

Workshop on the Validation of Satellitederived Optical and Water Quality Parameters for Coastal and Inland Waters

7-9 June 2022 University of Wisconsin-Madison

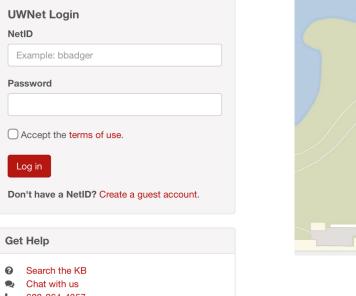
Validation Workshop Program Committee

- Steven Greb (co-chair), University of Wisconsin-Madison and GEO AquaWatch
- Collen Mouw (co-chair), University of Rhode Island, Graduate School of Oceanography
- Merrie Beth Neely, GEO AquaWatch
- Paul DiGiacomo, NOAA NESDIS
- Giuseppe Zibordi, EU Joint Research Centre
- Ewa Kwiatkowska, EUMETSAT
- Juan Ignacio Gossn, EUMETSAT
- Gordon Campbell, ESA
- Nima Pahlevan, SSAI/NASA Goddard
- Tim Moore, Florida Atlantic University
- Blake Schaeffer, USEPA
- Michael Ondrusek, NOAA
- Bridget Seegers, NASA/USRA

Workshop on the Validation of Satellitederived Optical and Water Quality Parameters for Coastal and Inland Waters

7-9 June 2022

University of Wisconsin-Madison



- Internet
- Group Picture at noon today
- CovId testing
- Other rooms for breakouts
- Lunch and Dinner
- Dinner on Thurday

W UW-Madison Wi-Fi Access

Select a campus Wi-Fi network

608-264-4357 Visit a location

0

Validation

- The process of assessing, by independent means, the quality of the data products derived from those system outputs [CEOS/ISO:19159].
- Validation and uncertainty assessment are crucial requirements from the end user perspective of a satellite data product and only through confidence in quantifiable uncertainties will there be increased uptake of these data products [Otto et al., 2016].
- Errors in satellite data products are known unknowns. However, quantifying the quality of these products by decomposing the inherent uncertainty components can be a very challenging task [Loew et al. 2017].

Workshop Impetus

- Palmer et al. (2015) pointed to the need for the inland community to be actively engaged in cal/val activities for Sentinel and future EO missions.
- Mouw et al. (2015) suggested an increased need of *in situ* observations for algorithm development and product validation efforts.
- AquaWatch, the Group on Earth Observations (GEO) water quality community of practice met in August of 2018 to discuss the work plans and future activities and there was an overwhelming consensus that issues and shortcomings surrounding validation of satellite-derived products were a priority facing the community

Workshop Objectives

- Review and evaluation of current and planned validationrelated activities.
- Identifying validation gaps in spatial coverage as well as water types.
- Review and evaluation of current *in situ* and laboratory optical measurements and data acquisition protocols including instrument characterization and absolute radiometric calibration.
- Review and evaluation of satellite measurements in terms of representativeness for coastal and inland systems (e.g. pixel window, match-up timing).
- Assessing current optical and water quality database resources including repository archive, preservation, stewardship, and access.
- Building global coordination through international partnerships for validation activities.

Where we were.... 10 years ago

Workshop for Remote Sensing of Coastal and Inland Waters

University of Wisconsin - Madison 20-22 June 2012

The goals of the workshop were to:

- Provide an overview of the state of the science.
- Identify pressing needs for the advancement of remote sensing in optically complex waters.
- Establish an inventory of unresolved issues.
- Provide scientific basis/guidance for the next generation of remote sensing of coastal and inland water including a framework and recommendations for future research directions.
- Foster the development of new collaborations.

Review

Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions

Colleen B. Mouw ^{a,*}, Steven Greb ^b, Dirk Aurin ^c, Paul M. DiGiacomo ^d, Zhongping Lee ^e, Michael Twardowski ^f, Caren Binding ^g, Chuanmin Hu ^h, Ronghua Ma ⁱ, Timothy Moore ^j, Wesley Moses ^k, Susanne E. Craig ¹

- ^h University of South Florida, College of Marine Science, 140 Seventh Ave. South, St. Petersburg, FL 33701, United States
- ¹ Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
- ^j University of New Hampshire, 8 College Road, OPAL/Morse Hall, Durham, NH 03824, United States
- ^k Naval Research Laboratory, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
- ¹ Department of Oceanography, Dalhousie University, Halifax B3H 4R2, Canada

ARTICLE INFO

ABSTRACT

Article history:

Received 10 January 2014 Received in revised form 3 February 2015 Accepted 5 February 2015 Available online 18 February 2015

Keywords: Remote sensing Optics Coastal oceanography Limnology Water quality Aquatic color radiometry remote sensing of coastal and inland water bodies is of great interest to a wide variety of research, management, and commercial entities as well as the general public. However, most current satellite radiometers were primarily designed for observing the global ocean and not necessarily for observing coastal and inland waters. Therefore, deriving coastal and inland aquatic applications from existing sensors is challenging. We describe the current and desired state of the science and highlight unresolved issues in four fundamental elements of aquatic satellite remote sensing namely, mission capability, in situ observations, algorithm development, and operational capacity. We discuss solutions, future plans, and recommendations that directly affect the science and societal impact of future missions with capability for observing coastal and inland aquatic systems.

© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.rse.2015.02.001

^a Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States

^b Wisconsin Department of Natural Resources, 2801 Progress Road, Madison, WI 53716, United States

^c Science Systems and Applications, NASA Goddard Space Flight Center, Code 616, Bldg. 22, Room 248, Greenbelt, MD 20771, United States

^d NOAA/NESDIS Center for Satellite Applications and Research, 5830 University Research Ct., College Park, MD 20740, United States

^e University of Massachusetts-Boston, 100 Morrissey Blvd., Boston MA 02125, United States

f WETLabs Inc., 70 Dean Knauss Dr., Narragansett, RI 02882, United States

^g Environment Canada, 867 Lakeshore Road, Burlington, Ontario, Canada

Hardware configuration of the sensor and orbital platform that corresponds to spectral, spatial, radiometric, and temporal characteristics.

Tools that connect satellite observations to optical, biogeochemical, and water quality parameters

ALGORITHMS

Empirical Semi-analytical

Spatial Temporal Uncertainty Signal:Noise Atmospheric Correction

Spectral

AOPs **IOPs SIOPs** Biogeochemical Parameters

IN SITU **OBSERVATIONS**

MISSION CAPABILITY

Satellite Instruments

Validation

In situ Instruments **Observational Platforms**

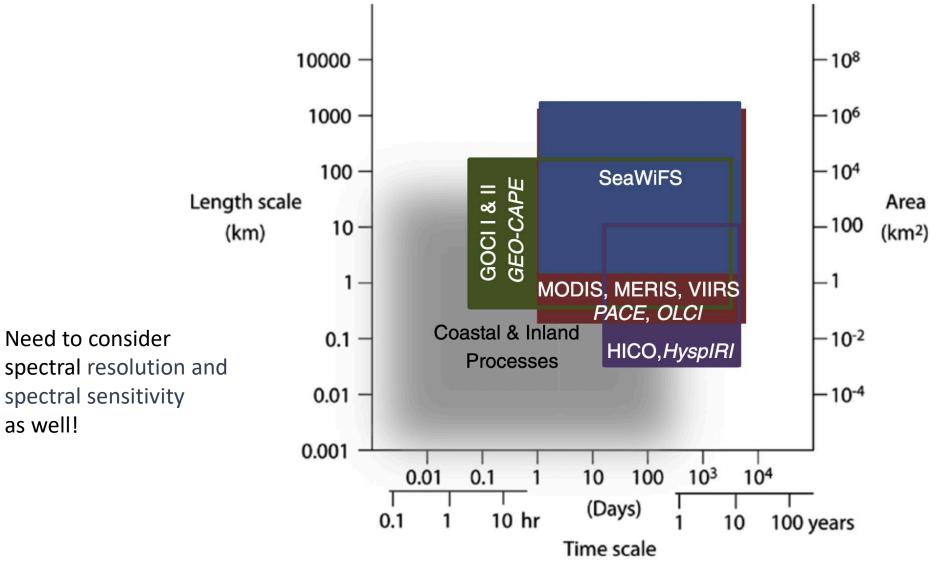
Required observations for calibration and validation of algorithms.

Product Availability

Calibration

Protocols

Training


OPERATIONAL CAPACITY

Processing Software

The capacity of the mission to routinely provide high-quality measurements to support an array of users and applications

Mouw et al. 2015

Spatial and Temporal Resolution

Adopted from Robinson, 2010

Mouw et al., 2015

Gap Analysis

	Previous/Existing	Desired	Needed
Mission Capability	300 m – 1 km, multispectral, polar orbiting.	100 – 500 m, polar orbiting and geostationary with greater spectral resolution and coverage, wide dynamic range and high signal to noise to allow for detection across broad parameter ranges.	Investment in geostationary and coastal/inland focused missions to optimize coverage, resolution and availability of new and improved measurements.
Algorithms	Multiple approaches optimized to different datasets for various regions.	A menu of algorithm choices with clear information about their respective strengths and limitations.	 Coordinated algorithm comparison to condense and clarify strengths and limitations and identify fit for purpose options. Research into biogeochemical property variability and relationships with optical properties.

	Previous/Existing	Desired	Needed
In Situ Observation	limited public data access.	 Limited number of centralized publically- available data repositories ensuring access to consistent high-quality data. Protocols that cover a dynamic range of variability. At minimum, collect coincident observations of the standard suite of parameters (Table 4); if possible collect a broader suite of data products. 	 Invest in technology development to address instrumentation gaps; such as sensors designed for high turbidity waters, and hyperspectral b_b. Clear, consistent and coordinated data sharing policies across agencies. Update protocols. Investment in sustaining and increasing observation networks.

	Previous/Existing	Desired	Needed
Operational Capacity	 Global - open ocean mission /product heritage. Tailored products available for some regions and applications. Support and training often geared more to expert users. Limited access to some satellite color data streams, especially in NRT mode. 	 Routine and sustained delivery of high-quality operational color data in NRT and delayed modes for coastal and inland waters. Development of merged/blended remote sensing anµ integrated remote sensing-in situ (information) products. Development of robust color-derived proxies and indicators. Optimal algorithms identified for most/all coastal and inland regions with limitations and uncertainties clearly indicated. 	 Ongoing coordinated field observations for each coastal/inland region¹ to ensure continual validation. Identification of best performing practices and approaches and continual evaluation as new approaches are developed. Facilitate user data/product access and utilization, including development of application portals. Expanded user outreach and training. Free, open and timely access (NRT and delayed modes) to all satellite color data streams Implement user-driven community of practice for remote sensing of coastal and inland water to facilitate communication, best practices and harmonization efforts.

Standard In Situ Observations

Table 4

Recommended standard in situ observations for algorithm development, refinement and validation.

	Minimum parameters	Additional parameters
AOPs	$R_{rs}(\lambda)$, $K_d(\lambda)$, Z_{eu} (or $Z_{10\%}$)	
IOPs	$a(\lambda), a_{CDOM}(\lambda), a_{NAP}(\lambda), a_{ph}(\lambda), b_{bp}(\lambda)$	$b_{bp,NAP}(\lambda), b_{bp,ph}(\lambda)$
Biogeochemical	[Ch1], TSM, POM, PIM, DOM, DIM	HPLC pigments, primary productivity

*Spectral parameters should be observed at the highest spectral resolution allowed by the instrumentation or at 2–5 nm increments.

Standard Remotely Sensed Products

Table 3

Recommended standard remotely sensed products.

	Standard products	Additional products
AOPs	$R_{rs}(\lambda)$, $K_d(\lambda)$, Z_{eu} (or $Z_{10\%}$)	
IOPs	$a(\lambda), a_{CDOM}(\lambda), a_{NAP}(\lambda),$	
	$a_{ph}(\lambda)$, $b_{bp}(\lambda)$	
Biogeochemical	[Chl], TSM, POM, PIM,	Primary productivity,
	DOM, DIM	phytoplankton functional types

Prioritized Implementation

Priority	Immediate	Near-term	Long-term
1	<u>In Situ Observations</u> :	In Situ Observations:	Mission Capability:
	Establish limited	Invest in data collection	Ensure satellite mission
	number of centralized	in complex waters and	capability with
	publically available	the characterization of	flexibility to handle
	data repositories.	MSIOP variability.	appropriate sensitivity, spectral, spatial, and
	Operational Capacity:	Operational Capacity:	temporal scales found in
	Provide more training	Work to ensure free,	coastal and inland
	opportunities for non-	open, and timely (NRT	systems. Move toward
	specialists.	or other) access to all satellite color data	sensor agnostic designs with greater spectral
		streams.	resolution and coverage
			that could be resampled
			for various applications.

Prioritized Implementation

Priority	Immediate	Near-term	Long-term
2	In Situ Observations:	Operational Capacity:	
	Establish standard	Identify best practices	
	measurements for any	and approaches for use	
	in situ campaign	of color remote sensing	
	supporting remote	data in applications.	
	sensing. Update	Develop decision	
	community (NASA et	support information and	
	al.) protocols to include	tools for algorithm and	
	consideration of the	product selection.	
	dynamic range of	Develop application	
	properties encountered	portals to facilitate	
	in these systems and	access and fit for	
	extend to include	purpose use of color	
	biogeochemical	remote sensing data and	
	properties.	derived products.	

Prioritized Implementation

Priority	Immediate	Near-term	Long-term
3	Operational Capacity:	Algorithms: Perform an	
	Establishment of a	algorithm	
	user-driven community	intercomparison for	
	of practice for remote	consolidation and/or	
	sensing of coastal and	simplification of	
	inland waters to link	algorithm choices.	
	freshwater and marine,		
	satellite and in situ	In Situ Observations:	
	data, data providers	Create a 'NOMAD-like'	
	and users, science, and	dataset/s with coincident	
	societal considerations,	observations for the	
	to work collaboratively	inland/coastal waters.	
	with IOCCG, space		
	agencies et al.		

Where are we going?

- How did we do?
- Where are we now?
- What are the new considerations/directions for coastal/inland remote sensing validation?

Workshop Questions

- What are the target levels of uncertainties for spectral R_{rs} and water quality products desired/required by the various end-user communities?
- 2) What are the minimum/desired essential optical and biogeochemical parameters and their needed temporal and spatial coverage for current and future validation needs?
- 3) Are current above/below-water radiometric methods and instrumentation; and laboratory inherent optical property methods adequate for water quality applications in complex and shallow waters?
- 4) What protocols should be followed for processing and quality control of the above data (the requirements for ocean systems may not all apply to inland lake environments)?
- 5) What assessment protocols and metrics should be used to assess the quality of the satellite data products?
- 6) How can disparate validation databases be merged and integrated with satellite imagery?
- 7) How can the water quality community better coordinate these critical validation needs and what resources can be identified to support this effort?