Leveraging CSPP:
Building a cloud based direct broadcast
processing system

Thad Chee (SSAl), Louis Nguyen (NASA), Andrei Vakhnin (SSAl), A. Jason Barnett (BAH)

Why build a cloud-based system for direct broadcast reception and processing?

* Up front costs are lower than building your own
antenna network

* Reception of Direct Broadcast signals as needed

Europe (Stockholm)

US West (Oregon) ® Europe (Ireland) . .
® oUS East (Ohio) Asia Pacific (Seoul)
o

.US (Hawaii) e Middle East (Bahrain)

.Africa (Cape Town) -
Asia Pacific (Sydney)

=]
South America (Punta Arenas)

Ground Station Network Providers
* Leaf Space
* Kongsberg Satellite Services
* The Swedish Space Corp (SSC)
* CONTEC
» Sfera Technologies
* ATLAS Space Operations
* BridgeComm, Inc.
* Libre Space Foundation*

Ground Station Capacity Aggregators
» StellarStation
* Global Ground Station Network
* AWS Ground Station
* Microsoft Azure Orbital

* Open source

How does AWS GS work? The first implementation:

* The version 1 implementation of a direct broadcast system worked well with
some scaling issues discovered later.
* Managing the receiver ends

* IPOPP’s operation is for a
different model of operation

* Note the use of the AWS S3 e Regi"”l .
bucket, it’s pivotal from a %gﬁvﬁzﬁﬂﬁﬁiﬁ’?t“’” |
regional standpoint .

i EC2 IPOPP System
* Get LO Files

* |IPOPP Processing
+ Send L1and L2
files to S3

A 4

! S3 Bucket

. i Transfers LO files across regions
EC2 Receiver * Stores outputs (L1, L2, logs, etc)
« Data Defender i « Strongly consistent storage

* Python Script
« RT-STPS (DRL)
* Send LO files to S3

__

GSaas - Data Receiver
AWS Groundstation | Data Defender | RT-STPS

A management problem:

* This is an example using the version 1 set up if you
are using only three ground stations.

e Each ground station operates its own receiver
instance with a data defender, python scripts and
RT-STPS installed in each geographical location.

Reston

%o Washiﬁ"’gton

28 Data Centers Plotted

Alexandria

GSaaS - CSPP/IPOPP L1/L2 Data processing

AWS Batch | FSx | S3

NASA

Leveraging CSPP:

* Initially started with a bespoke linear script

 \We realized that after GSON ProceSS|ng FIOW
running CSPP SDR, that Z icludes Source of Satware

there was no need to L
run any of the other i e
packages serially SHiF, WS Frocsseing (OFF)

* CSPP SDR Produces Level 1 Files
= * CSPP Fire (Level 2)

Pl - CsPP Flood Detection (Level 2)
Sound File Processing: o + Blue Marble Imagery (Level 2)
1) Libpcap files appear in S3 s * CSPP Fire Overlay (Level 3)
2) Fi rged into und file
3) Thefilels read in and VITA49 (NASA DRL) i
packets are unencapsulated 7,0 Terra / Aqua Processlng

(NASA DRL / IPOPP SPA)
o * GBAD_SPA eph & att files (Level 0)
+ MODISL1DB_SPA Produces Level 1 Files
+ MOD14 SPA (Level 2)
*+ H2G (Level 2)

DRL SPA’s are used because they can be operated in
standalone mode which supports linear processing
and orchestration.

Enter CRDD:
* Cross Region Data Delivery (CRDD) — an architectural change presented a

Availability Zone B
us-east-2b

new opportunity for a new processing model

* No more receivers!

°* management
headaches

* No more “Must

work” pieces

* Easier to debug

and develop

‘aws’ Global Ground Station

==
/'/‘/Satelhte
<=8 Downlink/Uplink

AWS
Cross
Region
Data
Delivery
(CRDD)

us-east-2 (Ohio Region)

=

Front
0 ||| n

Lambda

Amazon
SES

\aws, Data Processing
us-east-2 (Ohio Region)

Availability Zone A
us-east-2a

Data Ordering
us-east-2 (Ohio Region)

Ohiol
Home
Region

Job Submission

?WS, Data Processing
us-east-2 (Ohio Region)

]
Data Archive Lambda
rigger

A\

- Lambda
function

nce-sat

AWS Batch

Lo>L1>
L2 code

RT-STPS

Container
Registry

NABA

Availability Zone C
us-east-2¢

AWS EFS

L]
° GTMIMAGERY . llteSDR VIRS -502
° GTM_NCCBand* indices*
. . . o o o °
 \With the realization that we e hmucen | grmeen || o o — T T
ccccccc -geotiff GTM_IBand* GTM_MBand* vtoatcolor-geotiff vml2h5-geotiff viirs-encc*
ld mi d tch diff t
H2G H2G H2G H2G COP¥ = BlueMarble = BlueMarble =~ H2G = H2G = Aerosol¥
CS P P ft | |- | Jirmgifcolor-geotif imgmfcolor-geoti: viirsaf-geotiff veviirs-geotiff irs- * irs- * ire- i - i smphasehS-geoti crmmaskhS-geoti
L
H2G H2G H2G = BlueMarble H2G H2G = SurfReflect = SnowCov
vvvvvvv -geotiff vepshSd-geotiff vctthSd-geotiff viirs-tcolor* vsumhs-geotiff vapshSd-geotiff
long as prerequisites are met ° ° ° ° ° ° ° ° ° °
g p q eeeeeeee H2G H2G
surfreflhSd-geoti' vsnowh5-geotiff
(L1 exists etc)

IPOPP Status Screen over VNC

* We also realized that the bespoke linear design was repeating the same stelos over
and over, just with different CSPP commands and that the CSPP software all had the
same general requirements.

» After reviewing our existing code and identifying these patterns, we developed an
abstraction that captures how we use CSPP as JSON objects.

* This “step” model encapsulates each work task and its requirements and insulates
the system from the details. This is very similar to the IPOPP processing tree.

* The idea of “steps”
e Each step is given a “name”

* Astepis a unit of work of any size:
* RT-STPS
* CSPP SDR
* Fire / Flood
e Copying results to S3

* How to coordinate the steps in sequence and in parallel — state tags

* The engine keeps a “bag” of state tags
 Start state tag — the step has started
* End state tag— the step has completed
 End_OK state tag — the step has completed successfully
* End_Failed state tag — the step has completed but in a failed state

* The engine is really a coordinator of the steps
* Initializing, loading steps
* Picking steps to run
* Determining when there are no more steps that can run
* No running steps
* No steps that can run - there are normally steps that don’t run (error handling steps)

Leveraging CSPP: Building a cloud based direct broadcast processing system

GSON System — The State Driven Engine

Start and End State tags - just the Additional state tags,
state tags names of each step defined by the step

/ \

Processing Steps

Benefits of a state driven engine:

 Parallelism: Speed

* Notifications happen immediately, LO, L1, L2 as soon as files are available on s3
* All instruments and Levels are processed simultaneously

* Modularity: Flexibility
* Processing steps can be easily swapped in or out by modifying the JSON meta-data
» Ease of debugging or prototyping — Changing JSON meta-data to linear script

 Complexity: With error handling, the linear execution script was very large
with multiple scripts for each satellite or sensor. The state engine reduced
the code complexity by 70%

* Simple debugging: Change the start tag allows one to test specific parts of
the processing individually

* Allows us to run CSPP science algorithm on multiple satellites/instruments
by only modifying meta-data, not code. You can run serial or parallel
depending on your situation.

Going Forward:

* Additional input sources: Azure and other Direct Broadcast Receivers

* Increases in capability:
* More options for user steps
* Adding capability to the step processing

* Increases in speed:
 Starting earlier
* Processing the CRDD granules as they arrive

* Parallelizing: Processing 1 granule per CSPP run instead of all
* Minimal benefits anticipated from Fire algorithm — it is already internally parallelized

* Expect to see flood algorithm speed gains but need to merge netcdf’s afterwards
(currently about 20 minutes to run)

e User defined monitoring in addition to MQTT

Thank youl!

Questions?

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official
endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

