

NASA TROPICS Pathfinder Low Latency Data Demonstration Results

Shawn Donnelly - MIT Lincoln Laboratory

23 June 2022

Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Natl Aeronautics & Space Admin under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Natl Aeronautics & Space Admin.

TROPICS and Pathfinder

- NOAA Pathfinder Low Latency Demo
 - TROPICS Constellation NRT

TROPICS: <u>Time-Resolved Observations of Precipitation</u> structure and storm Intensity with a <u>Constellation of Smallsats</u>

- NASA Earth Venture Instrument Program
 - Principal Investigator: Dr. Bill Blackwell
- Innovative solution to provide data for severe storm intensity forecasts
 - Temperature, water vapor, precipitation, and cloud properties
- Six satellite constellation of 3U cubesats
 - 2U spacecraft from Blue Canyon Technologies (BCT)
 - 1U MIT LL Instrument: multi-channel passive compact microwave radiometer
 - Better than 60 minute median revisit time

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

NOAA LL Demo - 3 S. Donnelly May 6, 2022

TROPICS Operational CONOPS

- < 60 minute median revisit rate
 - Payload nominally operates on a 24/7 duty cycle
- TROPICS CONOP is to downlink all data collected from the space vehicle
 - Science data cannot be recorded during ground contact
- Currently there is no latency downlink requirement from the space vehicle
 - TROPICS requires an average of 3 downlinks per space vehicle per day to meet data downlink requirements
- TROPICS currently uses one KSAT-Lite ground station in Hartebeesthoek
 - More ground stations are being added...

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

NOAA LL Demo - 4 S. Donnelly May 6, 2022

Nominal Downlink Latency is ~4 hours

TROPICS Payload

NOAA LL Demo - 5 S. Donnelly May 6, 2022
 Notes:

 Space vehicle velocity vector is INTO the page; LVLH attitude shown

 1 spot \approx 0.008331 seconds (\approx 1.5° at 30.0 RPM)

 Angle swept per spot is a function of scanner rate

- Since 2016, Lincoln Laboratory has been executing the TROPICS program for NASA to build and launch a constellation of six 3U CubeSats
 - The constellation was completed in June 2020 and were put in storage while NASA selected a dedicated launch provider to insert them into their unique, 30-degree inclined orbit
 - Current launch schedule is TBD
- In the meantime, Lincoln Laboratory and NASA upgraded the program's engineering design unit satellite to a flight unit and launched it aboard a SpaceX rideshare mission in June 2021.
 - This "Pathfinder" enabled the Laboratory to exercise all mission elements and to reduce risk for the constellation
 - TROPICS Pathfinder continues operate to this day

TROPICS Pathfinder

- MIT LL / NASA Funded mission
- TROPICS "Qualification" satellite launched into
 - Sun-Synchronous Orbit @ 97.5°
 - 525 km altitude, circular
- Launched prior to the constellation to verify software/hardware on orbit
 - Many lessons learned that were applied to the constellation
- June 30 2021 launch and still operating

Svalbar

Typhoon Mindulle 26 Sep 2021 05:45 TROPICS Pathfinder Channel 12 (G4: 205 GHz) 3dB footprints

TROPICS and Pathfinder

- NOAA Pathfinder Low Latency Demo
 - TROPICS Constellation NRT

- This Low Latency demonstration was funded by NOAA to explore data latency reduction for weather forecasting using the Pathfinder satellite
 - TROPICS is a NASA ESSP science mission and does not have downlink latency requirements
 - Nominal Pathfinder latency is ~ 4 hours
- Objectives for the Low Latency Demo:
 - Reduce time between satellite measurements of weather phenomena to generation of associated L1 data products.
 - The demo scheduled ~17 contacts a day, compared to 3 required
 - Establish methods and software tools which will also enable the TROPICS constellation
 - All tools were developed with forward compatibility in mind

Pathfinder NRT Data Flow

- Latency: The average age of science data after processing has been completed
 - The average time from acquisition by the payload to processed Level 1 data product at the DPC (UWisc)
- Data files will include data acquired from the prior contact completion
 - Science data collected *during* a contact is not usable
 - Satellite body points, resulting in unusable data
- For simplicity, we do not factor in a target location, we consider all data equal!
- Latency definition:
 - Current contact loss of signal: T_n
 - Previous contact loss of signal: T_{n-1}
 - Processing time: P
 - Average latency: $(T_{n-1} T_n)/2 + P$

- Lowest latency case: ~28 minutes
 - Previous contact in Svalbard: 16:19:20
 - Current contact in Punta Arenas: 17:07:31
- Orbit geometry permitted two contacts within a short timeline

- Longest latency case: ~140 minutes
 - Previous contact in Svalbard: 02:56:13
 - Current contact in Punta Arenas: 06:57:31
- Orbit geometry resulted in low elevation contacts, preventing Svalbard contacts

- 5 Day demo
- Demo start time: 4/25 13:27Z
- Latency numbers <u>include</u> processing time at the DPC
- Latency
 - Average latency: 55 mins
 - Removed MOC anomaly resulting in 4 missed contacts
 - Min latency: 28 mins
 - Low latency numbers, result of orbit geometry allowing contacts at both Svalbard and Punta Arenas
 - Max latency: 138 mins
 - Max due to an orbit without a schedule contact in Svalbard

Orbit w/ contacts over Svalbard & Punta Arenas
Successive orbits w/ Svalbard contacts
2 or more orbits without a contact over any station

Latency improved from 240 minutes \rightarrow 55 minutes

TROPICS Low Latency

- Due to the TROPICS orbit and location of the KSAT-Lite ground stations the Atlantic and Indian Basin are optimal targets for low latency data
- Latency is average time from acquisition by the payload to processed Level 1 data product at the DPC
 - Level 2 products are in the process of being optimized for NRT
- Ground station availability is the enabler
 - ITU licensing for LA, Punta Arenas and West Australia (October → December of 2022)
 - Singapore completion ~Spring 2023

NOAA LL Demo - 14 S. Donnelly May 6, 2022 Estimate Latency is ~45 minutes from Atlantic Basin

- This NOAA exercise demonstrated that the Pathfinder ground system can deliver Level 1 data products in <60 minute average latency
- Analysis shows that the TROPICS constellation should achieve <45 minute average latency to deliver Level 1 data products
 - Level 2 data processing efficiencies are being worked
- The TROPICS constellation median revisit of <60 minutes rate combined with <45 minute latency will be able to support applications such as
 - numerical weather forecasting
 - monitoring natural hazards (i.e., TCs, floods, and fires),
 - agriculture (i.e., harvesting times, drought conditions, and freeze protection), and
 - air quality (i.e., pollution and ultraviolet radiation exposure alerts).

Questions?

TROPICS Channel Set

TROPICS Ch.	W-band Ch.	Center Freq. (GHz)	Bandwidth (GHz)	RF Span (GHz)
1	W1	91.655 ± 2	1.000	89.155-90.155, 93.155- 94.155
TROPICS Ch.	F-band Ch.	Center Freq. (GHz)	Bandwidth (GHz)	RF Span (GHz)
2	F1	114.50	1.000	114.00-115.00
3	F2	115.95	0.800	115.55-116.35
4	F3	116.65	0.600	116.35-116.95
5	F4	117.25	0.600	116.95-117.55
6	F5	117.80	0.500	117.55-118.05
7	F6	118.24	0.380	118.05-118.43
8	F7	118.58	0.300	118.43-118.73
TROPICS Ch.	G-band Ch.	Center Freq. (GHz)	Bandwidth (GHz)	RF Span (GHz)
9	G1	183.31 ± 1.0	0.500	182.06-182.56, 184.06- 184.56
10	G2	183.31 ± 3.0	1.000	179.81-180.81, 185.81- 186.81
11	G3	183.31 ± 7.0	2.000	175.31-177.31,189.31- 191.31
12	G4	204.3	3.000	202.8-205.8

- Ground station contacts scheduled by the MOC 3 days ahead of the contact
 - CONOP was to schedule as many contacts as possible
 - No requested contacts were denied due to KSAT-Lite conflicts
 - One anomaly where KSAT-Lite antennae couldn't track
 - Contacts scheduled via KSAT-Lite scheduling API, without any KSAT personal in the loop

	Contacts	Notes	
Monday	7	Started at MOC business hours (MTN)	
Tuesday	17		
Wednesday	17		
Thursday	16	Skipped a low elevation contact	
Friday	16	Skipped a low elevation contact	

Step	Estimate (avg mins)	Actuals (avg mins)	Notes
Downlink	38	43 (<mark>+5</mark>)	Estimates did not account for excluding low elevation contacts
MOC Processing	3	1 (-2)	MOC database improvements
DPC Processing	13	5 (-8)	L1B processing efficiency improvements
Total	54	49 (-5)	5 minutes faster than estimated prior to the demo!

- Latency clock stopped after DPC processed L1B data product
- NOAA is going to pull/process on orbit data <u>post demo</u> for evaluation
- Level 2 data products were NOT exercised during Low Latency Demo
 - Level 2 products can take up to $3 \rightarrow 47$ minutes to process

- Latency is primarily driven by ground station location and availability
- Multiple data requests in pass worked well, but 5 contacts still had data loss
 - Updated procedures could more efficiently manage data loss
 - Below ~12 degrees elevation data loss became more prevalent
- For the constellation we should intelligently schedule contacts based on desired target location
 - TROPICS pays per pass
 - If we target contacts with only new data from the Atlantic basin, we can reduce contact scheduling by ~50% and still achieve desired latency
 - Autonomous scheduling based on target location needs to be developed
- Level 2 data products require efficiency improvements to be used in a Low Latency mode of operation

- Constellation only has one operational ground station in Hartebeesthoek
 - Frequency licenses required to reduce latency:
 - Puertollano, West Australia, Los Angeles and Mauritius
 - TROPICS has a frequency license in Singapore
 - KSAT estimates the Singapore will be completed in ~May 2023
 - Current bottleneck is COVID construction delays (digging/pouring pad)

NRE funding to the MOC

- Improve packet loss during low latency operations
 - Constellation vehicles implemented CFDP (CCSDS file transfer protocol), which provides a capability to re-transmit dropped packets on demand. MOC would need to implement retransmit logic to utilize CFDP functionality.
- Improve efficiency of NRT scheduling (*if NRT is targeting a storm or basin*)
 - If NRT focuses in on the Atlantic basin, location based scheduling prioritization could reduce contact cost by ~\$100K per month.

Location based scheduling would target downlinks only after the Atlantic basin crossing

- NRT data access
 - Work with the entire NRT community to ensure data formats (BUFR, NetCDF) conform to meet requirements
 - Ensure NRT users are being provided with the data products *they* want (L1 vs L2)
- Level 2 data products
 - The Low Latency demo only processed Level 1 data products
 - Test L2 algorithms with variable size data products from the Low Latency demo (in progress)
 - Improve speed for L2b (specifically AVTMP)
 - MIRS requires ancillary data contributing to the long runtime
 - MIT LL would like to use Neural Networks to improve AVTMP processing speed to ~5 minutes Neural Network would *not* require ancillary data

Science Software	Level	Runtime [min:sec]	Notes
Unified Resolution	L2a	00:17	
Atmos. Vert. Temp. & Moisture Profiles	L2b	46:00	Investigating MITLL Neural Network
Inst. Surf. Rain Rate	L2b	03:23	
TC Intensity - TCIE	L2b	09:19	May not be needed for NRT

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

NOAA LL Demo - 24 S. Donnelly May 6, 2022

