

Laboratory direct readout

Aging Gracefully in the **EOS Constellation**

developing technologies for **real-time** collection, processing, and distribution of Earth science data

- DRL serves as the bridge between user needs and mission

- schnologies are designed to be scalable, extensible, ble and easy to use.

Jeremy Jacobsohn SAIC for NASA GSFC

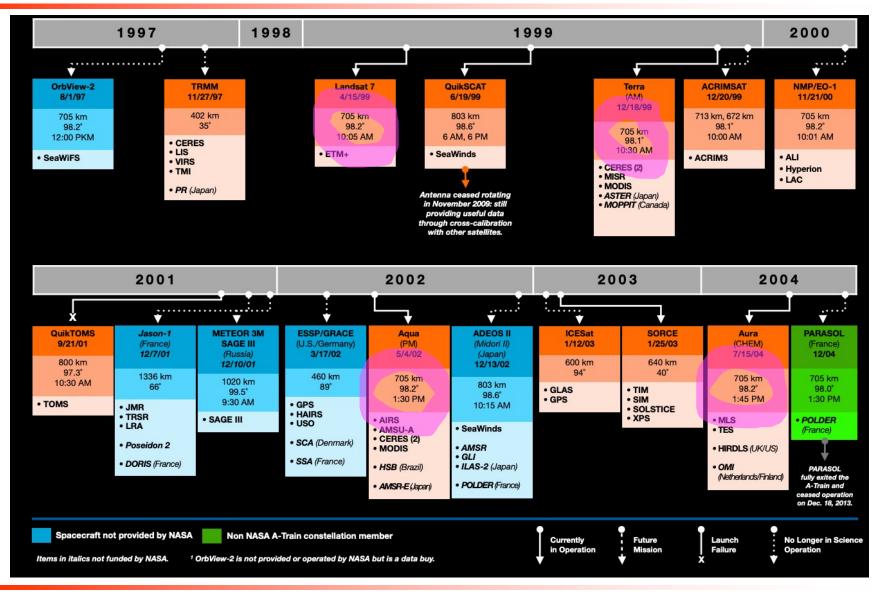
directreadout.sci.gsfc.nasa.gov

CSPP User's Group 2022

2

Background

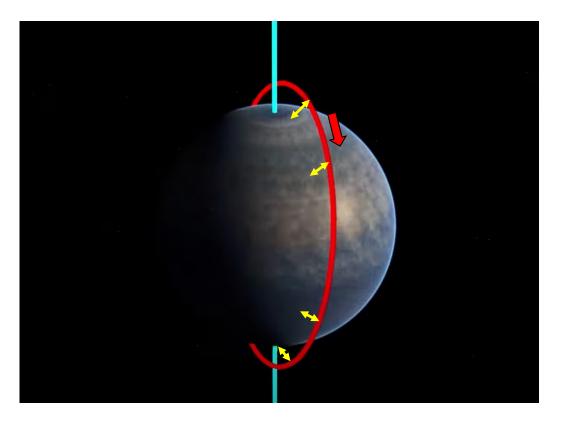
- NASA Goddard Space Flight Center (GSFC) built many spacecraft in the Earth Observing System (EOS) constellation
- NASA Developed instrument data processing algorithms for MODIS on the Terra and Aqua platforms
 - Expanded to support other NASA instruments (e.g. AIRS, AMSU, CERES)
 - Develops algorithms for SNPP/JPSS VIIRS and other instruments
 - Currently developing algorithms and testbeds for JPSS-2
- Mission Operations Centers (MOCs) for Aqua, Aura, Terra and Landsat
 7 (to name a few) are located on the GSFC campus
 - Aqua and Terra currently producing weather data from Polar LEO
 - Landsat 7 is operated by NASA as a client for an upcoming satellite servicing mission OSAM-1 (more on this later!)
- These spacecraft were all launched between 1999-2004
 - How are they affected by age?
 - How does that affect the science?



3

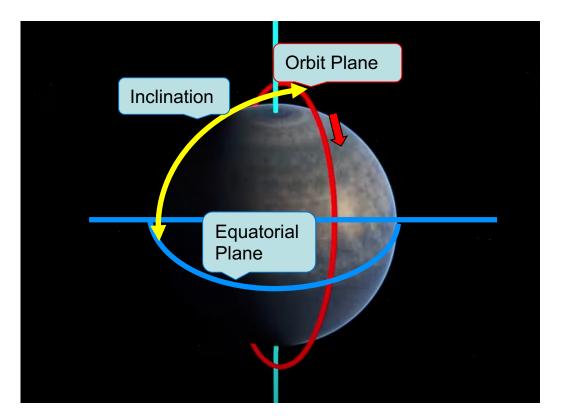
EOS Mission Profiles 1997-2004

source: https://eospso.gsfc.nasa.gov/files/mission_profile.pdf, current as of 2017



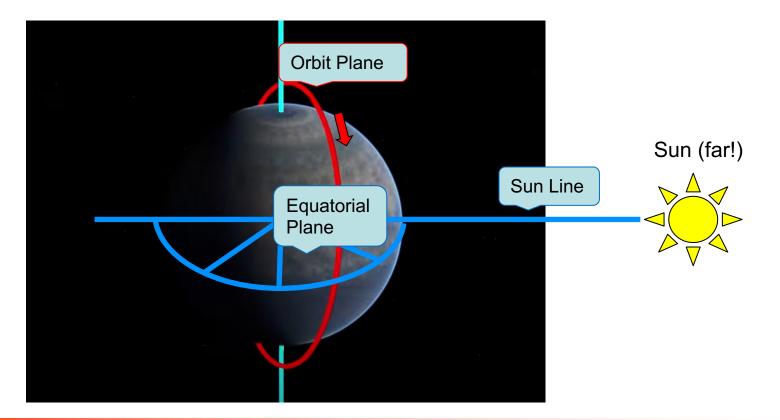
Polar LEO Parameters – Mean Altitude

- Measured above Earth surface datum
- Elliptical your altitude may vary
- Circular orbits are good: apoapsis ~= periapsis



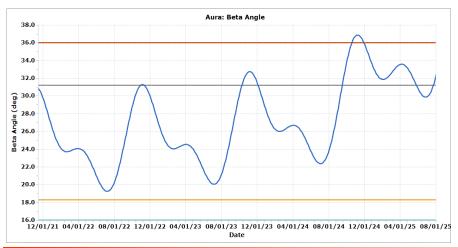
Polar LEO Parameters - Inclination

- Angle between Orbit Plane and Equatorial Plane
 - Angles around 98 degrees result in stable (ish) Sun Synchronous orbit



Polar LEO Parameters - MLTDN

- What time is it where the Orbit Plane crosses the equatorial plane (node) going North to South (descending)?
 - That's the MLTDN (mean local time of descending node)
 - Remains fixed regardless of what longitude of Earth happens to be under that point
 - Assumes true local times! Every point on the equator has its own conversion to UTC.


• Source: https://youtu.be/ylvgxNF3C0c (Eumetsat)

- Factors that perturb orbit over time
 - Drag
 - Non-spherical Earth (magnetic and gravitational affects)
 - Solar Flux (or 'wind')
- These are mitigated by carefully planned impulsive maneuvers which consume a limited resource: fuel
- What happens if these maneuvers are not performed?
 - MLTDN will tend towards 6AM (orbit normal to the Sun) but will oscillate.
 - Beta angle will change (that's the angle between the orbit plane and the Sun vector) – some instruments have Beta angle limits
 - Orbit will lower
 - · lower orbit has shorter period (flight dynamics is weird)

im·pul·sive

[im'pəlsiv] 📣

ADJECTIVE impulsive (adiective)

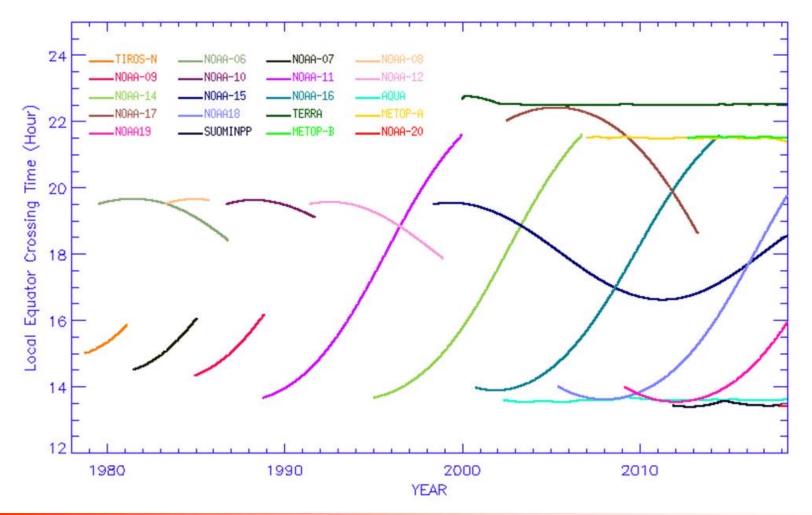
> > unthinking

antonyms: cautious · premeditated

2. physics

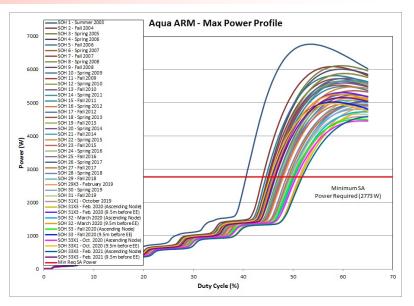
acting as an impulse: "the approaching waves contain an impulsive component"

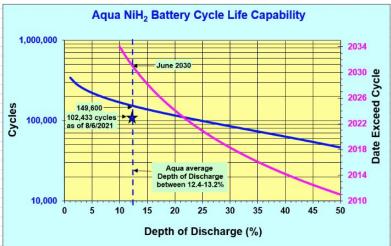
ORIGIN


late Middle English (in the sense 'tending to impel'): from French impulsif, -ive or late Latin impulsivus, from Latin impuls- 'driven onwards' (see impulse). impulsive dates from the mid 18th century.

- For science data this means:
 - Lighting conditions and re-visit pattern change
- Eventually, spacecraft will re-enter Earth atmosphere and burn up.
 - This is required within 25 years of mission end for orbital debris mitigation.
- Specific information on Terra: <u>https://terra.nasa.gov/about/terra-orbital-drift-information</u>

- Here's MLTAN for the entire fleet
- Source: https://www.star.nesdis.noaa.gov/jpss/orbit_drift.php

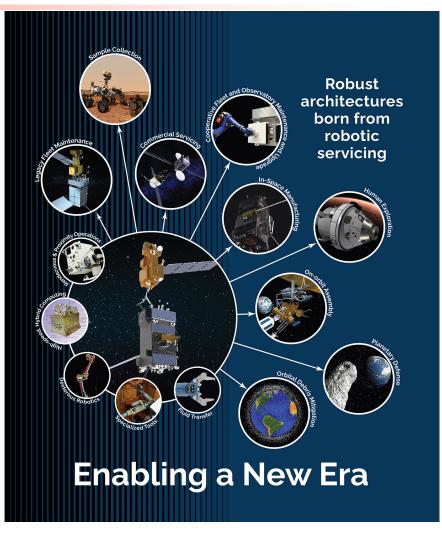

Fuel is not the only life limiting factor


- Electrical power generation gradually decays as solar arrays age
- Batteries lose efficiency over time
 - this is critical for operations when spacecraft transit Earth's shadow for part of each orbit
 - Aqua performed a discharge test recently and cell capacity was much better than predicted for this age
- Equipment fails and is not repaired
 - instruments lose channels or data storage capacity mainly due to ionizing radiation (charged particles)
 - thruster components lose efficiency with use
 - attitude control via reaction wheels and magnetic torque bars can fail
 - onboard redundancy is eventually used up

Mission Managers perform complex trades

- When to cease Inclination Adjustment Maneuvers?
- When to perform orbit lowering to exit EOS constellation orbit and ensure the required < 25 year re-entry?
- When to cease science operations?

"Aging Gracefully" requires creativity and skill



NASA Goddard Space Flight Center Direct Readout Laboratory

- On-Orbit Servicing, Assembly and Manufacturing 1 (OSAM-1) is in development to refuel and orbit-raise the Landsat 7 spacecraft
 - Formerly "Restore-L", renamed after addition of "SPIDER" assembly and manufacturing payload
- Mission is planned to launch February 2026
- Mission sequence includes:
 - Rendezvous with passive client (i.e. not actively guiding or controlling)
 - Berthing by clamping to Marmon ring used as launch attachment
 - Accessing and opening fuel valves used for fueling and closed out 'permanently' with safety wiring and thermal blanketing
 - Transfer of propellant to Landsat's internal tanks
 - Boost towards operational orbit
- Technology demonstration to develop and test concepts that can be enhanced by pre-mission preparation of future science spacecraft
 - Cooperative servicing valves for fuel
 - Reflectors and reference markings for docking
 - Modular designs for on-orbit unit replacement

Web Links

- DRL: <u>https://directreadout.sci.gsfc.nasa.gov/?id=home</u>
- OSAM-1: <u>https://nexis.gsfc.nasa.gov/osam-1.html</u>
- Cooperative Servicing: <u>https://nexis.gsfc.nasa.gov/cooperative_servicing_aids.</u> <u>html</u>

Presenter

Jeremy Jacobsohn jeremy.f.jacobsohn@nasa.gov jeremy.f.jacobsohn@saic.com https://www.linkedin.com/in/jeremyjacobsohn/

Acknowledgements

Jon Halpin, Aura FDS Lead Jason Hendrickson, Terra Flight Systems Manager Charles (Chuck) Hudson, Aura Flight Systems Manager Thomas Russo, EOS Flight Ops Teams Manager