

FRM4SOC-2 Fiducial Reference Measurements for Satellite Ocean Colour -Phase 2

Riho Vendt, Viktor Vabson, Krista Alikas, Martin Ligi, Ilmar Ansko, Joel Kuusk, Christophe Lerebourg, Marine Bretagnon, Alexis Deru, Gabriele Bai, Carsten Brockmann, Uwe Lange, Helge Dzierzon, Sabine Embacher, Agnieszka Bialek, Ashley Ramsay, Gavin Tilstone, Giorgio Dall'Olmo, Kevin Ruddick, <u>Juan Ignacio Gossn</u>, Ewa Kwiatkowska

EUM/RSP/VWG/22/1309375, v1 Draft, 1 June 2022

The Fiducial Reference Measurements (FRM)

The **FRM** must:

- have documented traceability to SI units;
- be independent from the satellite retrieval process;
- include a complete estimate of uncertainty;
- follow well-agreed and known procedures
- be openly available for independent scrutiny.

Donlon, C.; Goryl, P. Fiducial Reference Measurements (FRM) for Sentinel-3. In Proceedings of the Sentinel-3 Validation Team (S3VT) Meeting, ESA/ESRIN, Frascati, Italy, 26–29 November 2013.

Donlon, C.J.; Wimmer, W.; Robinson, I.; Fisher, G.; Ferlet, M.; Nightingale, T.; Bras, B. A., Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers. J. Atmospheric Ocean. Technol. 2014, 31, 1104– 1127.

G. Zibordi and C. J. Donlon, Chapters 3 and 5, vol. 47, G. Zibordi, C. J. Donlon, and A. C. Parr, Eds. Academic Press, 2014.

FRM4SOC: Brief timeline

2016 – 2019 FRM4SOC Phase 1

- Funded and coordinated by ESA
- In a series of several other FRM projects
- <u>https://frm4soc.org</u>

2021 – 2023 FRM4SOC Phase 2

·eesa

- Project kick-off 8 April 2021
- Funded by the EU and coordinated by EUMETSAT
- Two optional 1-year extensions may be granted
- https://frm4soc2.eumetsat.int/

Overarching goal of FRM4SOC

Ensure the adoption of FRM principles across the Ocean Colour (Water Quality) community

FRM4SOC Phase 2 – focus on two most common Ocean Colour Radiometer (OCR) classes

OCR Calibration, Characterisation

Cal/Char plan

- 1. Absolute calibration for radiometric responsivity
- 2. Long term stability
- 3. Stray light and out of band response
- 4. Immersion factor (irradiance)
- 4b.Immersion factor (radiance)
- 5. Angular response of irradiance sensors in air
- 6. Response angle (FOV) of radiance sensors in air
- 7. Non-linearity
- 8. Accuracy of integration times
- 9. Dark signal
- 10. Thermal sensitivity
- 11. Polarization sensitivity
- 12. Temporal response
- 13. Wavelength scale
- 14. Signal-to-noise ratio
- 15. Pressure effects
- Characterisation of instruments
- Guidelines for laboratories
- Laboratory comparison

✓ IOCCG Protocol Series 2019 ✓ Vabson, et al. 2019

copernicus.eumetsat.int

Issue recommendations for instrument manufacturers (e.g. need for internal

Parameter	Scope	Туре	Re-calibration	D-2 requirement	
1. Absolute calibration for radiometric responsivity	individual	Required	1 year	IR1	
2. Long term stability	individual	Required	after every calibration	IR1	
3. Stray light and out of band response	individual/class specific	Recommended	3 – 5 years	IR2	
4. Immersion factor (irradiance)	individual	required for under-water	after fore-optics modification	-	
4b.Immersion factor (radiance)	individual/class specific	required for under-water	after fore-optics modification	-	
5. Angular response of irradiance sensors in air	individual	Required	after fore-optics modification	IR3	
6. Response angle (FOV) of radiance sensors in air	class- specific	Recommended	after fore-optics modification	-	
7. Non-linearity	individual/class specific	Recommended	after repair in workshop	IR4	
8. Accuracy of integration times	individual/class specific	Recommended	after repair in workshop	IR4	
9. Dark signal	individual	Required	1 year	IR7	
10. Thermal sensitivity	individual/class specific	Required	after repair in workshop	IR5	
11. Polarisation sensitivity	individual/class specific	Recommended	after repair in workshop	IR6	
12. Temporal response	TBD	TBD	TBD	IR8	
13. Wavelength scale	class specific	Recommended	after fore-optics modification	IR9	
14. Signal-to-noise ratio	individual/class specific	Recommended	1 year	-	
15. Pressure effects	TBD	TBD	TBD	-	

Community Processor (CP)

Community processor for in situ data processing and uncertainty budget calculation

•

Currently supports

Adding functionality for:

- TriOS RAMSES data; ۲
- Corrections and uncertainties from ٠ OCR characterisation;
- Full end-to-end uncertainty calculation; ٠
- Command Line Interface (CLI). ۲

Uncertainty budgets

Elaboration of the FRM4SOC Phase 1 uncertainty budgets

- Conclude end-to-end uncertainty budgets for
 - remote sensing reflectance,
 - fully normalised water-leaving radiance.
- Address uncertainty components not considered in FRM4SOC Phase 1
 - e.g. environment effects:
 - ambient temperature,
 - sky radiance cosine error,
 - polarisation,
 - structure shading,
 - sun-glint, wave focusing
- Implementation of uncertainty calculations in the Community processor
- Easy and practical guidelines for uncertainty calculation.

Uncertainty budgets: example of added uncertainty tree

Uncertainty budgets

Main objective:

• Identify the larger sources of uncertainty in order to prioritise efforts and establish recommendations to the OC community

Ocean Colour In-Situ Database (OCDB)

FRMOCnet: a network of radiometric "FRM-certified"

<u>measurements</u>

Network of radiometric measurements with the FRM certification (FRMOCnet)

11-20 July 2022, at

Acqua Alta Oceanographic Tower (AAOT), Venice, Italy.

Critical review, testing, and feedback on

- FRMOCnet;
- measurement protocols;
- Community processor;
- SI traceability;
- Application of instrument characterisation;
- Uncertainty budgets;
- Aimed uncertainty levels.

PML | Plymouth Marine Laboratory

Paricipating systems (7 institutes registered) Above water: TRIOS RAMSES; TriOS RAMSES G2 sun tracker (SoRAD) Hyper SAS with PySAS robot; HypSTAR

In-water: Sea-Bird HyperPro II; TriOS RAMSES floating buoy.

Water type: Optical Case 1 (clear open sea waters) 60% of the year (Zibordi et al., 2009b); 40% optical Case 2 (turbid coastal) depending on river discharge from the surrounding catchment. Fiducial Reference Measurements for Satellite Ocean Colour Phase 2

FRM4SOC-2 Project Workshop

Save the date! 5 – 7 December 2022 – Darmstadt/Online

Consortium partners and project-related experts will attend physically. You are invited to join either physically or online. No registration fees will be charged.

Funded by the European Union

UNIVERSITY OF TARTU

PML Plymouth Marine Laboratory

FRM4SOC – ESA Project no. 4000117454/16/I-Sbo

FRM4SOC - Phase-2 – EUMETSAT project no. EUM/CO/21/460002539/JIG

Funded by the European Union

Copernicus Cal/Val Solution (CCVS) funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101004242

This project is funded by the European Union

Thank you! Questions are welcome.

Characterization plan for OCRs

- Majority of the characterisations were carried out for (at least) four radiometers.
- Characterisations under stable laboratory conditions are in agreement with former results.
- The non-linearity of most sensors is temperature dependent
 - For the HyperOCR irradiance sensors, 10% at higher temperatures.

1. Absolute calibration for radiometric responsivity			
2. Long term stability			
3. Straylight and out of band response			
4. Immersion factor (radiance, irradiance)			
5. Angular response of irradiance sensors in air			
6. Response angle (FOV) of radiance sensors in air			
7. Non-linearity			
8. Accuracy of integration times			
9. Dark signal			
10. Thermal sensitivity			
11. Polarisation sensitivity			
12. Temporal response			
13. Wavelength scale			
14. Signal-to-noise ratio			
15. Pressure effects			

Major differences between selected models

Raw signals and standard deviations of **RAMSES** and **HyperOCR** sensors during calibration measurements.

Deviation from the cosine law of HyperOCR (left) is usually smaller than the cosine error of RAMSES (right) sensors.

\sim Non-linearity coefficient α for several temperatures [5°C to 40°C]

copernicus.eumetsat.int

HyperOCR radiance sensor

-10 - 20 - 30 - 35 - 4010 -20 -30 -35 -40 -2E-07 -2E-07 Coefficient a Coefficient α -4E-07 4E-07 -6E-07 -6E-07 -8E-07 -8E-07 600 800 400 500 600 700 800 400 500 700 Wavelength, nm Wavelength, nm

HyperOCR irradiance sensor

EUM/RSP/VWG/22/1309375, v1 Draft, 1 June 2022

Coefficient α of RAMSES and HyperOCR sensors

Averaged non-linearity coefficient a of two **RAMSES** and four **HyperOCR** sensors (upper group)

Contractor Contract

EUMETSAT

Opernicus 24

- Thermal coefficients of two RAMSES and four HyperOCR sensors after correction for non-linearity.
- Two lower curves belong to the HyperOCR radiance, and two upper curves to the HyperOCR irradiance sensors.
- Middle curves belong to the RAMSES radiance and irradiance sensor.

Relative polarisation effect as a function of angle and

wavelength

TriOS (RAMSES radiance sensor

2

copernicus.eumetsat.int

Polarimetric sensitivity: increasing with wavelength

- Results for TriOS are comparable to Talone and Zibordi 2016
- HyperOCR: also sensitivity increases with wavelength.
- HyperOCR higher sensitivity compared to TriOS.

- Difference of measured wavelengths from Kr-lamp reference values.
- Differences found within the expectable range

811,29 nm (810,43 nm + 811,29 nm)	Name	Temperature	λmeas	Δλ1	λmeas	Δλ2	λmeas	Δλ3
• 5°C • 10°C • 20°C • 30°C • 35°C • 40°C • 40°C • 90% (5°C)	RAMSES_L	5 °C	557	0.12	759.9	0.05	811.32	0.19
	RAMSES_L	20 °C	556.9	0.02	759.95	0.10	811.3	0.17
	RAMSES_L	40 °C	556.82	-0.06	759.82	-0.03	811.2	0.07
	RAMSES_E	5 °C	556.75	-0.13	759.77	-0.08	811.05	-0.08
	RAMSES_E	20 °C	556.6	-0.28	759.65	-0.20	811	-0.13
	RAMSES_E	40 °C	556.7	-0.18	759.65	-0.20	810.87	-0.26
	HyperOCR_L	5 °C	556.88	0.00	759.63	-0.22	810.9	-0.23
	HyperOCR_L	20 °C	556.84	-0.04	759.72	-0.13	810.8	-0.33
90% (40 V)	HyperOCR_L	30 °C	556.95	0.07	759.82	-0.03	811.05	-0.08
	HyperOCR_L	40 °C	556.72	-0.16	759.6	-0.25	810.75	-0.38
	HyperOCR_E	5 °C	556.75	-0.13	759.82	-0.03	811.04	-0.09
	HyperOCR_E	20 °C	556.62	-0.26	759.75	-0.10	810.95	-0.18
807 808 809 810 811 812 813 814 815 Wavelength, nm	HyperOCR_E	40 °C	556.55	-0.33	759.64	-0.21	810.85	-0.28

Effects from dynamic temperature change

- Dynamic tests in a thermostat have been performed to evaluate the possible effects from changing temperature on the radiometer signal by sweeping the temperature from 5 °C up to 40 °C and back down to 5 °C.
- A rather strong hysteresis of the optical signal is evident if measured data are presented as a function of the thermostat's temperature.

Time lags and differences between outside and internal temperature sensors.

HyperOCR radiance sensor

Thermostat's temperature

Internal temperature

Calculated from dark signal

10

Dark

10000

1000

Dynamic temperature change

- Using thermostat's temperature is similar to field measurements, where the temperature is obtained with an external temperature sensor, and uncertainty due to hysteresis can be larger than due to thermal responsivity.
- Hysteresis with the internal temperature sensor becomes significantly smaller, and uncertainty from temperature correction for 10 °C difference will clearly dominate.

Hysteresis of a RAMSES radiance sensor

• Behavior of RAMSES and HyperOCR radiance sensors is similar.

Thermostat's temperature

Calculated from dark signal

Hysteresis of two HyperOCR irradiance sensors

copernicus.eumetsat.int

Thermostat's temperature

- Differently from other sensors, the hysteresis of the optical signal of a HyperOCR irradiance sensors did not decrease substantially if presented as a function of the internal temperature sensor.
- The likely reason is that the thermal response of the irradiance sensor is related to outer surface of the device – the cosine collector made of polytetrafluoroethylene (PTFE) – and not solely the optical sensor inside the radiometer.
- Transmittance of PTFE changes abruptly (1–3%) at ~19°C due to a phase shift of the crystal structure, L. Ylianttila and J. Schreder, Optical Materials 27, 1811–1814 (2005)

The output signal of the spectrometer is the sum of the target signal and the dark signal. The dark signal is the output signal when the optical entrance is closed.

Dark signal is the sum of two components:

1. Dark current of the detector element, which depends exponentially on the detector's temperature and is proportional to the integration time;

2. Dark current due to additional contributions such as offset of an amplifier circuit.

Dark signal of HyperOCR with 8192 ms integration time

- The dark signal determined at 8192 ms integration time as a function of temperature for four HyperOCR radiometers.
- Although the temperature dependence is relatively strong, it is difficult to use such a curve for direct evaluation of the sensor's temperature, as for that inverse function is needed.

- For HyperOCR sensors, we found an easy method for the effective separation of two dark components.
- Dark signal measured with the shortest integration time (4 ms) is subtracted from the dark signal measured with the dongest integration time (8192 ms).
- Similar exponential dependence can also be observed for RAMSES sensors after dark separation by using other approach.

Sensor's temperature estimated from the dark signal

copernicus.eumetsat.int

The temperature of the sensor can be determined from the difference in dark signals at different integration times:

Internal temperature $T = C_1 ln\left(\frac{\Delta D}{C_2}\right)$

$$\Delta D = D(8192 \text{ ms}) - D(4 \text{ ms})$$
$$C_1 = \frac{1}{0.147} \approx 6.8$$
$$C_2 = 50 \pm 3.$$

Residuals and expanded uncertainty of four radiometers

copernicus.eumetsat.int

- Residuals as difference between temperatures estimated from the dark signal and measured with the internal sensor.
 Differences between measured values and values calculated from the dark signal remain within ±0.2 °C
- Differences between measured values and values calculated from the dark signal remain within ± 0.2 °C.

Limitations:

- Determination range depends on integration time used.
- With 8 s integration time 5 °C to 45 °C can be estimated, with 256 ms only 30 °C to 45 °C.

Parameter	Plans for characterisation			
4. Immersion factor (radiance, irradiance)	Planned during the project at JRC			
8. Accuracy of integration times	Planned during the project at UT			
12. Temporal response	Planned during the project at UT			
15. Pressure effects	Planned during the project at UT			

• The integration time characterization shall be performed by looking at a constant source and measuring this source at different integration times.

- Characterisation has been performed at shorter integration times used in calibration together with non-linearity for more than 40 OCRs.
- However, we plan to develop a method to measure the integration time directly without disassembling the instrument.

Six **RAMSES** radiometers

Six HyperOCR radiometers

- Comparison standards for cal/char comparison exercise of secondary labs are re-calibrated and characterized by pilot after return from NIVA.
- Analysis is needed on how to use cal/char data for different application schemes.
- Full characterization procedures need further studies for a number of parameters, and new procedures need testing at TO.