Near-Road Nitrogen Dioxide Monitoring Stations: Are We Capturing the Variability to Estimate Population Exposure in Urban Areas?

Sunjoo Hwang, MIPA Candidate, Robert M. La Follette School of Public Affairs Advisor: Professor Tracey Holloway, Nelson Institute for Environmental Studies & Department of Atmospheric and Ocean Sciences Collaborator: Dr. Monica Harkey, The Holloway Group, Nelson Institute Center for Sustainability and the Global Environment

Introduction

- \circ Nitrogen dioxide (NO₂) is a gaseous air pollutant that causes a range of harmful effects on human health.
- \circ Motor vehicles are a leading source of NO₂.

The Clean Air Act requires the U.S. Environmental Protection Agency (EPA) to monitor and regulate the ambient NO₂ concentrations.

- In 2010, EPA promulgated minimum near-road NO₂ monitoring requirements.
- Six years later, however, they removed the requirement in areas with populations between 500,000 and 1,000,000 persons (40 CFR 58).
- Ambient NO₂ concentrations collected at the existing nearroad monitoring sites are below the NAAQS (National Ambient Air Quality Standards) levels.
- However, many studies and satellite measurements have demonstrated intra-urban variability of nitrogen dioxide.
- \circ This study compared air quality model predictions of NO₂ concentrations with monitoring measurements in two urban areas in Texas.

Methodology

[Study Sites]

Austin and Dallas were chosen for this analysis because:

- Texas is ranked 2 in total number of registered vehicles.
- Both are ozone non-attainment areas.
- They can represent different groups:
 - Austin
 - Population (2011): < 1,000,000 (~800,000)
 - 2 near-road NO₂ monitoring stations
 - Dallas
 - Population (2011): > 1,000,000
 - 13 near-road NO₂ monitoring stations

Summer months (June-August) whose ozone levels are typically highest were selected (NO₂ is a main ingredient of ground-level ozone).

[Data & Plots]

- Hourly NO₂ concentration predictions were taken from CMAQ (Community Multiscale Air Quality Modeling System), a widely used air quality model.
- Using NCAR Command Language (NCL), daily max NO₂ concentration predictions of CMAQ in Austin and Dallas areas were plotted on a map, respectively.
- NO₂ measurements were taken from the EPA Air Quality System (AQS) database (daily max 1-hour NO₂ concentrations in each monitoring station).
- Using NCL, correlation plots between AQS measurements and model predictions were created with monitor measurements on the x-axis and CMAQ predictions on the y-axis (unit: parts per million).

NO₂ Satellite Measurements for June 2011: Texas (left), Dallas (top right), and Austin (bottom right) (Source: NASA Giovanni)

Dallas. NO₂ Concentration Predictions of CMAQ on June 6, 2011 (left), Map of Roads and Population Density in Dallas Counties (right)

Results

- Maps of NO₂ predictions in Austin and Dallas showed variability (higher concentrations near roads and areas with more people).
- Austin and Dallas did not show 1:1 agreement between measurements and predictions.
 - Austin shown in (a)-(c): • Datasets were scattered although they
 - showed some positive correlations. • July showed higher model predictions, whereas August showed higher
 - measurements. Dallas shown in (d)-(f):
 - Datasets scattered away from the 1:1 line.
 - Most data showed higher model predictions.

Austin. NO₂ Concentration Predictions of CMAQ on June 6, 2011 (left), Map of Roads and Population Density in Austin Counties (right)

ΟΤ	
st	
\circ N	
d	
• C	
Vä	
o Ir	
1	

• This result concludes that current near-road NO₂ monitoring stations may not appropriately estimate population exposure in urban areas.

Lir	nita
0	Th
	th
0	Fa
	m
0	Fu
	m
	dic

Conclusion

he number of installed near-road NO₂ monitoring tations varies by region.

Iany studies and satellite measurements have emonstrated the variability of NO₂ concentrations. MAQ predictions in Austin and Dallas also showed the ariability of NO₂ concentrations.

both Austin and Dallas, model predictions did not show :1 agreement with monitor measurements.

Dallas that has > 1M populations and 13 monitoring stations mostly showed higher model predictions. Austin that has fewer populations and monitoring stations showed inconsistency – higher model predictions or higher monitor measurements.

Given that policies and other decision-makings are primarily based on measurements, it is important to evaluate how adequately the monitoring stations currently record the ambient NO₂ concentrations and thus represent population exposure in urban areas.

ations:

is study investigated only two urban areas in Texas for ree months of a single year.

ctors that may influence either monitor measurements or odel predictions may vary both spatially and temporally. rther research is required to find how well near-road NO₂ onitoring stations capture the variability of nitrogen oxide in various urban areas.

References

• 40 C.F.R. Part 58

• Clougherty, J. E., Wright, R. J., Baxter, L. K., & Levy, J. I. (2008). Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants, 14, 1–14. https://doi.org/10.1186/1476-069X-7-17

• Eeftens, M., Phuleria, H. C., Meier, R., Aguilera, I., Corradi, E., Davey, M., et al. (2015). Spatial and temporal variability of ultra fine particles, NO2, PM 2.5, PM 2.5 absorbance, PM 10 and PM coarse in Swiss study areas, 111(2), 60–70. https://doi.org/10.1016/j.atmosenv.2015.03.031 • EPA. (2011). Air Data: Air Quality Data Collected at Outdoor Monitors. Retrieved from https://www.epa.gov/outdoor-air-qualitydata/download-daily-data

• Moutinho, J. L., Liang, D., Golan, R., Sarnat, S. E., Weber, R., Sarnat, J. A., & Russell, A. G. (2020). Near-road vehicle emissions air quality monitoring for exposure modeling. Atmospheric Environment, 224(September 2019), 117318.

https://doi.org/10.1016/j.atmosenv.2020.117318

• Population Estimates for Texas Counties, 2010-2017: Arranged in Descending Order. (2021). Retrieved from

https://www.tsl.texas.gov/ref/abouttx/popcnty201011.html • Vardoulakis, S., & Lumbreras, J. (2011). Intra-urban and street scale variability of BTEX, NO2 and O3 in Birmingham, UK: Implications for exposure assessment, 45(2). https://doi.org/10.1016/j.atmosenv.2011.06.038