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0.64 μm Imagery
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• Retrieval of brightness motions, or the 
Optical Flow, is a fundamental step in 
Atmospheric Motion Vector (AMV) 
derivation

• Optical Flow Definition:

“The distribution of apparent velocities 
of movement of brightness patterns in 
an image”  (Horn and Schunck 1981)

• Rapid scanning enables novel 
techniques to retrieve “Dense” (Every 
Image Pixel) Optical Flow for most 
cloud/water vapor motions

• Like a different channel on an imager, 
optical flow provides unique context of 
an image scene for a variety of users
➢ NWP
➢ Forecasters
➢ Machine Learning/AI

Figure 1. GOES-16 Ch-02 0.64 μm imagery plotted with optical flow winds (white
barbs) over a low-pressure system of the coast of VA/NC.

Optical Flow Motions
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Atmospheric Motion Vectors (AMVs) are a 
retrieval of atmospheric winds using cloud and 
water-vapor drift motions

They use a 5-step “Patch Matching” method

1. Identify target in VIS/IR/WV Imagery

2. Height Assign target with Numerical 
Weather Prediction (NWP) Fields to 
Forecast Displacement 

3. Identify the target in next image w/ least-
squares/cross-correlation 
➢ GOES-R algorithm clusters tracked results 

over a larger target area

4. Navigate results from pixel displacements 
to m s-1 / Refine Height Assignment

5. Implement quality control to prune results 
or provide meaningful error info

Figure 2. Schematic of Atmospheric Motion Vector optical flow 
derivation.  In practice, this is performed twice, forwards (like that 
shown above) and backwards in time, and the two AMVs are used for 
quality control and then averaged to produce a final motion estimate 
(Adapted from Bresky et al. 2012).

The Optical Flow Retrieval Step
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This approach fails if Any one of these happen

*Operational AMVs are VERY GOOD at finding/pruning bad targets, final winds product is “Sparse”, meaning only 
some pixels have wind solutions.  Dense motions must account for these difficult to track regions! 4



• OCTANE: Optical flow Code for Tracking, Atmospheric motion vector, and Nowcasting Experiments 
(Developed under ONR funding from “MURI” & “RAM-HORNS”; PI: Steve Miller) (also see Apke and Mecikalski 2021)

• Inputs: Satellite image sequences/pairs (NetCDF), Outputs: Dense optical flow displacements (NetCDF)

• Output can be x- and y- pixel displacements or navigated zonal/meridional motion (m s-1)

• Includes GPU-accelerated variational optical flow retrieval algorithms, (e.g. Zimmer et al. 2011):

𝐸 𝑼 = Ω
𝜌𝑑 𝐵𝐶 + 𝛾 𝐺𝐶 + 𝛼 𝜌𝑠 𝑆𝐶 𝑑𝒙

BC = Brightness Constancy -> 𝐶1 𝐼 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼 𝒙, 𝑡 2

GC = Gradient Constancy -> C2(𝐼𝑥 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼𝑥 𝒙, 𝑡 ) 2 +

C3(𝐼𝑦 𝒙 + 𝑼, 𝑡 + ∆𝑡 − 𝐼𝑦 𝒙, 𝑡 )
2
, 𝛾 = weight of GC

SC = Smoothness Constraint -> |∇𝑢|2 + |∇𝑣|2, 𝛼 = weight of SC

The 𝜌𝑑 𝑥2 = 𝜌𝑠(𝑥
2) = 𝑥2 + 𝜀2 are “Robust Functions”, and C1= 

1

∇𝐼 2+𝜖
and C2=

1

∇𝐼𝑥
2+𝜖

and C3 =
1

∇𝐼𝑦
2
+𝜖

• Variational OF retrieval uses intuitive methods to track ordinarily difficult regions, such as those without 
texture, or with illumination changes, deformations, and discontinuities

• Constants/Constraints can be modified for different applications

• GPU acceleration enables practical real time computation

• Code for OCTANE is now on GITHUB: https://github.com/JasonApke/OCTANE

Mitigates motion caused by 
illumination changes & 
preserves discontinuities

𝐼 → 𝐼𝑚𝑎𝑔𝑒, 𝑼 → 𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝐹𝑙𝑜𝑤 𝑉𝑒𝑐𝑡𝑜𝑟, 𝑡 → 𝑡𝑖𝑚𝑒
𝑥 → 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟, 𝐼𝑥,𝑦 → 𝑖𝑚𝑎𝑔𝑒 𝑥, 𝑦 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
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https://github.com/JasonApke/OCTANE


Optical Flow

Figure 3. GOES-17 Ch-02 0.64 μm imagery plotted with 1-
min DOF, shown with the past (future) track of the NASA 
DC-8 carrying the DAWN wind profiler in pink (pink dash). 

• OCTANE approaches are tuned with ancillary samples of 
tropospheric winds (e.g. lidar wind profilers)

• Winds are benchmarked by filling columns along the Lidar 
track with estimates from AMV products
• Challenges both tracking AND height assignment!
• Encourages dense multi-layer winds solutions
• Benchmarks techniques with one clean score (Root 

mean square vector difference)
Figure 2. (Left) Wind profiling Lidar (DAWN) Signal-to-noise ratio and cloud-top heights 
(shading/green circles) compared to DOF/NOAA Enterprise cloud-top heights (CLAVRx) along 
the track of the NASA DC-8. (Right) DOF wind estimate improvement (m s-1) over a model 
background guess of the wind profile, with improvements (deteriorations) shown in blue (red).

Bedka, K. M., Nehrir, A. R., Kavaya, M., Barton-Grimley, R., Beaubien, M., Carroll, B., 

Collins, J., Cooney, J., Emmitt, G. D., Greco, S., Kooi, S., Lee, T., Liu, Z., Rodier, S., & 

Skofronick-Jackson, G. (2021). Airborne lidar observations of wind, water vapor, 

and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test 

flight campaign. Atmospheric Measurement Techniques, 14(6), 4305–4334. 

https://doi.org/10.5194/amt-14-4305-2021 6



Apke, J. M., Y.-J. Noh, and K. Bedka, 2022: Comparison of Optical Flow Derivation Techniques for Retrieving Tropospheric Winds from Satellite Image Sequences. J Atmos Ocean Technol, 39, 2005–
2021, https://doi.org/10.1175/jtech-d-22-0057.1.

• OCTANE (abbreviated VOF here) 
produces lower errors than patch 
matching (PM), used in 
operational AMVs), in Low 
Texture (LT) and multi-layer 
(ML) Targets

• Benchmarking results indicate 
OCTANE can be used to resolve 
winds where operational AMVs 
break down***

Low Texture 
Targets

Multi Cloud-
Layer Targets

*Note Lower 
Errors in Winds 
w/ OCTANE*

Figure 4. (Top left) Benchmark 
sample of AMVs and wind-
profiling lidar truth winds by 
height and by channel used. 
(Top Right) Root mean squared 
vector difference for AMVs 
derived with different methods 
and imager channels. (Bottom 
left) Vector differences of AMVs 
derived with 0.64 μm imagery 
separated by high and low 
texture (HT and LT), and 
(Bottom right) single- and 
multi-layer (SL and ML) cloud 
targets.
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Barbs (Conventional) Color Shaded Speed/Direction Speed/Imagery Blends (Exp.)

Advantage:
Interpretability
Disadvantages:
Cannot highlight dense motions
Noisy with slower motions

Advantages:
Highlights dense 
motions, edges, and 
directional changes
Disadvantages:
Ambiguous for wind 
speeds

Advantages:
Highlights dense speeds and features 
producing motions, Interpretability
Disadvantages:
Ambiguous for direction

Every 60 pxEvery 15 px Hue/Sat.Hue/Sat./Val.

*Produced in NRT on CIRA SLIDER, uses 
0.64 μm  during the day, 10.3 μm at night*
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DOF Speed/Visible “Sandwich”

Figure 4. (Left) GOES-16 Day-Cloud Phase enhancement (from 0.64, 1.6, and 10.3 μm imagery) shown with (Right) Dense optical flow colored by wind speed with 
brightness indicating the 0.64 μm reflectance (The Speed Sandwich product). 

Day-Cloud Phase Distinction RGB (JMA)

EF-3 Tornado in Little Rock, 
AR @ 1915 UTC

18 Z Sounding from Little Rock, AR (Red Star)
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• In some examples w/ 
strong low-level shear, 
OCTANE motions can 
highlight regions of 
mesoscale ascent

• Notice the faster motions 
that formed in advance 
of the boundary several 
hours in advance of CI!

• Notice that it sees the 
motion acceleration 
beneath thin cirrus!
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Day-Cloud Phase Distinction RGB (JMA) DOF Speed/Visible “Sandwich”

Figure 5. (Left) GOES-16 Day-Cloud Phase enhancement (from 0.64, 1.6, and 10.3 μm imagery) shown with (Right) Dense optical flow colored by wind speed with 
brightness indicating the 0.64 μm reflectance (The Speed Sandwich product). 

12 Z Sounding from North Platte, NE (Red Star)
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• OCTANE provides noteworthy 
capabilities for difficult to track scenes, 
but still has limited performance in low 
texture and transparent motions, and 
motions w/ very large displacements

• It is also challenging to properly height 
assign regularized dense OF motions

• One possible solution to further enhance 
OF retrieval is via AI/Machine Learning

• CIRA is working on the Artificial 
Intelligence-based Retrieval of Winds 
using OpticaL Flow (AIRWOLF) project 
to develop such systems

Parameter Setting

Truth Dataset OCTANE x/y 
displacements

Inputs 2 1-min 0.64 μm images

Training Sample Size 2432 Image Pairs

Training Times Aug-Sept 2022

Training Interval Pairs every 5-min

Testing Sample Size 512 Image Pairs

ML Library PyTorch

Loss Function L1 Flow Distance/EPE

Optimizer Adam

Learning Rate 1 x 10-4

Batch Size 128

Epochs (lvl 1 / lvl 2 / lvl 3) 4000 / 250 / 250

Table 1. AIRWOLF development parameter settings.
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Conv2D 7x7 S-1, 
Leaky RELU

4 32 64 32 16

Conv2DTrans 
7x7 S-1, Leaky 
RELU

G0

Source of Images: Ranjan, A. and M. J. Black, 2017: Optical Flow estimation using a spatial pyramid network. IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR). https://arxiv.org/pdf/1611.00850.pdf

Key:
G -> CNNs
d -> down-sampling
u -> up-sampling
w -> warping
V -> flow at each 
level
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• AIRWOLF when trained on 
OCTANE vectors shows a 
close correspondence to 
more computationally 
expensive optical flow

• Less sensitive to thin cirrus 
(may be useful for some 
applications)

• Does not resolve mesoscale 
motions atop convection very 
well so far

• Largest differences seen near 
cloud edges/boundaries and 
near cirrus
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Figure 6. (Left) Speed Sandwich product computed using the AIRWOLF retrieved motions compared to (Right) computations using the OCTANE product shown over 
strong convection in southern MS/eastern LA on 16 Feb 2023.
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• This presentation highlighted the OCTANE and AIRWOLF products for inferring winds in the 
atmosphere, which offer accurate tracking where operational AMVs break down

• Overviewed simple methods for plotting dense winds with satellite imagery

• Highlighted how speed/imagery blends can be useful for convective forecasting

Future Work:

• OCTANE winds products are now in AWIPS, will be demonstrated at the 2023 Hazardous Weather 
Testbed and evaluated by forecasters

• OCTANE cloud-top divergence products are also under development to better highlight mature 
thunderstorm updrafts

• AIRWOLF development will continue, with efforts to improve outputs/reduce noise, including increasing 
the training data size, modifying the architecture, and testing different loss functions to better penalize 
cloud motions

• AIRWOLF will be benchmarked using the method within Apke et al. (2022)

• Plans are underway to expand AIRWOLF to different channels and lower temporal resolution imagery, 
along with testing different truth datasets (e.g. synthetic clouds)
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For additional questions, contact:

Jason Apke

jason.apke@colostate.edu

3925A West Laporte Ave. Fort Collins, CO 80523-1375

Realtime on SLIDERPresentation Here
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