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l. INTRODUCTION

Objective analysis of meteorological
data sets can be accomplished using weighted
averages to interpolate to a uniform rectangular
grid. The most noted examples are the methods of
Cressman (1959) and Barnes (1964) which are
widely used today. A similar method which
closely approximates the results of the Barnes
method, but which allows for considerably faster
computing time, is currently employed on the
McIDAS at the Space Science and Engineering
Center of the University of Wisconsin- Madison.
Specifically, if we wish to interpolate NS
observed data points to NG grid points, the
Barnes and Cressman methods take computing time
proportional to NS*NG. The new method takes
time proportional to NS+NG, which rums about 30
times faster than the Barnes method on McIDAS
when there are approximately 1000 observations
and 1500 grid points.

2o INTERPOLATION BY WEIGHTING FUNCTIONS

The analysis of a variable (P) at a
uniformly spaced grid of locations (x,y) is
usually accomplished by forming a weighted sum
of all data values S,
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where (i) denotes the ith point of the NS
observations at the coordinates (x,,y The

).
weighting function is usually inve%seiy
proportional to the distance from the grid point
to the observation,.

W(x,y) = exp [-(x-x )%/t - (y-y;)?/r] (2)
This, in effect is a method of low pass
filtering observations proposed by Barnes
(1964) . Higher frequency detail can be added
back into the analysis by using the difference
between the observation and the analysis value
interpolated to the location of the observation.
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This difference is included through a second
weight sum.
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Note that the weight sums (1) and (4) are
essentially convolutions of the observations
(Si) with weighting function W (x,y).

3 AN ALTERNATIVE METHOD

The calculations of the weighted sums
(1) and (4) can be speeded up considerably if
the weight functions are picked from a
restricted class so it is not necessary to
calculate the products of the weight and data
for every pair of grid point and data point
(x-x ,y-yi). To do this, we take advantage of
running siUmmations and emulate the Barnes (1964)
low pass filter technique through a combination
of operations on the observations.

The method is easlest to illustrate in a
one-dimensional case., Let x be the grid point
location and x, the observation locations (Fig.
s The value at x can be determined from the

+ Grid points . Data points

Figure 1: Schematic representation of a one-
dimensional analysis

ratio of two sums, A(x) and B(x).

P(x) = A(x)/B(x) (5)
The sums A(x) and B(x) are calculated as:
NS
A(x) =ij% W(x~xi)*5i (6)
NS
B(x) = L W(x-x,) (7
i=1 %

The weighting function we used is a one-sided
exponential
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where r is a constant that determines the width
of the function or spatial smoothing of the
data. Using this one-sided weighting functiom,
the sums A(x) and B(x) can be factored into two
sums

A(X)=!éxp(-(X—xi)/r)*S +Iexp(-(x~xi)/r)*si 9
X igx-Ax X-AX<CX igx

The first sum represents all the data points
prior to or to the left of the grid point
previous to x, which is x-ax (ax being a fixed
distance between grid points). The second sum
considers only the additional data between the
last grid point, x-ax, and the current point, x.
This division into two sums is the key factor in
increasing computation speed which will become
more clearly understood later.

The expression exP(-(x—xi)/r) can be
factored into the product of two terms,
exp(—Ax)/r)*exp(-(x~Ax-xi)/r), which allows (9)
to become

A(x)=exp (-ax/r)* Iexp(-(x-&x-xi)/r)*si+
X LX-AX
{exp(—(x—xi)/r)*si
X-AXLK £ X

which is really a recurrence relationship for A.

A(x)=exp (-Ax /1) *A(x-ax%) + Iexp(~(x~xi)/r)*si (10)
X-AXLK L X

This implies that A(x) can be computed from the
past sum used for the last grid point A(x-aAx)
with the addition of the data points between
x-Ax and x, which 1z the second part of (10).
This, by itself, is not the correct value for
the grid point since it has to be normalized for
the weighting functions used in 10. The
denominator B(x) is similar to the numerator
A(x)

B(x) = I exp (-(x-xi)/r)
xigx

(11)

which has the recurrence relation

B(x) = exp (-Ax/r) * B (x-Ax) +
I exp (—(x-xi)/r) (12)
X-AX<X £ X

To compute P(x), the recurrence
relationships allow the weight sums of the data
to be calculated only once for each data point.
An additional expomential has to be added for
the interval between grid points. Thus, the
exponential function is only called NS+NG times
in the first pass.

To completely analyze P(x), additional
passes through the grid are required. Since the
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first pass (left to right conceptually) used a
one-sided weighting function, a complementary
pass using a complementary weighting function is
required. The second pass is in the reverse
direction of the first (right to left), and the
weighting function also is skewed the opposite
of (8).

0 x{<x

W(x—xi) = (13)

exp ((x—xi)/r) XX

Then A(x) = Iexp((Xuxi)/r)*Si gives the
X%
s
recurrence relations.
A(x)=exp(-ax/T) *A(x+Ax) + [exp((x—xi)/r)*si (14)
X+Ax2xi>x

B(x)=exp (-Ax/r)*B(x+ax)+ Lexp((x-x.)/r)
KHAX DK >X =

(15)

To approximate a Barnes method more
fully, two additional passes (left to right and
complementary right to left) must be made
through the data. These passes are necessary
because the Barnes weight function (2) is an
exponential of the square of the distance (x?),
while our method is only an exponential of the
linear distance x, (8) and (13). The two pairs
of passes through the data are added to
approximate the Barnes weighting function (2).
In order to approximate the Barnes weight
function exp(-(x-%.)*/r?), we use r.=r/?2.34 and
r2=r/2.75 to give the four weighting functions.

Mﬁ(x—xi)=exv(—(x—xi)/rl),
W, (x—xi)=exP(—(x-—xi) Ity
W3(x-xi)=exp ((x—xi)/rl),
and Ma(x—xi)=exp ((x—xi)/rz)

which imply a total weight of

exp (= (x-x,)?/r?e8.96% W (x-x_ )} +W, (x-x_) ]~
! a*wvz(xlxiwﬂ%*&xi) p*

4. APPLICATION TO

(16)
2-DIMENSTONAL GRIDS

For a two-dimensional grid, the same
procedure applies as described for the
one-dimensional case except that we must now
consider a two-dimensional weighting function

exp("(x"xi)/t)*EXP(-(y—Y.)/Q)

' for x <x

and y.<y

W(K-xi,y—yi) = (17)
for xj>x
or ¥,>¥

As in the one-dimensional case, the grid point
value P(x) is derived from the ratio of the two
sums .

P(x,y) = A(x,¥)/B(x,y) (18)

The sums are defined as follows:
Alx,y)= L exp(—(x—xi)/t)*exp(—(y—yi)/q)*si (19)
X <X
:
YiSY



B(x,y)= Iexp(~(X~xi)/t)*exp(—(y-yi)/q) (20)
X £x

¥y

But to compute these sums in two dimensions, we
must move both from left to right and top to
bottom at the same time. This. is done by
defining an intermediate sum A (x,y) as

al (x,y)= Zexp(-(x-x,)/t)*exp(- {yuyi)/q)*s (21)
X-BX<X X

¥y

Then Al(x,y) can be ccomputed quickly over the
two~dimensional grid using the recurrence
relation defined in the y direction as

Al(x,y)=exp(—ay/q)*A (x,y-ay)+
Lexp(-(x-x )/t)*eXP( -(y-y )/q)*Si (22)
X-AX<K, <X
y-Ay<Y <Y

Now A(x,y) can be computed over the two-
dimensional grid, using the recurrence relation
defined in the x direction as

A(x,y)-exp(-Ax/t)*A(x—Ax,y)+A1(x,y) (23)

A similar relationship holds for the denominator
of (18) with a B (x,y) defined as

B (x,y)== Yexp(-(x-x )/t)*exP( (y-y;)/a) (24)
X—Ax<xi

The sums (22) and (23) are calculated in
a rastor scan from the upper left cormer of the
grid, moving left to right for (22) and top to
bottom for (23). Additional passes have to be
made through the grid from the upper right
corner, working rastor scans from the bottom
toward the top. Thus, four passes have to be
made through the grid with one weighting
function. The Barnes weighting function in two
dimensions can be broken in the product of two
one-dimensional exponential functions.

W(x-x X ry-y ) =exp(~((x-x,) +(y-y 1)) /)=
texp(- (x-x,) 2hrykexp (2 =(y-y, ¥2/r)  (25)

If we multiply out the approximations to these
functions, as done in (16) which considers the
reverse directlon pases through the data,
equation (25) will have 16 terms. Thus, for a
two-dimensional analysis, 16 passes have to be
made through the grid, but each pass requires
the exponential to be calculated for only the
sum of the NG grid points and NS data points.
The Barnes method would still require the number
of operations to be proportional to the product
of the number of grid and data points (NS*NG).

The exponential functions can be
approximated with finite internal lookup tables
as an additional step for computing efficiency.
This has often heen used for the implementation
of the Barnes scheme. However, in the algorithm
presented here, the finite approximation to the
exponential can be made with more precision
because the exponential is restricted to a
shorter distance than in the Barnes method. The

largest distance an exponential will be applied
to is Ax, the distance between grid points, since
the weighted sums for data points more thanm Ax
from a grid point are included through the
recurrence relationships (14), (22), and (23).
The recurrence relationships have to be
initialized at the first grid point. This is
done by considering the data outside of the grid
and applying the basic form of the weighted sums
(19), (20), (21) and (24) that are not factored
into the recurrence relationships. These sums
then form the basis for applying the recurrence
relationships to all succeeding grid points.

Distance calculations (x-x,, y-y.) are
done in units of degrees latitude and lomgitude.
Corrections for confluence of meridionms at high
latitude also are made to (x-x,) interms of
C0S(Y). This allows the weigh%ing functions to
approximate the spherical distances between data
and grid points,

B CONCLUDING REMARKS
This method closely approximates the

Barnes method where data are present (Figs. 2
and 3). The only situation where a deviation
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Figure 2: Example data set of radiosonde 850 wh
temperatures.

| ! “ - s
: 1 ! 4
I i

T (C) TIMC L2, DAY B4287. 850, MB

Figure 3: Resulting gridded analysis made of
temperatures shown in Fig., 2. (Crid
point spacing is 1°,

from the Barnes method can be found is in large
data void areas where information has to be
extrapolated over long distances. The



differences arise because we cannot perfectly
approximate an exponentigl distance squared
(exp(=(x~x,)?/r)) with a sum of linear
exponentials. This approximation is very close at
short distances (x-x,), but deviates out at the
tails where x-x, is Iarge. Our method gives a
slightly largerlweight to the extrapolated data
because of this approximation. However, in data
void areas, there really is no information in
the analysis since the physics of the variable
are not considered. Tor this reason, our
analysis method is considered to be as accurate
as Barnes and Cressman and a valid substitute.

This method also can be generalized to
any number of dimensions. The number of
computations required will always be
proportioned to NS+NG for any number of
dimensions in the grid.
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