorological Satellite Center Technical Note
February 2023, No.58 (The author is Mr. Hayashi and Mr. Shimoji of JMA)
“Atmospheric Motion Vectors Derivation Algorithm” (Japanese)

TCC Training Seminar (14 NOV. 2016)
“Introduction to Reanalysis and JRA” (The author is Mr. Harada of JMA)
Element of the statistics

RMSVD : Root mean square vector difference

\[
RMSVD = \sqrt{\frac{1}{N} \sum_{i,r=1}^{N} [(u_i - u_r)^2 + (v_i - v_r)^2]}
\]

BIAS : Wind speed bias

\[
BIAS = \frac{1}{N} \sum_{i,r=1}^{N} [\sqrt{u_i^2 + v_i^2} - \sqrt{u_r^2 + v_r^2}]
\]

\(X_i\) : AMV element, \(X_r\) : Model element
O-B statistics (Altitude distribution)

MTSAT-1R (January 2008), Upper Layer (< 400hPa), without forecast QI (>85)

Wind speed bias

Root mean square vector difference

NH: Northern Hemisphere (N60-N20), TR: Tropical (N20-S20), SH: Southern Hemisphere (S20-S60)

JRA-3Q: Both wind speed bias and rmsvd are smaller than the others, especially, in wind speed biases, the negative bias in the upper layer on the northern hemisphere is closing 0. Additionally, the altitude change is also the smallest.

JRA-55

Operational
O-B statistics (Altitude distribution of zonal mean)

MTSAT-1R (January 2008), Upper Layer (< 400hPa), without forecast QI (>85)

Wind speed bias
- White is better

Root mean square vector difference
- Blue is better

JRA-3Q: Coverage is wider than the others. Wind speed bias is spatially uniform over the entire coverage. Rmsvd has improved in a wide range, but it’s large in the middle layer on the tropic and in the upper layer on the north pole.