Wind impact from different observing systems in the ECMWF 4D-Var system

Niels Bormann

Thanks to Mike Rennie, Alan Geer, and many others

© ECMWF April 12, 2021

How do individual observing systems contribute to the ECMWF wind analysis?

- In 4D-Var, all observations can contribute to the wind analysis (e.g., balance relationships, "4D-Var tracing")
- Use "reinitialization experiments" to investigate the impact from individual observing systems.

Reinitialisation experiments:

Experiments

- Reinitialisation experiments with these observing systems:
 - NoObs: No observations assimilated
 - **Conv:** Conventional in-situ data (radiosondes, aircraft, synop, etc)
 - AMV: Atmospheric Motion Vectors
 - Scat: Scatterometer
 - MWT: MW temperature-sounding radiances (e.g., from AMSU-A, ATMS)
 - **MWQ:** MW humidity-sounding radiances (e.g., from MHS, ATMS, MWHS-2)
 - **MWI:** MW window-channel radiances (from AMSR-2, SSMIS, GMI)
 - **HyperIR:** Hyperspectral IR (AIRS, IASI, CrIS)
 - **GeoIR:** Geostationary IR radiances (CSR or ASR products from GOES, METEOSAT, Himawari)
 - Aeolus: Doppler Wind Lidar
 - Aeolus used with geolocation-dependent bias correction, as in initial operational implementation. See Mike Rennie's talk for more recent updates.
- Background for all experiments comes from the full observing system (without Aeolus)
- Period: 3 August 1 October 2019
- T_{CO} 399 (~25 km) model resolution, 12-hour 4D-Var

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Using Aeolus to verify wind analyses from reinitialization experiments (1)

Aeolus HLOS winds used as independent reference (not assimilated in the experiments shown); Rayleigh clear and Mie cloudy; after applying QC used in the ECMWF system

- Statistics also reflect Aeolus sampling and different size of Aeolus errors (e.g., larger noise in Aeolus data in the stratosphere).
- Overall analysis quality is achieved by combining different observations; different strengths in different areas.
- Strong wind impact from sounding radiances (esp. extra-tropics).

ECIVIVE EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Using Aeolus to verify wind analyses from reinitialization experiments (2)

Aeolus HLOS winds used as independent reference (not assimilated in the experiments shown); Rayleigh clear and Mie cloudy; after applying QC used in the ECMWF system

- Statistics also reflect Aeolus sampling and different size of Aeolus errors (e.g., larger noise in Aeolus data in the stratosphere).
- Overall analysis quality is achieved by combining different observations; different strengths in different areas.

Reduction in forecast error from Aeolus when combined with other observing systems

Normalised difference in RMSE for VW forecasts at T+48h, verified against analyses from the full system, including Aeolus

Better impact from Aeolus in the tropics when used in combination with other observations.

 Artifact of sub-optimal Aeolus-only assimilation?

or

 Sign of "synergy" with other observing systems?

 \rightarrow Mike Rennie's presentation later today on excellent impact of Aeolus when added to the full observing system.

Positive

Vormalised difference in RMSE for VW [%]

impact

5

0

-5

Negative

Summary

- A wide range of observing systems affects wind analyses in the ECMWF system.
 - The assimilation system combines the different strengths of different observing systems.
 - Clear impact on wind analyses from sounding radiances, via balance constraints and 4D-Var tracing.
 - Clear impact from AMVs especially in the tropics, and Scatterometer winds for low-level winds.

• For day-2 wind forecasts (and beyond), conventional observations and sounding radiances provide the strongest impact in the extra-tropics in the reinitialization experiments shown.

• Aeolus adds strengths that the current global observing system is lacking (ie vertical resolution for wind observations with global sampling).

Better Aeolus impact when added to other observing systems: due to synergies with other existing observations?

Bonus material

Similarity of wind increments* from radiance observations

Correlations between zonal wind increments at 300 hPa: Radiances

* Increment = adjustment made to the background during the assimilation

- Strongest correlations between wind increments from radiances
 - Good consistency

Hyperspectral IR ↔ MW temperature-sounding

Hyperspectral IR ↔ MW humidity-sounding

Partly due to similarities in the measurements?

- Sensing similarities
- Similar mechanisms to obtain wind information (4D-Var, balance)
- Coverage similarities

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Geo IR ↔ MW humidity-sounding

Correlations between zonal wind increments at 300 hPa: Conventional obs

- Positive correlations in areas covered by both observing systems.
- Strongest with radiances
- Coverage affects where correlations can be expected

Conventional ↔ MW temperature-sounding

Conventional ↔ MW humidity-sounding

• Correlations are weaker than seen before between increments from different radiances.

 Due to different sensitivity (greater complementarity)?

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Conventional ↔ Aeolus

Correlations between zonal wind increments at 300 hPa: AMVs

• Wind increments from AMVs and other observing systems also show mostly positive, but weaker correlations.

- Sign of complementarity?

 In some areas, there is no or negative correlation with several other observing systems (trop. E Pacific; SE Africa).

- Very few AMVs assimilated

AMV ↔ Aeolus

AMV ↔ MW humidity-sounding

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

AMV \leftrightarrow geo IR radiances

