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Overall Objective: Provide NOAA NESDIS with: 
1. DWL modeling and performance prediction tools,
2. practical mission systems information, and
3. experience-based technology assessments 
valuable for developing 3D-Wind requirements and guiding decisions for 
next-generation operational weather architectures. 



Feasibility of Space-Based Atmospheric Lidar
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§ First (only) DWL in space
§ Launched August 2018. Mission 

ended April 30, 2023.
§ Measured winds from aerosol and 

molecular lidar returns (full UT/LS) 
w/ 355 nm wavelength laser

§ Data were operationally assimilated
§ Follow on under study

NASA/Ball CALIPSO Aerosol Lidar ESA’s Aeolus Doppler Wind Lidar

§ Launched April 2006 over 17 
years on orbit 

§ Still operating & still providing 
valuable data.  

§ In its last year…
§ Below: Hunga Tonga volcanic 

plume, 16-Jan-2022 

16-Jan-2022  ~15:40Z

31 km

532 nm Attenuated Backscatter
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Doppler wind lidar techniques (+ High Spectral Resolution Lidar)
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Atmospheric lidar return (backscatter)
• Elastic scatter aerosol/cloud (“Mie”) returns – mostly lower troposphere
– Narrow bandwidth (< 100 MHz FWHM)
– Fewest opportunities - mostly found in the lower troposphere and cloud layers

• Doppler broadened molecular (Rayleigh-Brillouin) returns
– Wide bandwidth (~1-3 GHz FWHM, based on wavelength, atmospheric temperature, pressure, and 

composition)
– Molecules are consistently available (best coverage)
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DWL Systems

SIxteenth International Winds Workshop - Montréal, Canada, May 2023

A

M Molecular: UT/LS

Aerosol: LT/clouds

Doppler Wind Lidars

Heterodyne Detection (HD)“Direct” Detection (DD)

Double-Edge 
Fabry Perot

Fringe Imaging FP/ 
Fizeau/Michelson

Mach Zehnder
A

A M A M AM

LaRC
DAWN

~2 μm,  (1.6 μm, ~10
μm)NOAA OAR, Halo, 

Leosphere (Vaisala),

ESA’s Aeolus
DLR A2D

GSFC 
TWiLiTE

UPMC, France: LNG

Ball: ATHENA-OAWL
Ball: Nested OAWL

StratOAWL

1064 nm, 532 nm    (CALIPSO) & 355 nm

6



Project Outline

• Atmospheric Profiles (G5NR):
– Backscatter: bp(l,z) - particulates/aerosols/clouds and bm(l,z) - Rayleigh/molecular
– Extinction coefficients (ap(l,z) and am(l,z)
– U, V, W

• System Performance Radiometric Modeling: 
– Integrate profiles with radiometric math models 

(LRMMs) based on the validated CALIPSO LRMM
– Build performance models based on literature 

for the different lidar systems 
– Provide for variable inputs for the system and 

mission parameters.
• System Comparative Assessments
• Technology Readiness Assessments
• System Cost Impacts
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Task 1: GMAO-GEOS5 Nature Run Aerosol Profiles
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Log10 of Aerosol Backscatter (km-1sr-1) Aerosol Extinction (km-1)

Particulate Backscatter and Extinction from GMAO
(Plus cloud liquid and cloud ice “tau” parameters)
24 hrs/day, 5+ days/month, all of 2006.  
Example 1-hr for 532 nm wavelength, below



Task 1: GMAO-GEOS5 Nature Run Wind speeds
Collecting U, V, W at SSO orbit locations from G5NR via OpenDAP



Preliminary analysis of GMAO profiles

• Analysis tools allow for assessment of the G5NR variability vs. time, latitude, wavelength, etc.  

• Below: median aerosol backscatter for 2006 vs. altitude and wavelength

over the poles near the equator
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Task 2: Lidar Performance Modeling
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Lidar Sensor Technology Example Sensor Name/Lead Signal Wavelength

Double Edge Fabry Perot Aeolus / ESA
TWiLiTE / NASAGSFC Rayleigh 355 nm

Fringe Imaging Fizeau Aeolus / ESA Mie 355 nm

QMZI OAWL-US / Ball
LNG-France / UPMC

Mie Any, 1064 or 532 for highest TRL
Rayleigh 355 nm

Heterodyne Detection HRDL, MicroDop / NOAA CSL
DAWN, AWP/ NASA LaRC Mie 1600 nm, 2053 nm



GOING BEYOND “BACK OF THE ENVELOPE” ESTIMATES

• Impacts of background light (and filtering 
to mitigate it)

• Aerosol and molecular signals
• Field of View (telescope to interferometer) 

& Tx/Rx alignment
• Eye-safety requirements
• Photon counting capability

• Impacts of refractive turbulence & speckle
• Impacts of telescope wavefront errors
• On-orbit bistatic “tilt” impacts
• Field of view & Tx/Rx alignment 

Heterodyne Detection Direct Detection
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In addition to using the wavelength-dependent backscatter and extinction 
values from GMAO’s G5-NatureRun, we’re including modules for the following…



Preview:  Generic DWL Uncertainty Simulations with G5NR Inputs

Satellite Meteorology Conference - AMS Collective Madison Meeting - August 2022

532 nm Particulate-Mie 355 nm Molecular-Rayleigh



Summary & Conclusions

• Next generation space-based Doppler wind lidar will be building 
on AMVs – so we need to understand how well the different 
systems can perform in different parts of the atmosphere.

• Developing needed tools to understand performance, cost risks, 
and potential value of proposed instruments

• GMAO’s G5NR aerosol backscatter and extinction products are 
highly valuable for our modeling.

• Validated CALIPSO LRMM model connected with peer-reviewed 
performance models for the various types of wind lidar.

• Lots of results coming by end of summer…

• Many thanks to the NOAA/NESDIS Joint Venture Partnership 
Program and GMAO for their support.  
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Extras
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Lidar Performance Modeling – Heterodyne Detection
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Lidar Performance Modeling – Direct Detection
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BENEFITS OF SPACE-BASED DOPPLER WIND LIDAR 

• Specific science questions

• Research to update model physics
– Focused coverage 
– Variable scales
– PBL emphasis (turbulence)
– SMD ESD and center-driven science

• Modeling (pre-operational)

• Applications

• Forecast model initialization 
– Global coverage
– Variable scales (model grids)
– Vertically resolved
– Known accuracy/precision

• Full tropospheric coverage – winds 
from Aerosol & Molecular scattering

• Anchor and improve AMV retrievals
• Research on 

model physics

Numerical Weather Prediction (NWP) Science & Process Studies
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Lidar Radiometric Math Modeling Components/Blocks

• Platform & pointing geometry, Range setup
• Transmitter & Transmitter path
• Transmission to/from target
• Solar Background
• Target – Scattering theory
• Receiver subsystem
• Optical signal processing
• Detection
• Signal processing (Analog, Digital, 

sometimes Photon Counting)
• Product retrieval:  Signal Detection & Estimation
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Heterodyne Detection

• Temporal interference between Doppler-shifted 
lidar return and highly-stable local oscillator. 

• Wavelengths ~1.6 µm to 10 µm (2 µm for space)
– Sampling requirements to capture the desired band of 

Doppler shifts:
∆𝑓 = 2𝑣!"#,%&'/𝜆

– Fairly easy to make made eye-safe
– Low molecular backscatter (scaling as l-4)
– Less atmospheric extinction
– Aerosol scattering efficiency kernels peak at larger particle 

sizes (e.g., around 4-µm diameter for the 2-µm wavelength). 
– LO shot noise limited
– Insensitive to sunlight

• Good sensitivity under the following conditions
– Sufficient aerosols present 
– Impacts of refractive turbulence are minimized
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CAMEX-4 ACLAIM
Image courtesy 
Ivan Clark, LaRC

SWA.com



Practical Challenges for Heterodyne Detection

• Challenges to maintaining Heterodyne Efficiency
– Transverse speckle diameter (spatial coherence) 
• sets maximum usable aperture size

– Temporal speckle from atmospheric motion (fading)
– Field of view (FOV) requirements 
• ~<10 µrad (see Aeolus experience)
• Limits practical aperture size

– Diffraction-limited optical system requirements, 
• costly off-axis (e.g, OAP) telescope optics 
• challenging on-orbit alignment and thermal control.

• Local oscillator sets shot noise level 
– limits performance at low (single photon) signal 

levels
– Need ~1 photon per speckle per fade (e.g., ~50 

photons for a 50 Mhz = 50 m/s bandwidth)
• Lack of heritage:  Space qualification for lasers 

and heterodyne receivers of needed diameter
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DLR Falcon – 2 µm Heterodyne system – Aeolus CalVal

• Tm:LuAG - 2022.54 nm (vacuum), 
• 1-2 mJ/pulse, 500Hz PRF à 0.5W-1W
• 11 cm diameter afocal telescope 
• Double-wedge scanner – up to 30∘ cone 

angle; 
• Detection: InGaAS PIN, 500 MHz sample 

rate
• Built by CLR Photonics, Inc. (today Lockheed 

Martin Coherent Technologies, Inc.) 
• Deployed at DLR since October 1999.
• See Witschas et al. ( JTech, 2017)
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Witschas, et al. (AMT, 2020)
https://doi.org/10.5194/amt-13-2381-

2020
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DAWN Aeolus Cal/Val flights

• Ho:Tm:LuLiF - 2.053 µm 

• 100 mJ/pulse, 10 Hz PRF:  1 W
– Was 250 mJ/pulse (2.5 W)

• 15 cm diameter afocal telescope (~2x 
area of DLR system) – uses 12 cm 
diameter

• Built by LaRC, based on VALIDAR system, 
for flight on DC-8 and UC-12B

• 30° deflecting wedge scanner

• Detector: Dual-balanced  InGaAs
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Bedka, et al. (AMT, 2021)
https://doi.org/10.5194/amt-14-4305-2021
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Direct Detection

• Resolve Doppler shifts directly
• Can be divided into two categories: 
– filter-based:  e.g., Fabry Perot Double Edge detection
– two wave interference: e.g., Fizeau, Michelson, and Mach-

Zehnder interferometers
• Can operate at high TRL Nd:YAG based 1064-nm, 532-

nm, 355-nm wavelengths 
– Shorter wavelengths à more aerosol and molecular 

backscatter à full tropospheric coverage
• Field widening capability reduces on-orbit challenges
– Can use high TRL telescopes, 1-l wavefront errors ok

• Photon counting capability à signal even in low power 
applications

• Wide range of detector technologies, in analog or 
photon-counting configurations, 
– APD, PMD, MPPC, ACCD, SPADs, etc. 

• Can also provide calibrated aerosol data (HSRL)
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31 km

532 nm Attenuated Backscatter



Practical Challenges for Direct Detection

• More aerosol and molecular scatter à more 
atmospheric extinction

• Sometimes requires additional steps to ensure 
eye-safety
– 355 nm easier than 532 nm or 1064 nm
– CALIPSO levels would provide good DD wind coverage

• Need better filters to reduce daytime background 
sunlight around the laser wavelength(s)

• No internal NASA drive for DD winds
– Ready to go, but no mission funded
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DLR Falcon – Aeolus Airborne Demonstrator – Aeolus CalVal

• Tripled Nd:YAG- 354.89 nm (vacuum), 
• 55-65 mJ/pulse, 50Hz PRF à 2.75W-3.25W
• 20 cm diameter Cassegrain, 100 µrad FOV
• 20∘ off nadir pointing angle 
• Frequency discriminators
– Molecular:  Double Edge Fabry Perot etalon 

sequential filters
– Aerosol:  Fizeau Interferometer (16 spectral 

channels)
• Detection: Accumulation CCD
• Developed by European Aeronautic Defence

and Space Company (EADS-Astrium – now 
Airbus Defence and Space) together with 
DLR

• See Reitebuch et al. (JTech, 2009)
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Lux, et al. AMT, 2018
Also see Lux, et al, 2020

https://doi.org/10.5194/amt-2019-431 
SIxteenth International Winds Workshop - Montréal, Canada, May 2023



Direct Detection:  Ball OAWL
(optical autocovariance wind lidar)

• QMZI frequency discriminator
• Seeded Nd:YAG – 532 nm and 355 nm
• Shown at right – Airborne aerosol winds system

– 30 cm diameter Cassegrain telescope (like CALIOP)
– Dual lines of sight from NASA WB-57
– 532 nm:  1.25 mJ/pulse, 200 Hz à 0.25W
– Detection: Hamamatsu MPPC, 140 MHz sample rate
– See: Baidar et al., 2018, and Tucker et al., 2018, 

J. Atmos. & Ocean. Tech,
• 2016 Earth Venture Instrument proposal rated selectable
• Below – ground-based Molecular+Aerosol LOS winds

– See: https://doi.org/10.1364/ES.2020.JTu5F.4
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17 June 2016:  Forward look, 1s profiles, 532 nm

Aft look, 1s profiles
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https://doi.org/10.1364/ES.2020.JTu5F.4


Airborne & Spaceborne Doppler Wind Lidar Technologies
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