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1. Question: can we incorporate uncertainties when
computing skill metrics?

Overview

Every measurement (satellite & in situ) has
uncertainty.

2. Solution: “degree of overlap” metric when
computing validation different metrics.

We have found including uncertainties changed
validation metrics (mean bias & MAE).

3. Can we use uncertainties to improve the way we
visualize uncertainties?

New “zeta score” plots are color-coded and easy
to interpret.




Uncertainties in OC data products — why do it?

/

Quantifying uncertainty in derived ocean color data products
(i.e., measurands) is highly valuable, allowing end-users to: assess
if datasets are fit-for-purpose, assess if observed temporal change
is greater than uncertainty, assimilate uncertainties into climate

2010; Gould et al., 2014). Additionally, a thorough understanding
of uncertainty sources within a model may help guide the
decisions of scientists when developing new satellite algorithms.

McKinna et al. (2019)

Existing gap — what about comparing measurements during validation?



Question:

Based on horizontal distance (D) between the blue
and red dots, which pair(s) below would you
consider to be different: 1, 2, or 3?

Answer: D is the same for all!

(1) (2) (3)



Question:

Based on horizontal distance (D) between the blue
and red dots, which pair(s) below would you
consider to be different: 1, 2, or 3?

This time, we’ll consider measurement uncertainty and draw a probability
density function around each point ...

Answer: (a) yes, (b) no, (c) somewhat.




Why is this
important for
OC validation?

This is important to me!

Satellite-derived (M) and the in situ (O)
measurements are considered exact.

This is NOT true — M & O both have
inherent uncertainty.

* We should probably correct validation
metrics for measurement uncertainty

* If uncertainties are known, we can improve
how we present our results graphically



Validation metrics
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MAE: mean absolute error
See Seegers et al (2018) for more on validation metrics



A method to account for overlapping PDFs

For mean bias and MAE, we compute the difference
between the satellite observed (O) and in situ
measurement (M) data pairs:

D.=M -0,
I I I

We correct difference with correction factor (CF):
CF.=1-DO,

(DO) is the degree of overlap metric proposed by
Harmel et al (2010) (see paper for calculus).

Corrected difference is:
D’ = CFD.

i,min i,min imax

i,max



A method to account for overlapping PDFs

For mean bias and MAE, we compute the difference

between the satellite observed (O) and in situ S 0
measurement (M) data pairs: pp‘oac‘ﬂ 0= A, no
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Validation metrics

N
1
mean bias = Nz M; — O;
i=0

Corrected validation metrics
1 N
mean bias' = NE CF,(M; — 0;)
=0

MAE: mean absolute error
See Seegers et al (2018) for more on validation metrics
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Our study

* We developed an empirical algorithm for derived
bbp(555) (not shown here)

* We compared the new model with the GIOP and
a Chl-based model (Huot et al. 2008).

* We used the OC-CCI bio-optical dataset (Valente
et al. 2015) to validate each model

* 5% relative uncertainties in R. and b (555) were
assumed when computing corrected metrics
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Did it change the matchup result?

I\T;:ileel ?)ifference Statistics Comparing Three Models: LH-Based Model, GIOP, and Huot
byp(555) biasj,, bias’je, MAE,, MAE', No.
range Model N R* Slope* Bias(m™') Bias’(m™) MAE(m™') MAE'(m™') (unitless) (unitless) (unitless) (unitless) wins
All data LH 326 0.730 135 390x10* 261x107* 8.01x10™* 396x107* 1.21 1.12 1.33 1.16 0
GIOP 326 0.733 1.04 152x10™* 951x10° 6.75%x10™* 3.86x107* 1.06 1.03 1.27 1.15 10
Huot 326 0699 140 -738x10"* -549x10™* 9.15x10™* 6.59%x10°* 0.812 0.834 1.37 1.27 0
<1.25E-3 LH 60 0.225 0.764 6.72x10° 519%x10™" 6.75%x10™* 519x10~* 1.73 1.55 1.73 1.55 0
m™ GIOP 60 0049 0614 265x10° 1.77x10* 381x10° 230x107* 1.24 1.15 1.48 1.29 0
Huot 60 0235 101 151x10* 147x10™* 196x10™* 1.52x107* 1.17 1.09 1.23 1.10 10
21.25E-3 LH 266 0.548 124 325x10°" 203x10" 829x10° 3.69x10°* 1.12 1.05 1.26 1.09 1
m™ GIOP 266 0.602 0.947 127x10™* 7.73x10~° 7.41x10™* 420x107* 1.02 1.00 1.24 1.12 8
Huot 266 0448 128 -939x10™* -138x10" 1.08x10°  2.64E—4 0.748 0.786 1.41 1.31 1

Note. Bold text indicates best performance for each skill metric. No. wins (last column) indicates number of statistical tests in which respective dataset
outperformed others. *Computed in log,,-log,, space. Difference metrics with correction factor applied.

Prime symbol (‘) indicates corrected metrics 11



Does it change the matchup result?

Bias’(m™') MAE(m™)

Bias (m™)

MAE’ (m™)

261x10™* 8.01x10"

9.51 X 10"
—5.49 x 10~*

3.90 X 10~*

1.52x107*
—738 % 107"

6.75 x 10
9.15x 10°*

4

Prime symbol (‘) indicates corrected metrics

3.96 X 10 ~*

3.86 x10*
6.59 X 10~*

bias),g bias’jog MAEy MAE' g
(unitless) (unitless) (unitless) (unitless) Y
1.21 1.12 1.33 1.16
1.06 1.03 1.27 1.15
0.812 0.834 1.37 1.27




Visualizing matchups (with uncertainties)

 (b)

|ﬂ We routinely report validation with one-to-one
scatter plots (often in log-transform space)

Combined a_ (7) (m ')

Input a[_(n) (m .)

ms667

Scatter plots can get

IIII meSSy| Some folks plot multiple wavelengths
or multiple variables

Scatter plots are not that meaningful if the

;g variable has a small dynamic range (e.g.
oligotrophic R _(670))

MOBIS-Aqua 5667 [sr]

g

‘ I
In situ rs667 [sr ]



Visualizing matchups (with uncertainties)

) (m')

e
0 = esy?

Q. Step back and ask: what is the metric(s) we compute that are most |
meaningful?

Pair-wise difference metrics (e.g. bias, MAE).

So, why don’t we create plots that help us visualize difference?

Scatter plots are not that meaningful if the
variable has a small dynamic range (e.g.
oligotrophic R _(670))

MOBIS-Aqua os667



Zeta score plots

* The zeta-score is the difference between satellite and
in situ measurement normalized by total uncertainty

Ju(M;)? + u(0;)?

* Agreement categories can be color-coded
green = satisfactory (|{|<2),
yellow = questionable (2 < || < 3),
red = unsatisfactory (|{| = 3)

* We can tally the number of data points that fall within
each agreement category
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Table 3

Zeta-Score Statistics and Tallies for Three Models: LH, GIOF, and Huot
Tally of Tally of Tally of N e Tally of Tally of No. . .
by(555)range Model N  Mean( (std) Mean ¢’ (std) |4'] 2 |4’| <2 2< |{| <3 Tallyof2 < [¢'] <3 |{| >3 |C| =3 wins
All LH 326  0.888(1.62) 0.561 (1.36) 249 278 45 22 32 26 o L B e
.
GIOP 326  0.348(1.78) 0.234 (1.55) 265 287 35 14 26 25 8 =
Huot 326 -0.814(1.63) —0.586(1.48) 254 272 38 23 34 31 0
skt i & ki i % . e 5 - o B
GIOP 60  1.08(1.94) 0.739 (1.79) 45 50 8 3 7 7 1 s
Huot 60 0.756(1.22)  0.436(1.10) 53 55 5 3 2 2 8
>1.25E-3m™ LH 266  0.510(1.42) 0.252 (1.06) 230 247 26 10 10 9 5 ,
GIOP 266 0.179(1.72)  0.119(1.48) 220 237 28 8 19 18 3 1=
verage [m™]
Huot 266 —1.17(1.49) —0.820(1.45) 201 217 33 20 32 29 0
Note. Bold typeface indicates best performance. Prime symbol (") indicates corrected difference metrics.
* Agreement categories can be color-coded HUOT
= satisfactory (|{|<2),
yellow = questionable (2 < || < 3), 7
QU
red = unsatisfactory (|{| = 3) =
v
o
. . . U
* We can tally the number of data points that fall within 2

each agreement category

10-3 " 10+
bpp(555) method average [m™!]



Summary

Uncertainties should be considered during
validation — measurements aren’t exact

Our results show that correcting for uncertainties
changes the validation metrics

Zeta-score plots show allow us to inspect model
residuals

Color-coded Zeta-score plots are easy to interpret

and may be useful for communicating algorithm
performance with end-users.

17



Some caveats

* |If the uncertainties are too large, the corrected
validation metrics may have little meaning. We
want to keep uncertainties small

* We assumed 5% relative uncertainty. Realistic
values should be used where possible. Our
framework can, however, accommodate
alternative input uncertainties if known.

* For retrospective analyses, in situ uncertainty
may not be available and we need to make
sensible assumptions.

18



Thanks...

Our results are published here....

JGR Oceans

RESEARCH ARTICLE

10.1029/2021JC017231

Key Points:

« A rellectance line height metric was
used as a predictor of the particulate
backscattering coefficlent at 555 nm

+ The degree of overlap metric
was used to correct validation
skill metrics for measurement
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Development and Validation of an Empirical Ocean Color
Algorithm with Uncertainties: A Case Study with the
Particulate Backscattering Coefficient

Lachlan I. W. McKinna' *, Ivona Cetini¢** ©, and P. Jeremy Werdell’

'Go2Q Py Lid, Sunshine Coast, QLD, Australia, *GESTAR/USRA, Columbia, MD, USA, *NASA Goddard Flight Center,,
Greenbelt, MD, USA

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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Final thought from Merchant et al (2017)

| - | It 1s clear
that developing and validating uncertainty estimates involves
effort comparable to developing the retrieval itself.

Earth Syst. Sci. Data, 9, 511-527, 2017 : Earty Systerr
hitps:/doi.org/10.5194/es5d-9-511-2017 2 Science
@ Authoris) 2017. This work is distributed under T

the Creative Commons Aftribution 3.0 Licansa. & D a ta

Uncertainty information in climate data records from
Earth observation

Christopher J. Merchant'2, Frank Paul®, Thomas Popp?, Michael Ablain®, Sophie Bontemps®,
Pierre Defourny”, Rainer Hollmann', Thomas Lavergne®, Alexandra Laeng’, Gerrit de)kgeuw'”,
Jonathan Mittaz™!, Caroline Poulsen'?, Adam C. Povey**, Max Reuter!”, Shubha Sathyéndranath'®,
Stein Sandven'®, Viktoria F. Sofieva’”, and Wolfgang Wagner'’




Model evaluation matrix — what can we

achieve?

Table 4. Model evaluation matrix for appropriate model performance conclusions in model
calibration/validation considering both measurement uncertainty and prediction uncertainty.

Overall Model Performance Conclusions
Based on Model Accuracy (goodness-of-fit) and Model Precision

“Good” Indicator Values

High model precision, but high measurement
uncertainty prevents definitive model accuracy
conclusion in spite of good fit indication.

“Unsatisfactory” Indicator Values

Unsatisfactory model performance due to poor
accuracy in spite of high model precision.

Low model precision, but high measurement
uncertainty prevents definitive model accuracy
conclusion in spite of good fit indication.

Low model precision,
but good model accuracy.

Unsatisfactory model performance due to
low precision and poor accuracy.

Unsatisfactory model performance due to
low precision and poor accuracy.

Uncertainty Uncertainty
in Measured in Model
Case Data Predictions
1 High Low
2 High High
3 Low High
4 Low Low

Good model performance in terms of
high precision and good accuracy.

Unsatisfactory model performance due to poor
accuracy in spite of high model precision.

From Harmel et al (2010)
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Model 1

modeled by,(555) [m™]

Model 2

Bland-Altman Plots (residual plots)
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Bland-Altman
Plots

e Difference on the y-axis

* Method average on x-axis
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/eta-score plots

* Zeta-score on y-axis

* Method average on x-axis
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SeaWiFS plots

Derived bbp(555) in
waters adjacent to
Hawaii (1% Dec 2000)

(a) RGB

(b) LH empirical model
(c) GIOP

(d) Huot empirical model

0.0001 000032 0001 00032 0,01




SeaWiFS plots

Derived bbp(555) in
Mid-Atlantic Bight
(28" Apr 2003)

(a) RGB

(b) LH empirical model
(c) GIOP

(d) Huot empirical model

bbp_555 (m~1)

B 4 .

0.0001 0.00056 0.6032 0.018 0.1



PomPlots overview

reference value
|

0 : !

<
3
I At A, S n
. / l High U_nc.f?r:tainty L \ q
4 5 Low Significance i X,
3 , i ; % ' f ,
-4 -2 0 2 4

(x-x_)MAD

Pair-wise comparisons closest to
the apex (0,0) are best

Bias (left-to-right) can be
interpreted

Relative uncertainty (vertical scale)
helps us interpret how useful a

data point is

(-score contours are also shown



u/ MAD

PomPlot of bbp(443) reveals a lot!
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