ATC-300
Automatic Transfer Switch Controller
Technical Data

New Information
Introduction

The Cutler-Hammer® ATC-300 Automatic Transfer Switch Controller from Eaton's Electrical business is a comprehensive, multi-function, microprocessor-based automatic transfer switch controller. It is a compact, self-contained, panel-mounted controller that is designed to accurately monitor power sources and provide the necessary intelligence to reliably operate a transfer switch through a series of programmed sensing and timing functions. The ATC-300 provides an unmatched degree of programming flexibility to address the needs of any system.

Primary Functions

As standard, the ATC-300 Automatic Transfer Controller will:

- Monitor normal and emergency source voltages and frequencies.
- Provide transfer and re-transfer control signals.
- Provide engine/generator starting and shutdown signals.
- Permit customer programming of operational set points.
- Display real-time and historical information.
- Permit system testing.
- Store customer and factory established parameters in nonvolatile memory.
- Provide faceplate source status indication.
- Provides an LCD-based display for programming and status readouts.

Operational Simplicity

From installation to programming to usage, the ATC-300 Controller was designed with operational simplicity in mind. Only one style needs to be considered regardless of input/output requirements or system voltages and frequencies. The intuitive front panel interface simplifies routine operation, programming, and data presentation and set point adjustment. An LCD-based display is backlit for enhanced visibility. The front panel membrane pushbuttons with positive-feedback move the ATC-300 Controller display from function-to-function or step-to-step within a function. The ATC-300 Controller provides the functionality of multiple devices combined in one package and mounts in less than 5.75 inches (146.1 mm) x 7.75 inches (196.8 mm) of panel space.

Industrial Design Highlights

- True rms voltage sensing of normal and emergency sources.
- Frequency sensing of normal and emergency sources.
- Voltage unbalance and phase rotation sensing.
- Programmable set points stored in nonvolatile memory.
- PowerNet™ communications capable.
- System monitoring with historical data storage and display.
- Gold-plated engine start contact.
- Digital set points for accurate and consistent performance.
- Automatic plant exerciser.
- UV-resistant faceplate with Mimic Diagram and LED status indicators.
- LCD-based, backlit, two-line display.
- Suitable for application over a wide range of environmental conditions.
- Self-diagnostic and system diagnostic functions with LED indication.
- Help function for detailed description of displayed message.
- System Test pushbutton.
- Positive feedback membrane pushbuttons for application in harsh environments.
- Password protected access to programming mode.
- Pretransfer contacts.
- Bypass Time Delay pushbutton.
- Control input for remote testing or peak shaving applications.
- Five different control input functions for maximum operational flexibility.
- In-phase and Time Delay Neutral transfer modes for systems with inductive loads.

Standards

The Cutler-Hammer ATC-300 Automatic Transfer Switch Controller meets or exceeds all industry standards for endurance, reliability and performance. It is designed to meet the needs of markets worldwide.

The ATC-300 Automatic Transfer Switch Controller is designed and built as standard in accordance with the following standards where applicable.

Table 1. Standards

<table>
<thead>
<tr>
<th>UL® 1008</th>
<th>UL Standard for Safety for Transfer Switch Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 991</td>
<td>Tests for Safety-Related Controls Employing Solid-State Devices</td>
</tr>
<tr>
<td>CSA® No.178</td>
<td>Canadian Standards Association</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>EMC Standards</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td></td>
</tr>
<tr>
<td>FCC Part 15, Class A</td>
<td>Federal Communication Commission RF Emissions</td>
</tr>
<tr>
<td>CISPR 11</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>UBC®, BOCA®, Seismic Zone 4</td>
<td>California Building Code</td>
</tr>
<tr>
<td>CE</td>
<td>European Standards Conformance</td>
</tr>
</tbody>
</table>

For more information visit: www.EatonElectrical.com
Technical Data

ATC-300 Automatic Transfer Switch Controller

Product Overview

Table 2. Product Overview

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Source 1 and 2: VAB, VBC and VCA
0 – 790 Vac rms
±1% of Full Scale</td>
</tr>
<tr>
<td>Frequency</td>
<td>Source 1 and 2
40 – 70 Hz
±0.3 Hz</td>
</tr>
<tr>
<td>Control Power</td>
<td>Input Range
65 Vac – 145 Vac rms, 50/60 Hz</td>
</tr>
<tr>
<td>System Inputs</td>
<td>Source 1 Closed
Source 2 Closed
Lockout
Yes
Yes
Yes</td>
</tr>
<tr>
<td>Go to Source 2</td>
<td>Yes</td>
</tr>
<tr>
<td>Monitor Mode</td>
<td>Yes</td>
</tr>
<tr>
<td>Output Contacts</td>
<td>Form “A” for Generator Start
(1) 5 A, 250 Vac/30 Vdc
(2) 10 A, 250 Vac/30 Vdc</td>
</tr>
<tr>
<td>Form “C” for Alarm</td>
<td>(1) 10 A, 250 Vac/30 Vdc</td>
</tr>
<tr>
<td>Form “C” for Pre-Transfer</td>
<td>(1) 10 A, 250 Vac/30 Vdc</td>
</tr>
<tr>
<td>Front Panel</td>
<td>Unit Status. Source 1 and 2: Available and Connected (5 Total)
Voltage, Frequency, Status, History, Time, Date, Set Points, Help Information</td>
</tr>
<tr>
<td>Main Display</td>
<td>LCD-Based Display</td>
</tr>
<tr>
<td>Parameters Displayed</td>
<td>Engine Run Time, Source 1 Available Time, Source 2 Available Time, Source 1 Connect Time, Source 2 Connect Time, Load Energized Time, Number of Transfers; Date, Time and Reason for Last 16 Transfers; Monitor Mode Event, Fail-Safe Event, Aborted Test</td>
</tr>
<tr>
<td>Stored Historical Data Includes:</td>
<td>Engine Run Time, Source 1 Available Time, Source 2 Available Time, Source 1 Connect Time, Source 2 Connect Time, Load Energized Time, Number of Transfers; Date, Time and Reason for Last 16 Transfers; Monitor Mode Event, Fail-Safe Event, Aborted Test</td>
</tr>
</tbody>
</table>

Table 2. Product Overview (Continued)

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel</td>
<td>Display Language
Enclosure Compatibility
English, French
NEEMA® 1, 12 and 3R, UV-Resistant Faceplate</td>
</tr>
<tr>
<td></td>
<td>Operating Environmental Range
Operation -20°C – +70°C, Storage
-30°C – +85°C, Humidity 0% – 95% Relative (Non-condensing)</td>
</tr>
<tr>
<td></td>
<td>Applicable Standards
UL 1008, UL 991, FCC Part 15, CISPR 11, IEC 1000-2,3,4,5, CSA, UBC and BOCA for Seismic Zone 4</td>
</tr>
<tr>
<td></td>
<td>Programming Access
Password</td>
</tr>
<tr>
<td></td>
<td>Front Panel Input Pushbuttons
Engine Test, Step, Help, Lamp Test, Increase, Decrease, Alarm Reset, Bypass Time Delays, Enter</td>
</tr>
<tr>
<td></td>
<td>Time Delay Normal to Emergency
0 – 1800 Seconds
0 – 1800 Seconds
0 – 1800 Seconds</td>
</tr>
<tr>
<td></td>
<td>Time Delay Emergency to Normal
0 – 120 Seconds
0 – 120 Seconds
0 – 6 Seconds</td>
</tr>
<tr>
<td></td>
<td>Time Delay Engine Cooldown
Enabled or Disabled
0 – 120 Seconds
0 – 6 Seconds</td>
</tr>
<tr>
<td></td>
<td>In-Phase
In-Phase Frequency Difference
Synchronization Time Allowance
Enabled or Disabled
0 – 3 Hz
1 – 60 Minutes</td>
</tr>
<tr>
<td></td>
<td>Synchronization Time Allowance
Enabled or Disabled
0 – 3 Hz
1 – 60 Minutes</td>
</tr>
<tr>
<td></td>
<td>Pre-Transfer Signal
Plant Exerciser
1 – 120 Seconds (Form “C” Contact)
Selectable: Disabled, Daily or 7, 14, 28-Day Intervals, 0 – 600 Minutes, Load or No Load</td>
</tr>
<tr>
<td></td>
<td>System Sensing
Voltage Unbalance
3-Phase or Single-Phase
5% – 20%
ABC – CBA</td>
</tr>
<tr>
<td></td>
<td>Phase Reversal
50% – 97% of Nominal
90% – 97% of Nominal Dropout +1 Hz – 99% of Nominal</td>
</tr>
<tr>
<td></td>
<td>Underfrequency Dropout Range
50% – 97% of Nominal
103% of Nominal to Dropout -1 Hz</td>
</tr>
<tr>
<td></td>
<td>Overfrequency Pickup Range
101% of Nominal to Dropout +1 Hz – 99% of Nominal</td>
</tr>
<tr>
<td></td>
<td>Overvoltage Pickup Range
90% – 97% of Nominal Dropout +1 Hz – 99% of Nominal</td>
</tr>
<tr>
<td></td>
<td>Test Pushbutton Mode
Disabled, Load, No Load
Undervoltage Pickup Range
50% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td>Underfrequency Pickup Range
50% – 97% of Nominal
Underfrequency Pickup Range
90% – 97% of Nominal Dropout +1 Hz – 99% of Nominal</td>
</tr>
<tr>
<td></td>
<td>Overfrequency Pickup Range
103% – 110% of Nominal
101% of Nominal to Dropout -1 Hz</td>
</tr>
</tbody>
</table>
ATC-300 Automatic Transfer Switch Controller Front Panel Display and Operator Functions

Mimic Diagram
Source 1 and Source 2 color-coded LEDs provide Available and Connected status indication.

Step/Enter
Pressing the Step/Enter pushbutton advances the information through the programming or display cycle.

Help
Pressing the Help pushbutton in any function mode will bring up display messages, explanations and prompts to assist the operator.

Engine Test
Pressing the Engine Test pushbutton twice initiates engine test cycle.

Lamp Test
Pressing the Lamp Test pushbutton lights all LEDs and then displays ATC-300 controller information.

Bypass TDNE/TDEN
Pressing Step and Help/Lamp Test pushbuttons simultaneously reduces programmed time delays to zero to simplify test procedures.

Alarm Reset
Pressing the Increase and Decrease pushbuttons restores automatic operation in the event of an alarm condition.

Unit Status
The Unit Status LED is a blinking indicator for self and system diagnostics.

LCD-Based Display
The LCD-based display is a backlit, 2-line, 16-character display. Displayed information includes:
- Source voltages and frequency
- Time/date stamp
- Historical data
- Programming and set point information
- Password entry

Increase and Decrease
Pressing the Increase or Decrease pushbuttons affect the value of the function presently active on the LCD-based display.

For more information visit: www.EatonElectrical.com
Output Contacts: The output contacts are dry relay contacts. The GEN START contact is rated 5 amperes at 250 Vac/30 Vdc. All other contacts are rated 10 amperes at 250 Vac/30 Vdc.

- K1, K2: These Form “A” output contacts are utilized to control single power switching mechanisms. They operate in conjunction with the SOURCE 1 and 2 CLOSED inputs.
- ALARM: Form “C” contact. This relay is energized during any of the following alarm conditions: failure of the power switching device to open or close, motor operator failure, unsuccessful in-phase transition, lockout condition, failed engine test, failed plant exerciser operation.
- PRE-TRAN: This relay operates on a timed basis (adjustable 0 – 120 seconds) prior to any transfer operation. Timing begins after TDNE or TDEN times out.
- GEN START: This is a latching relay utilized to initiate startup and shutdown cycles of the engine/generator set.

Control Power Inputs (Source 1 and Source 2): The Control Power Input range is 65 Vac – 145 Vac, 50/60 Hz.

System Inputs: System Inputs are “wetted” contacts. Some system inputs are optional and must be enabled via factory control.

- SOURCE 1 CLOSED: This input is connected to the Source 1 power switching device position indication contact.
- SOURCE 2 CLOSED: This input is connected to the Source 2 power switching device position indication contact.
- LOCKOUT: This input is connected to an alarm contact. During an alarm condition, automatic operation is inhibited.
- GO TO SOURCE 2: This input provides the means to remotely initiate a startup and transfer cycle or retransfer and shutdown cycle.
- MONITOR MODE: This input allows the controller to be placed in a “non-automatic mode” while continuing to monitor source voltages and frequencies.
- EARTH GROUND: Provides a connection point for the common system ground.

Power Source Inputs (SOURCE 1 and SOURCE 2): The Power Source Inputs are the connection points for the power sources that are to be monitored. Three-phase systems are connected to Phase A, B and C. Single-phase systems are connected to points Phase A and Phase B.
Standard and Optional Features

All ATC-300 standard and optional features are listed in Table 3. All standard features are included and provided on all ATC-300 units. Optional features must be specified with order entry and factory programmed. Only features that are originally ordered and factory programmed will appear on the LCD-based display. The ATC-300 Upgrade Module may be ordered to add optional features in the field.

Table 3. ATC-300 Automatic Transfer Controller — Standard and Optional Features

<table>
<thead>
<tr>
<th>ATC-300 Features</th>
<th>Cutler-Hammer Feature Number</th>
<th>Field Programmable Set Point Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Delay Source 1 to Source 2 (TDNE)</td>
<td>1</td>
<td>0 – 1800 Seconds</td>
</tr>
<tr>
<td>Time Delay Engine Start (TDES)</td>
<td>2</td>
<td>0 – 120 Seconds</td>
</tr>
<tr>
<td>Time Delay Source 2 to Source 1 (TDE1)</td>
<td>3</td>
<td>0 – 1800 Seconds</td>
</tr>
<tr>
<td>Time Delay Cool Down (TDEC)</td>
<td>4</td>
<td>0 – 1800 Seconds</td>
</tr>
<tr>
<td>Source 2 Single-Phase Undervoltage and Underfrequency Sensing</td>
<td>5B</td>
<td>UV Dropout: 50% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UV Pickup: (Dropout +2%) – 99% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UF Dropout: 90% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UF Pickup: (Dropout +1 Hz) – 99% of Nominal</td>
</tr>
<tr>
<td>Source 2 (Emergency) 3-Phase Undervoltage and Underfrequency Sensing</td>
<td>5J</td>
<td>UV Dropout: 50% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UV Pickup: (Dropout +2%) – 99% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UF Dropout: 90% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UF Pickup: (Dropout +1 Hz) – 99% of Nominal</td>
</tr>
<tr>
<td>Test Pushbutton</td>
<td>6B</td>
<td>No Load, Load or Disabled</td>
</tr>
<tr>
<td>Time Delay Emergency Fail (TDEF)</td>
<td>7</td>
<td>0 – 6 Seconds</td>
</tr>
<tr>
<td>Bypass TDEN Time Delay</td>
<td>8C</td>
<td>Pushbutton</td>
</tr>
<tr>
<td>Bypass TDE1 Time Delay</td>
<td>8D</td>
<td>Pushbutton</td>
</tr>
<tr>
<td>Source 1 Connected LED Indication</td>
<td>12C</td>
<td>N/A</td>
</tr>
<tr>
<td>Source 2 Connected LED Indication</td>
<td>12D</td>
<td>N/A</td>
</tr>
<tr>
<td>Source 1 Available LED Indication</td>
<td>12G</td>
<td>N/A</td>
</tr>
<tr>
<td>Source 2 Available LED Indication</td>
<td>12H</td>
<td>N/A</td>
</tr>
<tr>
<td>Plant Exerciser (Fail-Safe) with Selectable: (Daily, 7, 14 or 28-Day Cycle), (Load or No Load), (Day, Hour, Minute for Test Event) (0 – 600 Minutes Test Length)</td>
<td>23K</td>
<td>Daily, 7, 14 or 28-Daily Cycle, (No Load or Load)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Day, Hour, Minute) (0 – 600 Minutes Test Length)</td>
</tr>
<tr>
<td>Source 1 (All Phase) Undervoltage Sensing</td>
<td>26A</td>
<td>UV Dropout: 50% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UV Pickup: (Dropout +2%) – 99% of Nominal</td>
</tr>
<tr>
<td>Automatic Operation</td>
<td>26B</td>
<td>N/A</td>
</tr>
<tr>
<td>Seismic Zone 4 Qualification</td>
<td>42</td>
<td>N/A</td>
</tr>
<tr>
<td>Nominal Frequency</td>
<td>N/A</td>
<td>50 or 60 Hz</td>
</tr>
<tr>
<td>Nominal Voltage</td>
<td>N/A</td>
<td>120 – 600 Vac</td>
</tr>
<tr>
<td>System Phases</td>
<td>N/A</td>
<td>1 or 3</td>
</tr>
<tr>
<td>Engine Test Run Duration for Engine Test Pushbutton and Plant Exerciser Duration</td>
<td>N/A</td>
<td>0 – 600 Minutes</td>
</tr>
<tr>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source 2 Single-Phase Overvoltage and Overfrequency Sensing</td>
<td>5C</td>
<td>OV Dropout: 105% – 120% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OV Pickup: 103% of Nominal to (Dropout -2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OF Dropout: 103% – 110% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OF Pickup: 101% of Nominal to (Dropout -1 Hz)</td>
</tr>
<tr>
<td>Source 2 Single-Phase Undervoltage</td>
<td>5D</td>
<td>UV Dropout: 50% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UV Pickup: (Dropout +2%) – 99% of Nominal</td>
</tr>
<tr>
<td>Source 2 Single-Phase Overvoltage</td>
<td>5E</td>
<td>OV Dropout: 105% – 120% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OV Pickup: 103% of Nominal to (Dropout -2%)</td>
</tr>
<tr>
<td>Source 2 3-Phase Undervoltage</td>
<td>5F</td>
<td>UV Dropout: 50% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UV Pickup: (Dropout +2%) – 99% of Nominal</td>
</tr>
<tr>
<td>Source 2 3-Phase Overvoltage</td>
<td>5G</td>
<td>OV Dropout: 105% – 120% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OV Pickup: 103% of Nominal to (Dropout -2%)</td>
</tr>
<tr>
<td>Source 2 Phase Reversal</td>
<td>5H</td>
<td>0 = Disabled, 1 = ABC, 2 = CBA</td>
</tr>
<tr>
<td>Source 2 3-Phase Overvoltage and Overfrequency Sensing</td>
<td>5K</td>
<td>OV Dropout: 105% – 120% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OV Pickup: 103% of Nominal to (Dropout -2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OF Dropout: 103% – 110% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OF Pickup: 101% of Nominal to (Dropout -1 Hz)</td>
</tr>
<tr>
<td>Source 2 3-Phase Voltage Unbalance</td>
<td>5L</td>
<td>0 = Disabled, 1 = Active, (Dropout = 5% – 20%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Pickup = 3% – (Dropout -2%)</td>
</tr>
<tr>
<td>Source 1 Overvoltage Sensing</td>
<td>26C</td>
<td>OV Dropout: 105% – 120% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OV Pickup: 103% of Nominal to (Dropout -2%)</td>
</tr>
<tr>
<td>Go to Source 2</td>
<td>26D</td>
<td>N/A</td>
</tr>
<tr>
<td>Source 1 Underfrequency Sensing</td>
<td>26E</td>
<td>UF Dropout: 90% – 97% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UF Pickup: (Dropout +1 Hz) – 99% of Nominal</td>
</tr>
<tr>
<td>Source 1 Overfrequency Sensing</td>
<td>26F</td>
<td>OF Dropout: 103% – 110% of Nominal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OF Pickup: 101% of Nominal to (Dropout -1 Hz)</td>
</tr>
<tr>
<td>Source 1 Phase Reversal</td>
<td>26H</td>
<td>0 = Disabled, 1 = ABC, 2 = CBA</td>
</tr>
<tr>
<td>Source 1 3-Phase Voltage Unbalance</td>
<td>26L</td>
<td>0 = Disabled, 1 = Active, (Dropout = 5% – 20%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Pickup = 3% – (Dropout -2%)</td>
</tr>
<tr>
<td>Time Delay Neutral (TDN)</td>
<td>32A</td>
<td>0 – 120 Seconds</td>
</tr>
<tr>
<td>In-Phase Transition with Selectable (Enable or Disable), (Frequency Difference 0 – 3 Hz), (Synchronization Time 1 – 60 Minutes)</td>
<td>32E</td>
<td>(Enable or Disable)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Frequency Difference 0 – 3 Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Synchronization Time 1 – 60 Minutes)</td>
</tr>
<tr>
<td>Pretransfer Contacts (1NO/1NC)</td>
<td>35A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
ATC-300 Upgrade Module

If an optional feature needs to be added after a transfer switch is in the field, contact the factory for availability of field upgrades with the ATC-300 Upgrade Module. This module can download new programs into the Automatic Transfer Controller (ATC-300) via connection to the communication module connector on the rear of the Automatic Transfer Controller device.

Dimensions in Inches (mm)

Figure 1. Automatic Transfer Controller (ATC-300)

UL is a federally registered trademark of Underwriters Laboratories Inc.
CSA is a registered trademark of the Canadian Standards Association.
UBC is a trademark of the International Conference of Building Officials (ICBO).
BOCA is a registered trademark of Building Officials and Code Administrators International, Inc. Cutler-Hammer is a federally registered trademark of Eaton Corporation. NEMA is the registered trademark and service mark of the National Electrical Manufacturers Association.

Dimensions are approximate and should not be used for construction purposes (1 inch = 25.4 mm).