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Introduction

Connecting Models and Observations

- . . GOES-16 VIS/OF Mar 13, 2023 16:30:30 UTC
Retrieval of brightness motions, or the oW 770W | 760°W  TSOW 7AW 730

Optical Flow, is a fundamental step in
Atmospheric Motion Vector (AMV)
derivation

* Optical Flow Definition:

“The distribution of apparent velocities
of movement of brightness patterns in
an image” (Horn and Schunck 1981)

* Rapid scanning enables novel
techniques to retrieve “Dense” (Every
Image Pixel) Optical Flow for most
cloud/water vapor motions

NN NS
e

 Like a different channel on an imager, \ SN
optical flow provides unique context of L\h_\\.__\n.»& “L\“-Wl\‘—

an image scene for a variety of users | PRl T OW VOO B lkLL\h—L\h—s\\-n\-;\\»&,ww
> NWP A 77.0°W 76.0°W 75.0°W 8 73.0°W

> For r
o eC?Ste > : Figure 1. GOES-16 Ch-02 0.64 pm imagery plotted with optical flow winds (white
» Machine Leamlng/ Al barbs) over a low-pressure system of the coast of VA/NC.
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@ptical Elow: z Winds/ANs!

P>
Atmospheric Motion Vectors (AMVs) are a

retrieval of atmospheric winds using cloud and
water-vapor drift motions

They use a 5-step “Patch Matching” method
1. Identify target in VIS/IR/WV Imagery

2. Height Assign target with Numerical
Weather Prediction (NWP) Fields to
Forecast Displacement | gyl C__ _ SOCDIITITEE

. 1 1 -> Brightness Coun
3. Identify the target in next image w/ least- LI

x -> Element

Search Region

Match Region
Cloud at Time 2

squares/cross-correlation 7>l
GOES-R algorithm clusters tracked results Target Region
over a larger target area Match = min ( D (learger 0 9) - Isearch(x’y))z)
4. Navigate results from pixel displacements e .
tom's” / Refine Height Assignment e S M

5 Implement qu allty COHtFOl to prune results shown above) and backwards in time, and the two AMVs are used for

quality control and then averaged to produce a final motion estimate

or prOVide meaningful error infO (Adapted from Bresky et al. 2012).




Search Region

X Match Region

I -> Brightness Count
x -> Element Texture-less
y -> Line

Target Region

2
Match = min ( z (Itarget (x, y) — Isearch(x: y)) )

X,y

This approach fails if Any one of these happen

*Operational AMVs are VERY GOOD at finding/pruning bad targets, final winds product is “Sparse”, meaning only
some pixels have wind solutions. Dense motions must account for these difficult to track regions!



Connecting Models and Observa tions

OCTANE: Optical flow Code for Tracking, Atmospheric motion vector, and Nowcasting Experiments
(Developed under ONR funding from “MURI” & “RAM-HORNS?”; PI: Steve Miller) (aiso see Apke and Mecikalski 2021)

Inputs: Satellite image sequences/pairs (NetCDF), Outputs: Dense optical flow displacements (NetCDF)
Output can be x- and y- pixel displacements or navigated zonal/meridional motion (m s)

Includes GPU-accelerated variational optical flow retrieval algorithms, (e.g. Zimmer et al. 2011):

EW) = ffﬂ pa(BC +vy GC) + a ps(SC)dx I - Image, U — Optical Flow Vector,t — time

BC = Brightness Constancy -> C; |[[(x + U, t + At) — I(x, t)|? x — location vector, I, — image x,y derivative
GC = Gradient Constancy ->|C, (I, (x + U, t + At) — L.(x,t))|* +

|Ca (L, (x + U, t + At) — L, (x, t))|2, y = weight of GC
SC = Smoothness Constraint -> |Vu|* + |Vv|?, a = weight of SC

The p;(x?) = ps(x?) = Vx?2 + £2 are “Robust Functions”, and C = = I2 and C, —_ |2 and C; = —|w j|L2
y +€

Variational OF retrieval uses intuitive methods to track ordinarily difficult regions, such as those without
texture, or with illumination changes, deformations, and discontinuities

Constants/Constraints can be modified for different applications

GPU acceleration enables practical real time computation
Code for OCTANE is now on GITHUB: https://github.com/JasonApke/ OCTANE



https://github.com/JasonApke/OCTANE

Connecting Models and Observations

* OCTANE approaches are tuned with ancillary samples of
tropospheric winds (e.g. lidar wind profilers)
* Winds are benchmarked by filling columns along the Lidar
track with estimates from AMV products
* Challenges both tracking AND height assignment!
* Encourages dense multi-layer winds solutions
» Benchmarks techniques with one clean score (Root
mean square vector difference)
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20190423 Profile RMSVD = 2.8146, RMSVD of OF Winds: 2.3921
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Figure 3. GOES-17 Ch-02 0.64 pm imagery plotted with 1-
min DOF, shown with the past (future) track of the NASA
DC-8 carrying the DAWN wind profiler in pink (pink dash).
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Bedka, K. M., Nehrir, A. R., Kavaya, M., Barton-Grimley, R., Beaubien, M., Carroll, B.,
Collins, J., Cooney, J., Emmitt, G. D., Greco, S., Kooi, S., Lee, T., Liu, Z., Rodier, S., &
Skofronick-Jackson, G. (2021). Airborne lidar observations of wind, water vapor,
and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test
0.00 flight campaign. Atmospheric Measurement Techniques, 14(6), 4305—4334.
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Histogram of AMV vs. DAWN Winds by Height
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profiling lidar truth winds by Errors in Winds E 3.9 ,ul:\ (\(/OF))
height and by channel used. 201 w/ OCTANE* 3 3.9 um (PM)
(Top Right) Root mean squared ~ _ B 6.9 um (VOF)
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(Bottom right) single- and
multi-layer (SL and ML) cloud
targets.

== All AMVs
1 —— All DAWN Obs.

10° 10t 102 103 104 10° 4/23 4/25 4/27 4/29 Total
Count Case Study

0.64 um Performance by Texture

OCTANE (abbreviated VOF here) [t Low Texture o Multi Cloud-
produces lower errors than patch Targets ; Layer Targets

matching (PM), used in ° 1\ 81 _‘k—
operational AMVs), in Low | —/—_Y

Texture (LT) and multi-layer
(ML) Targets

* Benchmarking results indicate
OCTANE can be used to resolve
winds where operational AMVs
break down***

0.64 um Performance by Cloud Layers

Vector Difference Magnitude (m s™1)
Vector Difference Magnitude (m s™1)

VOF HT VOF LT PM HT PM LT VOF SL VOF ML PM SL PM ML

Sample Sample

Apke, J. M., Y.-]. Noh, and K. Bedka, 2022: Comparison of Optical Flow Derivation Techniques for Retrieving Tropospheric Winds from Satellite Image Sequences. ] Atmos Ocean Technol, 39, 2005—
2021, https://doi.org/10.1175/jtech-d-22-0057.1. 7



Barbs (Conventional)

GOES-16 VIS/OF Mar 13, 2023 16:30:30 UTC
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Advantage:
Interpretability
Disadvantages:
Cannot highlight dense motions
Noisy with slower motions

Color Shaded Speed/Direction

ow oW oW TON o Taow . Tow 720w *Produced in NRT on CIRA SLIDER, uses
)
St : 0.64 pm during the day, 10.3 pm at night*
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18 Z Sounding from Little Rock, AR (Red Star)
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In some examples w/
strong low-level shear,
OCTANE motions can
highlight regions of
mesoscale ascent
Notice the faster motions
that formed in advance
of the boundary several
hours in advance of CI!
Notice that it sees the
motion acceleration
beneath thin cirrus!

GOES-16 Speed Sandwich Mar 23, 2023 16:36:57 UTC
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12 Z Sounding from North Platte, NE (Red Star)

er

Morman, Oklahoma

DOF Speed/Visible “Sandwich”

GOES-16 Speed Sandwich May 05, 2023 13:06:57 UTC

102.0°wW 101.5°wW 101.0°wW 100.5°W 100.0°W 99.5°W

99.0°W

102.0°W 101.5°wW 101.0°W 100.5°W 100.0°W 99.5°W

40 60
Speed (m s~ 1)

99.0°W

11



Connecting Models and Observa tions

Table 1. AIRWOLF development parameter settings.

Parameter Setting

OCTANE provides noteworthy
capabilities for difficult to track scenes,

but still has limited performance in low [kt gg;‘:ifn’;gts
texture and transparent motions, and — » 1-min 0.64 pm images
motions W/ very 1arge displacements Training Sample Size 2432 Image Pairs
It is also challenging to properly height Training Times Aug-Sept 2022
assign regularized dense OF motions Training Interval Pairs every 5-min
One possible solution to further enhance [kt 512 Image Fairs
OF retrieval is via Al/Machine Learning ML lemry, PyTorch |

Loss Function L1 Flow Distance/EPE
CIRA is working on the Artificial Optimizer Adam
Intelligence-based Retrieval of Winds s it X 1074

using Optical. Flow (AIRWOLF) project Biawe 128
to develop such systems Epochs (Wl1/ W2 /1Ivl3) 4000 /250 / 250
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Conv2D 7x7 §-1, Conv2DTrans

Leaky RELU 7x7 S-1, Leaky
RELU

G -> CNNs
d -> down-sampling
u -> up-sampling
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Figure 1. Inference in a 3-Level Pyramid Network [15]: The network G computes the residual flow vg at the highest level of the pyramid
(smallest image) using the low resolution images {Ij, I3}. At each pyramid level, the network GG}, computes a residual flow vy which
propagates to each of the next lower levels of the pyramid in turn, to finally obtain the flow V2 at the highest resolution.

Source of Images: Ranjan, A. and M. J. Black, 2017: Optical Flow estimation using a spatial pyramid network. /EEE Conference on Computer
Vision and Pattern Recognition (CVPR). https://arxiv.org/pdf/1611.00850.pdf 3



AIRWOLF Test, GOES-16 0.64-um Feb 26, 2023 22:01:05 UTC

AIRWOLF when trained on
OCTANE vectors shows a
close correspondence to
more computationally
expensive optical flow

U Truth (px/min)
U Model (px/min)

Less sensitive to thin cirrus
(may be useful for some 750
applications)

Does not resolve mesoscale
motions atop convection very
well so far

LA

I

VDM (px/min)

Largest differences seen near
cloud edges/boundaries and
near cirrus
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AIRWOLF

AIRWOLF Test, GOES-16 Speed Sandwich Feb 16, 2023 16:01:02 UTC
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Connecting Models and Observations

This presentation highlighted the OCTANE and AIRWOLF products for inferring winds in the
atmosphere, which offer accurate tracking where operational AMVs break down

Overviewed simple methods for plotting dense winds with satellite imagery

Highlighted how speed/imagery blends can be useful for convective forecasting

Future Work:

OCTANE winds products are now in AWIPS, will be demonstrated at the 2023 Hazardous Weather
Testbed and evaluated by forecasters

OCTANE cloud-top divergence products are also under development to better highlight mature
thunderstorm updrafts

AIRWOLF development will continue, with efforts to improve outputs/reduce noise, including increasing
the training data size, modifying the architecture, and testing different loss functions to better penalize
cloud motions

AIRWOLF will be benchmarked using the method within Apke et al. (2022)

Plans are underway to expand AIRWOLF to different channels and lower temporal resolution imagery,
along with testing different truth datasets (e.g. synthetic clouds)

16
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For additional questions, contact:
Jason Apke

jason.apke@colostate.edu

3925A West Laporte Ave. Fort Collins, CO 80523-1375

//

Ser

0%
Sorighiafiaiet
‘ence & Techn®®

18


mailto:jason.apke@colostate.edu

