

THE EUMETSAT SUSTAINABLE PRODUCTION OF ATMOSPHERIC MOTION VECTORS CLIMATE DATA RECORDs

M. Doutriaux Boucher, A. Lattanzio, R. Huckle, O. Sus, M. Grant, R. Borde and J. Schulz

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)

Atmospheric motion vector – AMV – for climate

- AMVs are assimilated in weather and climate models and have a significant impact on the forecast skills and quality of the climate reanalysis
- AMV CDR can also be used for climate understanding and monitoring (e.g. monsoon or jet stream evolution)
- AMV is one of the 40 GCOS ECVs that can be retrieved from satellite, it is the variable called atmospheric upper-air wind speed and direction
- Despite its importance, there are only a few AMV climate data records (4 existing and 7 planned) in the ECV inventory database (<u>https://climatemonitoring.info/ecvinventory</u>) from the joint CEOS-CGMS WGClimate

Datasets (Existing) Datasets (Planned) existing									
ECV Inventory v4.10									
Show All	 entries 						Search:	Upper-air	win
RecordID 🔶	Details 🔶	Domain 🍦	ECVName	\Rightarrow	ECVProduct	\Rightarrow	PhysQuantity	🕨 Status 🔶	ResponsibleOrg 🔶
10702	ø	Atmosphere	Wind speed and direction (upper-air)		Upper-air wind retrievals		Upper-air wind speed and direction	Existing	JMA
10956	Q	Atmosphere	Wind speed and direction (upper-air)		Upper-air wind retrievals		Upper-air wind speed and direction	Existing	EUMETSAT
11976	Q	Atmosphere	Wind speed and direction (upper-air)		Upper-air wind retrievals		Upper-air wind speed and direction	Existing	EUMETSAT
11978	Q	Atmosphere	Wind speed and direction (upper-air)		Upper-air wind retrievals		Upper-air wind speed and direction	Existing	EUMETSAT
Showing 1 to 4 of 4 entries (filtered from 870 total entries) Previous 1 Next 2023-05-03 09:41:57 2023-05-03 09:41:57 1 Next									

Zerminology Near Real Time versus Climate Data Record

Near Real Time		Reprocessing / climate	
	Measurement 🔗 🚿 💷		
Level 0	electric signal (voltage, count) = count		
Level 1 / level 1a	First calibration/geolocation radiance / brightness temperature backscatter coeff / bending angles		
Level 1.5 / level 1b/1c	Refinements of calibration/geolocation/rectification radiance + latitude + longitude + time	Fundamental Data Record (FDR)/ Fundamental Climate Data Record (FCDR)	
	Retrieval/algorithm + auxiliary data – model	Thematic Climate Data Record (TCDR)	
Level 2	geophysical product: e.g. AMV		
Level 3	Temporal and spatial averaged (e.g.grided)		
16 th IWWG, Montreal, Canada, 6-12 May 2023			

A complete sustainable production at EUMETSAT

Reprocessing CDR – the main reasons to do it

Meteosat GEO AMV Climate Data Record at 0°

- We wanted a seamless production of AMVs from Meteosat first and second generation: we derive AMVs using only the 2 MVIRI and SEVIRI 'common' channels IR10.8 and WV6.2. The full spectral capability of SEVIRI is not utilised to estimate the wind vectors altitude.
- Input data: Meteosat images

First generation MVIRI (Meteosat 1-7)	Second generation SEVIRI (Metosat 8-11)
2 channels	12 channels
30 minutes	15 minutes
5km	3km

- Cloud height information
 - Cloud mask CMSAF Cloud Fractional Cover (DOI: 10.5676/EUM_SAF_CM/CFC METEOSAT/V001)
 - CTH for each pixel: EBBT + IR/WV ratio for semi transparent clouds + low level inversion
- CCC method used for both MVIRI and SEVIRI
- Model information: ERA-interim

CDR AMVs for 2 channels: - IR1 0.8

About 10000 SEVIRI winds/final vectors per hour are detected

Meteosat IR GEO AMV climate data record at 0°

- A unique Climate Data Record of geostationary AMV using the operational EUMETSAT algorithm adapted for time series processing;
- First AMV CDR based on cross-calibrated geostationary radiances;
- 38 years (1982–2019) years of Atmospheric Motion Vectors from 10 Meteosat satellites.

GEO AMV, next step: SEVIRI AMVs using OCA

- The current AMV CDR is homogeneous but only used 2 channels. This is perfect for usage in climate application.
- The full spectral capability of SEVIRI was not utilised to estimate the wind vectors altitude.
- \rightarrow A new MSG/SEVIRI AMV using the information from the 12 channels is in preparation. This will allow a better height assignment and microphysical properties.
- →OCA as input for the cloud top height + microphysical properties (phase, optical thickness and effective radius)

www.eumetsat.int

CDR AMV from LEO/polar satellites

LEO satellites ~ 800 km

AVHRR on Metop + NOAAs

Over the polar areas using one single satellite

Global using **2** or more LEO satellites Metop-A/-B (limited to 2013-2018)

41 years of NOAA and Metop **AVHRR FDR** / DOI: 10.15770/EUM_SEC_CLM_0060

LAC resolution: 1050mx1050m at nadir

GAC resolution

10

LEO

41 years of NOAA and Metop GAC AMVs

Climate Change Service

12 years of LAC AVHRR AMVs

Daily average speed (m/s)

To get data browse the EUMETSAT data store.

links: https://data.eumetsat.int/ and our old PN https://navigator.eumetsat.int/,

 \rightarrow You need to register to access to the EUMETSAT datastore: <u>https://eoportal.eumetsat.int/</u>

-06	Product	Release: period	Coverage	Reference doi	
09	MSG AMV 0°	R1: 2004-2012	lat 60°-60°, lon 60-60°	10.15770/EUM_SEC_CLM_006	
A-12 SP-E11 ISP-F12 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	MSG/MFG AMV 0°	R2: 1982- 2019	lat 60°-60°, lon 60-60°	10.15770/EUM_SEC_CLM_0020	
	MSG/MFG AMV IODC (will be released in 2023)	R1: 1998 - 2019	IODC ssp 63°, 57°, and 41.5°	10.15770/EUM_SEC_CLM_0022+ EUM_SEC_CLM_0021 EUM_SEC_CLM_0054 : in Q2 2023	
	LAC Metop-A and -B AVHRR AMV EUMETSAT algo	R1: 2007-2014	Poles: lat > 40°	10.15770/EUM_SEC_CLM_0016	
FY-3A NOAA-19 FY-3B	LAC Metop-A and -B AVHRR AMV CIMSS algo	R1: 2007-2014	Poles: lat > 65°	10.15770/EUM_SEC_CLM_0040	
PY-3C	LAC Metop-A and -B AVHRR single	R2: 2007-2017	Poles: lat > 40°	10.15770/EUM_SEC_CLM_0037	
	LAC Metop-A/B B/A AVHRR dual	R1: 2013-2017	Entire globe	10.15770/EUM_SEC_CLM_0038	
	GAC from 13 AVHRR	R1: 1979-2012	Poles: lat > 40°	10.15770/EUM_SEC_CLM_0055	
	GAC from 16 AVHRR	R2: 1979-2019	Poles: lat > 40°	10.15770/EUM_SEC_CLM_0056	

2030

Geostationary

1970

1980

Meteosat-2

Meteosat-3

200

2010

Meteosat-1

2020

A complete coverage combining all CDRs – to analyse wind pattern

2 50

'Easy' to mix GEO AMVs but it requires more attention to mix with LEO

Application: analysing climate pattern – jet stream

www.eumetsat.int

GEO 0° AMV CDR from Meteosat observations: speed, direction and height with associated quality indicator of winds covering the period 1981-2019

16th IWWG, Montreal, Canada, 6-12 May 2023

See: https://www.eumetsat.int/polar-jet-analysis-over-atlantic-ocean-europe

Application: analysing climate pattern Indian monsoon

GEO AMV CDR IODC Release 1 will be released in 2023. It includes three Meteosat satellites (M5, M7 and M8) over three close locations over the Indian Ocean from 1998 to 2019.

Averaged meridional component (\vec{v}) of the low level AMVs 1988 – 2009 from Meteosat IR MVIRI and SEVIRI measurements – speed > 5m/s and QI > 60

Summer

Winter

16th IWWG, Montreal, Canada, 6-12 May 2023

www.eumetsat.int

C3S311c – early era satellite data rescue

Early Satellite Data Rescue (pre-2000 : to be completed (inventory activity))

From P. Prunet et al. – C3S 311c

Potential for Atmospheric Motion Vectors (AMVs) in the 1970s

- As part of its C3S2.0 activities EUMETSAT performs a feasibility study to assess fillet change of the study of Temperature-Humidity Infrared Radiometer imager data to retrieve AMVs in the 1970s. If feasible, AMV CDR will be produced for future C3S global reanalysis.
 - These new AMVs would represent an important addition to global reanalyses, given the scarce in situ upper-air observing network over the polar regions and the general paucity of satellite data prior to 1979.

THIR was operating day and night.

- It had two channels:
 - Water vapour: 6.7 μm (6.5 μm 7.0 μm), resolution: 22km at ssp not used for AMVs retrieval
 - Infrared: 11.5 μm (10.5 μm 12.5 μm), resolution: 8km (Nimbus 4, 5 and 6), 6.7km (Nimbus 7)

	Start date	End date	Number of files
Nimbus 4	13 April 1970	31 March 1971	1743
Nimbus 5	19 December 1972	1 March 1975	2414
Nimbus 6	18 June 1975	11 August 1977	461
Nimbus 7	30 October 1978	13 May 1985	30370

THIR radiometer from Hwang, NIMBUS 7 THIR data user's guide, NASA/Goddard Space Flight Center, 1982.

Potential for Atmospheric Motion Vectors (AMVs) in the 1970s

Thanks to THIR large swath it should be possible to retrieve AMV globally from 2 successive THIR orbits

 \bigcirc Chang Apr-Dec 1970 and 1979 TIROS-N: number of AMVs 1e6 0.8 1.2 0.6 1.0 0.2 0.4

Daily average for AMV with a QI > 80

^{.9}

Histograms for number of AMVs and speed for NIMBUS 4 and TIRSO-N

NIMBUS 4 AMVs numbers and speed as Hovmoeller plot (QI>80)

21

AMV – ERAinterim (speed bias)

Conclusion

- EUMETSAT CDR production is based on the long history of EUMETSAT NRT AMVs software
- Climate data record are now produced at EUMETSAT from imagers onboard both LEO and GEO satellites
- CDR have been extensively validated and are of good quality to be used for the production of reanalysis and climate analyses. We have demonstrate that AMV CDR can play a role in analyzing climate pattern and in assessing their evolution
- Thanks to the recent production of reprocessed Fundamental Data Records of early imaging satellites by C3S, feasibility studies are ongoing for extending the CDR AMVs prior to 1980. The AMV from early era satellite era pre-1980 are very important for reanalyses.
 - AMV from THIR (on-board Nimbus 4,5, 6 and 7) is in development and testing at EUMETSAT
 - The temporal coverage is sparse for Nimbus 4 to Nimbus 6
 - The first tests show that the difference to TIROS-N and reanalyses are quite large for Nimbus 4
 - Feasibility study to derive AMV from earlier instruments will start next year (HRIR Nimbus 1-3, 1964-1972; SR NOAA 1-5 1970-1979, and VHRR NOAA 2-5, 1972-1979)
- New global homogeneous GEO AMV CDR using the upcoming GEOring in 2027
- The sustained production of CDR will continue with the new generation of instruments to sustain the climate series

Thank you ! Merci !

Question?