

Monitoring and Assessment of AMV's from Multiple Platforms Using the Global Forecast System at NCMRWF

Kaushambi Jyoti, S. Dutta & V. S. Prasad

National Centre for Medium Range Weather Forecasting Ministry of Earth Sciences Noida, India

Objective:

- For optimal use of resources and betterment of NWP model forecasts, assimilated dataset needs regular monitoring and evaluation.
- This presentation summarizes the assimilation of <u>'Atmospheric</u> <u>Wind Vector'</u> (AMV) in GFS system at NCMRWF.
- > This includes observation from both existing and new platforms.
- GSI-4dEnVar is used as the assimilation scheme with Global Forecast System (GFS) at NCMRWF.

AMV Platforms Assimilated on Routine Basis in GFS system at NCMRWF

Sl. No.	Platforms	Channel									
		Infrared	Water Vapour	Visible							
1.	GOES – 16, 17 (USA)	\checkmark	\checkmark	\checkmark							
2.	INSAT – 3D, 3DR (INDIA)	\checkmark	\checkmark	\checkmark							
3.	HIMAWARI-8 (JAPAN)	\checkmark	\checkmark	\checkmark							
4.	METEOSAT – 8, 11 (EUMETSAT)	\checkmark	\checkmark	\checkmark							
5.	AVHRR (NOAA – USA & METOP - EUMETSAT)	\checkmark									
6.	MODIS (AQUA & TERRA - USA)	\checkmark		\checkmark							
7.	VIIRS – NPP (USA)	\checkmark									

Government of India

Infrared Channels Assimilated

Visible Channels Assimilated

Water Vapour Channels Assimilated

Ministry of Earth Sciences

Government of India

New AMV platforms undergoing assessment and evaluation:

- KMA (Korea Meteorological Administration) : GK-2
- CMA (China Meteorological Administration) : FY-3G & FY-3H
- METOP Dual

New AMV Platforms under Evaluation

Ministry of Earth Sciences Government of India

6ÒE

12'0E

180

1201

AMV-Metop Dual (181580)

6Ò₩

Ò

Ministry of Earth Sciences Government of India

STREET				N	Ameri	can	N. I	Iemis	ohere	S. E	Iemisp	here		Tropic	s	
				Day 1	Day 3	Day 5	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5	
			250hPa				•									
TAYYAL		TT : 14	500hPa													
		Heights	700hPa													
सत्यमेव जयते			1000hPa						1							
Government of India			250hPa													
	Anomaly Correlation	Vector Wind	500hPa						1							Tee
			850hPa													FCSI
			250hPa													
		Temp	500hPa							•						▲ AMV is better that
			850hPa													 AMV is better that
			100hPa													AMV is better the
			200hPa													No statistically si
		TTaiabéa	500hPa													AMV is worse th
		Heights	700hPa													 AMV is worse th
			850hPa													AMV is worse the
			1000hPa													Not statistically 1
		Vector Wind	100hPa							•						S
			200hPa													1
			500hPa													
	RMSE		700hPa													
			850hPa													
			1000hPa							•						Region
		Temp	100hPa				•									Reston
			200hPa							•						
			500hPa													
			700hPa													N. Ame
			850hPa													
			1000hPa													1 180°-32
	Bias	Heights	100hPa	•												100 01
			200hPa	•												
			500hPa	•			•									
			700hPa	•												N. Hen
			850hPa													
			1000hPa		•											$20^{\circ}-80^{\circ}$
		Wind Speed	100hPa													
			200hPa													
			200hPa					•								
			2001Pa					-								S. Hem
			250hD-							_						
			850nPa													$20^{\circ}-80^{\circ}$
			1000000			-										
			200hDa				-									
			500hPa													
		Temp	700hPa													Iropics
			850hPa													
			a contra												_	1 ZUS-20

FCST Verification Scorecard
Symbol Legend
AMV is better than CTRL at the 99.9% significance level
AMV is better than CTRL at the 99% significance level
AMV is better than CTRL at the 95% significance level
No statistically significant difference between AMV and CTRL
AMV is worse than CTRL at the 95% significance level
AMV is worse than CTRL at the 99% significance level
AMV is worse than CTRL at the 99.9% significance level
Not statistically relevant
Start Date: 20210221
End Date: 20210307

ica: 0°E, 20°-75°N

sphere:

sphere:

°N

Ministry of Earth Sciences Government of India

Future Objectives

- Intensive testing and evaluation of the new platforms through Observing System Experiment.
- Application of stringent quality control criteria, especially for KMA to reduce the high (O-B) for the zonal winds over global domain.

सत्यमेव जयते Ministry of Earth Sciences Government of India

