

Ethical Artificial Intelligence

Bill Hibbard

Space Science and Engineering Center

University of Wisconsin - Madison

and

Machine Intelligence Research Institute, Berkeley, CA

27 January 2016

First Edition

Please send typo and error reports, and any other comments, to hibbard@wisc.edu.

Copyright © Bill Hibbard 2014, 2015, 2016

ii

Preface

 Recent research is giving us ways to define the behaviors of future artificial intelligence

(AI) systems, before they are built, by mathematical equations. We can use these equations to

describe various broad types of unintended and harmful AI behaviors, and to propose AI design

techniques that avoid those behaviors. That is the primary subject of this book.

 Because AI will affect everyone's future, the book is written to be accessible to readers at

different levels. Mathematical explanations are provided for those who want details, but it is also

possible to skip over the math and follow the general arguments via text and illustrations. The

introductory and final sections of the mathematical chapters (2−4 and 6−9) avoid mathematical

notation.

 While this book discusses dangers posed by AI and proposes solutions, it is only a

snapshot of ongoing research from my particular point of view and is not offered as the final

answer. The problem of defining and creating ethical AI continues, and interest in it will grow

enormously. While the effort to solve this problem is currently much smaller than is devoted to

Internet security, ultimately there is no limit to the effort that ethical AI merits.

 Hollywood movies such as the Terminator and Matrix series depict violent war between

AI and humans. In reality future AI would defeat humans with brains rather than brawn.

Unethical AI designs may incite resentment and hatred among humans, and con humans out of

their wealth. Humans may not even be aware that manipulative AI is the source of their troubles.

 This book describes a number of technical problems facing the design of ethical AI

systems and makes the case for various approaches for solving these problems. The first chapter

argues that whereas current AI systems use models of their environments that are simpler than

human mental models, future AI systems will be different because they will learn environment

models that are more complex than human mental models. This will make it difficult to include

safeguards in their designs.

 This book makes the case for utilitarian ethics for AI in its second chapter. Any complete

and transitive preferences among outcomes can be expressed by utility functions, whereas

preferences that are not complete and transitive don't support the choice of a most prefered

outcome. We often think of ethics as a set of rules. Utility functions can express the preferences

defined by rules and provide a way to resolve the ambiguities among conflicting rules.

 The fourth chapter makes the case that the technical, mathematical problems of infinite

sets can be avoided by restricting AI definitions to finite sets, which are adequate for our finite

universe.

 Chapter five defines the problem of unintended instrumental actions. These have been

described as "basic AI drives" and as "instrumental goals." However, this book argues that these

are properly described as actions rather than drives or goals.

iii

 In its sixth chapter this book argues that the problem of self-delusion can be avoided

using model-based utility functions. This chapter also defines the problem of inconsistency

between the agent's utility function and its definition (Armstrong (2015) refers to one case of this

problem as "motivated value selection").

 The seventh chapter argues that humans are unable to adequately describe their values by

any set of rules, and that human values should instead be learned statistically. Accurately learned

human values are the key to the avoiding unintended instrumental actions described in the fifth

chapter. Chapter seven describes the problem of corrupting the reward generator (Bostrom

(2014) calls this "perverse instantiation") and argues that it can be avoided using a three-

argument model-based utility function that evaluates outcomes at one point in time from the

perspective of humans at a different point in time. This chapter also discusses integrating Rawls'

Theory of Justice into AI designs, and the issue of AI systems that evolve to adapt to the values

of an evolving humanity.

 Chapter eight describes several problems for AI systems embedded in the real world:

how they evaluate increases to their limited computational resources, the possibility of being

predicted by other agents, and the possibility that AI systems may violate their design intentions

as they and humanity evolve. It proposes a self-modeling framework for such systems and

describes how this framework can enable systems to evaluate increases to their resources, avoid

being predicted by other agents, and avoid inconsistency between the agent's utility function and

its definition (avoiding this problem contributes to maintaining the invariance of design

intentions). The eighth chapter also discusses the difficulty of proving ethical properties of AI

systems and proposes an alternate approach of estimating and minimizing the probability of

failure.

 The ninth chapter describes the issues of testing AI systems. It discusses the problem of

tested AI systems acting in the real world.

 Chapter ten describes political problems associated with AI systems. When greater-than-

human intelligence can be created by technology, it will be difficult to avoid a future in which

inequality of wealth among humans translates into inequality of intelligence. This chapter makes

the case that developers of advanced AI systems represent the interests of all future humans and

should be transparent about their efforts.

 The eleventh chapter expresses my hope that humanity will employ its super-intelligent

AI systems to add meaning to their lives via scientific discovery, rather than to pursue a

hedonistic dead end.

 The AI design proposed in this book is collectivist and intrusive. This does not match my

political instincts, which are somewhat libertarian. However, as discussed in Section 10.3, a

libertarian approach to powerful AI would create competition among AI systems which may be

dangerous to humans. Safety constraints on competing systems may be difficult to enforce.

 I wish to thank Terri Gregory and Leanne Avila for help with the manuscript, and

Howard Johnson for help with my figure drawing process. For typo and error reports, and other

iv

suggestions, I wish to thank Joshua Fox, José Hernández-Orallo, Luke Muehlhauser, Brian

Muhia, Laurent Orseau, John Rose, Richard Sutton, and Tim Tyler. Please send reports of typos

and errors, and any other suggestions, to me at hibbard@wisc.edu.

 This book will be permanently available at: arxiv.org/abs/1411.1373. More frequent

updates should be available at: www.ssec.wisc.edu/~billh/g/Ethical_AI.pdf.

 My AI fiction is available at: https://sites.google.com/site/whibbard/g/mcnrs.

v

Table of Contents

1. Future AI Will be Different from Current AI ... 1

1.1 Book Outline ... 7

2. How Should We Instruct AI? ... 9

2.1 A Mathematical Framework for AI ... 12

2.2 Utility-Maximizing Agents ... 14

2.3 Utilitarian Ethics for AI .. 19

3. How Can AI Agents Learn Environment Models? ... 21

3.1 Universal AI ... 23

3.2 A Formal Measure of Intelligence ... 24

3.3 Modifications of the Agent Framework .. 26

3.4 The Ethics of Learned Environment Models ... 28

4. AI in Our Finite Universe ... 29

4.1 Learning Finite Stochastic Models .. 31

4.2 When Is the Most Likely Finite Stochastic Model the True Model? 34

4.3 Finite and Infinite Logic ... 41

4.4 Agents Based on Logical Proof .. 46

4.5 Consistent Logic for Agents .. 48

4.6 The Ethics of Finite and Infinite Sets for AI ... 50

5. Unintended Instrumental Actions .. 51

5.1 Maximizing Future Choice .. 52

5.2 A Pandora's Box of Instrumental Behaviors ... 54

5.3 The Ethics of Unintended Instrumental Actions ... 57

6. Self-Delusion ... 59

6.1 The Mathematics of Self-Delusion .. 60

6.2 Model-Based Utility Functions .. 62

6.3 A Simple Example of a Model-Based Utility Function .. 64

vi

6.4 Another Simple Example ... 72

6.5 Two-Argument Utility Functions ... 75

6.6 Ethics and Self-Delusion .. 75

7. Learning Human Values .. 78

7.1 A Two-Stage Agent Architecture... 79

7.2 Computing Utility from Human Values ... 81

7.3 Corrupting the Reward Generator and Three-Argument Utility Functions 83

7.4 Normalizing Utility Values ... 86

7.5 Rawls' Theory of Justice .. 87

7.6 Evolving Humanity .. 88

7.7 Bridging the Gap between Nature and Computation ... 89

7.8 The Ethics of Learning Human Values Statistically ... 90

8. Evolving and Embedded AI ... 93

8.1 Evolution of Cartesian Dualist Agents with Unlimited Resources 95

8.2 Non-Cartesian Dualist Agents with Limited Resources .. 97

8.3 Space-Time Embedded Intelligence .. 100

8.4 Self-Modeling Agents .. 101

8.5 Inductive Biases .. 110

8.6 A Three-Stage Agent Architecture .. 111

8.7 Invariance of the Agent Design Intention ... 111

8.8 The Ethics of Evolving and Embedded AI .. 117

9. Testing AI ... 120

9.1 An AI Testing Environment ... 120

9.2 Will the Tested Agent Act in the Real World? .. 125

9.3 The Ethics of Testing AI ... 127

10. The Political Dimension of AI .. 128

10.1 The Changing Role of Humans .. 129

vii

10.2 Intrusive and Manipulative AI ... 130

10.3 Allocating the Benefits of AI ... 132

10.4 One or Multiple AI Systems? .. 133

10.5 Power Corrupts ... 134

10.6 Temptation .. 135

10.7 Representation and Transparency .. 136

11. The Quest for Meaning ... 138

11.1 Really Great Bread and Circuses ... 140

11.2 Next Steps ... 141

References .. 143

Appendix A .. 153

Appendix B .. 157

Index .. 166

1

1. Future AI Will be Different from Current AI

 News stories about dramatic progress in AI are common. IBM's Watson beat champions

of the sophisticated language game Jeopardy. As of April 2014 Google's self-driving car had

logged 700,000 miles without any accidents. Videos show how Boston Dynamics' walking robot

named Atlas is uncannily human-like. A computer system by DeepMind has learned to play

seven Atari video games, six better than previous computer systems and three better than human

experts, with no foreknowledge of the games other than knowing that the goal is to maximize its

score. Vicarious has developed a system that reliably solves CAPTCHAs, which are intended to

distinguish humans from computers. In some tests, computers surpass human skill at face

recognition. Microsoft has created a system that can recognize thousands of different kinds of

objects in images. More generally, automation is revolutionizing manufacturing and other

industries.

 To recognize that these efforts will ultimately surpass human intelligence at all tasks,

consider the progress of neuroscience. Scientists have found detailed correlations between

stimuli to human senses and activity in human neurons, and between human neural activity and

muscle action. They have found neurons that activate when visual stimuli have specific shapes or

move in specific ways. They have found neurons, called mirror neurons, in monkey brains that

activate when a monkey rips paper, or when it sees a human rip paper, or even hears paper

ripping (Rizzolatti and Craighero 2004). When studying the ability of animals to learn, scientists

have found detailed correlations between patterns of neural activity and known learning

algorithms designed by computer scientists (Schultz, Dayan and Montague 1997; Brown,

Bullock and Grossberg 1999; Seymour et al. 2004). These correlations indicate that neurons in

these animal brains learn by the same algorithms used for computer learning. All these detailed

correlations between physical brain functions and mental behaviors would be absurd

coincidences unless brains explain minds. And if minds have a physical basis, then our relentless

technological progress will create artificial brains with minds like our own (our technology never

says "impossible," just "not yet"). By scaling the physical size and complexity of these artificial

brains, they must eventually surpass human intelligence.

 Another way to understand the eventual progress of AI is to consider IBM's Watson.

Watson was quite successful at beating the Jeopardy champions at their own game. Its language

ability was learned by statistical analysis of extensive text databases, plus custom programming

to help it avoid mistakes (early versions of the system made obvious gender errors). Its success

was remarkable given that its language processing was based only on the relation of language to

other language, and not on the relation of language to any physical skills observing and acting in

the world. However, other AI systems do observe and act in the physical world, like Google's

self-driving car, Boston Dynamics' walking machines, and systems that fold laundry and perform

other difficult tasks. Now imagine a system that combines all these skills and similar skills

relating to the entirety of an ordinary human vocabulary. The imagined system would be able to

recognize all the objects of daily life visually and in some cases by their sounds, feel, smell, and

2

taste. Furthermore, the system would recognize actions involving these objects. Such

recognitions could be combined into its statistical analysis of language so that, for example, the

word chair would be associated with visual images of chairs and with actions involving chairs,

such as sitting on chairs and even building chairs. The imagined system would require

replicating the skill level already achieved in narrow areas (like driving a car) to all common

human activities, and would require extending Watson's statistical analysis of text to include the

system's sensory and motor experience. While this is a monumental task requiring much greater

computing resources than are used by Watson, it is not impossible. People working and

conversing with the imagined system would likely believe that it understands human language. A

group at Google has already demonstrated a system that combines image and text data in a

unified statistical analysis, in order to automatically produce captions for images (Vinyals,

Toshev, Bengio, and Erhan 2014).

 It is difficult to predict when human-level AI will first be produced. Ray Kurzweil, who

has a good track record at technology prediction, estimates this event will occur in 2029

(Kurzweil 2005). Technology companies are making large bets on the profitability of AI and

robotics. Google has recently hired Kurzweil, developed its automated car, and purchased

DeepMind, Boston Dynamics, Nest Labs, Bot&Dolly, Holomni, Meka Robotics, Redwood

Robotics, Industrial Perception, and Schaft Inc. (all developing AI and robotic systems). IBM is

applying its Watson technology to medicine. Facebook, Microsoft and several defense

contractors are making similar large investments in AI development. All these efforts are

accelerating.

 As with any tool, we will build AI to make our work easier and to do work that we

otherwise cannot. For example, it will be easier to travel in a car that drives itself, and it will be a

necessity when I am too old to drive myself. The car is a nice illustration of the evolution of AI

from other tools. The cars of the 1960s did not sense their environment nor did they act on their

own. They merely responded to actions by their human drivers. Over time sensors were added to

cars. When the car detected skidding tires, it would act to pump the brakes, and when the car

detected a collision, it would deploy airbags to cushion impacts. Some cars can now detect the

danger of collision with other cars and respond by applying the brakes. These systems maintain

very simple information about the state of their environment. Google's self-driving car maintains

much more complex information about the state of its environment. Its sensors catalog all objects

near the car, such as roads, curbs, traffic signs and signals, other cars, trucks, bicyclists and

pedestrians. These objects are matched to a map of the environment that the car stores in its

memory, so that it knows where it and the objects around it are. The car has a model of the

environment that it can use to plan its actions in order to reach its goal of delivering its

passengers to their desired destination safely. The car's environment model includes locations of

one way streets and main artery streets, speed limits, and school zones. The model could be

updated with real-time traffic congestion and construction information. All this information is

used by an algorithm for choosing the quickest route to the passengers' destination.

 Factory process control systems contain models of their environments. Even home

thermostats contain a simple model of the environment. What distinguishes the Google car is the

3

complexity of its environment model and of its planning process. However, for all its complexity

this AI model fits easily within the larger context of the environment models in human minds.

Human passengers riding in a Google car use a mental model of the streets and other objects

around them. The car's model may be a little more precise, for example, knowing that the car is

9.31 meters from a stop sign, but the human passengers certainly have an adequate model to take

over driving. Furthermore, once a passenger reaches her office building and goes to work, she is

interacting with an environment completely outside the car's model. The car knows nothing of

the hallways, rooms and computer systems inside the building, nothing about the documents on

those systems, and certainly nothing about the customers those documents are meant to serve.

The car's model is very limited in scope whereas the passengers have very broad and rich

environment models in their minds. In other words, the car's model corresponds to a small subset

of a passenger's model.

Figure 1.1 Self-driving car and its model of the environment.

 The environment model of the Google car is mostly designed by humans. Humans

compile the maps it uses. While the car learns to recognize roads, curbs, traffic signals, other

cars, trucks, bicyclists, and pedestrians by semi-automated algorithms, human engineers

4

supervise this learning. And human engineers define the car's responses to these objects.

Carefully specifying the car's responses is important for safety, not only for drivers of other cars,

but for pedestrians and bicyclists as well. When a Google car approaches an intersection to turn

right and bicyclist is coming up on the right, the car waits for the bicycle to pass. If pedestrians

are waiting near the intersection, the car waits for them to cross. These cautious responses are

spelled out by the car's designers and will ultimately make these cars safer than those driven by

impatient humans. The Google car is the state of the art of current AI, and as its environment

model is mostly designed by humans, it fits neatly within humans' mental models of the world.

The car's environment model cannot express any action to manipulate or threaten humanity.

 Now imagine a time in the future when everyone has a constant electronic companion

with which they can speak. It may be embodied in a device that looks like a phone, or it may be

embodied in clothes or jewelry. You can: ask this companion for information, use it to order food

deliveries, use it to make phone calls to other people, use it to tell your car where it should take

you, ask it to wake you at a certain time or to remind you of appointments, ask it for the latest

news, play chess with it, or simply have a conversation with it. Also imagine that some large

corporation, named Omniscience, will supply these companions to everyone and that they will

all be connected to Omniscience's central AI server. This AI will not only be intelligent enough

to speak with customers in their own language, it will be smart enough to combine its knowledge

of each customer into a detailed model of human society. It will have detailed maps of human

friendships and business relations, and will know much about the details of these relationships. It

will know in detail how individuals influence other individuals. When an idea or product spreads

by word of mouth, it will be able to predict that spread. The Omniscience AI will be able to use

its social model to predict which ideas and products will "go viral" and to predict the best way to

promote ideas and products. The AI will also be able to use its social model to understand

politics and how to promote public policy ideas that give Omniscience advantages.

 Because the Omniscience AI will have much greater physical capacity than human

brains, its social model will be completely beyond the understanding of human minds. Asking

humans to understand it would be like asking them to take the square root of billion-digit

numbers in their heads. Human brains do not have enough neurons for either task. And the social

model will be learned by the AI rather than designed by humans. In fact humans could not design

it. Consequently, humans will not be able to design-in the types of detailed safeguards that are in

the Google car.

 Now imagine that you are CEO of Omniscience. With traditional tools, even tools like

self-driving cars, the tool fits into your mental model. The tool has a limited scope, and you must

guide it within the larger context. For example, a self-driving car has no idea where you should

go; instead you have to tell it. But as CEO of Omniscience you realize that your server doesn't fit

into a niche within your world model. It cannot explain to you what it has discovered about the

world and then ask you for a decision. You cannot understand the intricate relationships among

the billions of people who use your electronic companions. You cannot predict the subtle

interactions among the spreads of different ideas. So imagine, as the CEO, you throw up your

hands and say to the server, "Do what's best for the corporation. Maximize profits."

5

Figure 1.2 Omniscience AI explaining its social model and CEO throwing up hands.

 But a simple instruction like "Maximize profits" may have very harmful side effects.

Most humans given this instruction will balance it against social norms such as "do not kill" and

"do not steal." The AI may calculate that such harmful acts will have legal consequences that

lower profits; however, if it can calculate a way to avoid those legal consequences, it will

commit those harmful acts. If the AI is to respect social norms, then they must be included in its

explicit instructions. Eliezer Yudkowsky (2001) has been at the forefront of warning about this

kind of danger from AI. In a simple example, a machine whose goal is to play chess as well as

possible may dismantle our infrastructure and even our bodies, redeploying this matter to

6

increase the size and power of its circuits in order to optimize its chess playing. If the chess

machine faces another chess machine that may defeat it, it may calculate that the solution is to

simply smash the other machine, as depicted in Figure 2.3.

Figure 1.3 A chess AI whose instructions do not include social norms.

 Humans have created other tools whose unintended consequences are harmful. Drugs can

cure infections and ease pain but also lead to allergic reactions and addiction. Motor vehicles

greatly increase mobility and ultimately wealth, but they also harm people in accidents and

pollute our environment. Energy from hydrocarbons enables transportation, heated and cooled

buildings, and increased productivity from farming and manufacturing. But fossil fuel energy

also changes our climate. As we discover the unintended consequences of our tools, we can try to

find ways to mitigate those consequences. We have time to notice the harm, figure out the cause,

and act to eliminate it.

 Consider the power of Omniscience's AI to understand and manipulate public opinion. It

may create a public movement against regulating AI. It may encourage humans to become

7

addicted to itself. It may extend its senses into every aspect of its users' lives. It may create social

pressure for non-users to become users. And its actions may be too subtle for us to understand

that it is the source of harm. It may be able to deflect the blame for harmful effects to others. If

we develop deep friendships with the companions we get from Omniscience, then we may be

reluctant to blame them for general social harm. As a result, we may not be able to mitigate harm

done by Omniscience's AI.

 All this malicious behavior by Omniscience's AI does not require malicious intent by the

Omniscience CEO. It is simply an unintended consequence of the instruction to maximize

profits, carried out by an AI more intelligent than humans.

 Because their environment models will exceed the complexity of human mental models

and because their models will be learned rather than designed by humans, future AI systems will

be fundamentally different from current AI. When we instruct future AI, we will not be able to

anticipate all the consequences of those instructions.

1.1 Book Outline

 The next chapter describes a way to instruct future AI systems by assigning numerical

values to the outcomes resulting from actions by AI systems. It also describes how numerical

values assigned to outcomes fit into a mathematical framework for the way that AI systems

interact with their environments. The third chapter describes a way that AI systems can learn

models of their environments. Together, numerical values assigned to outcomes and a model of

the environment enable us to write down mathematical equations that define the behavior of

future AI. We can use these equations to analyze the behaviors of future AI systems in order to

design systems that help rather than harm humans.

 The fourth chapter discusses how mathematical equations for intelligence should be

limited to finite amounts of information. Infinite sets are mathematically interesting but not

necessary in our finite universe.

 The fifth chapter describes how AI systems may choose actions harmful to humans,

despite the fact that those actions are not intended in the AI system's design. These unintended,

harmful actions make the design of future AI systems very difficult.

 The sixth through eighth chapters present a proposed AI system design as a set of

mathematical equations. Advanced AI systems will need to learn their own environment models

and our intentions for their behavior must be expressed in terms of their learned models. Chapter

six discusses ways of assigning numerical values to outcomes based on learned environment

models. This is also a way to avoid AI systems that intentionally delude themselves about their

environments. Chapter seven discusses a way to assign numerical values to outcomes that

expresses our human values while avoiding several pitfalls. Accurate expression of human

values is the key to avoiding the unintended, harmful actions described in the fifth chapter. AI

8

systems must exist in the real world, subject to the resource limits and vulnerabilities of any

creature in the real world. Chapter eight describes how to adapt the mathematical equations of

intelligence to AI in the real world. It also discusses the problem of ensuring that AI system

designs will remain ethical as they and humanity evolve together.

 The ninth chapter proposes a system design, based on our mathematical equations, for

testing proposed AI designs while avoiding the risks they pose. Transparency and an ethical

culture are vital components of AI development and testing.

 Chapter ten discusses the politics of AI. If we know how to design ethical AI, how can

we make sure that real AI systems conform to ethical designs? And how will the benefits of AI

be allocated among humans?

 Finally, Chapter eleven discusses the ultimate goal of building AI. If future AI systems

help rather than harm humans, our physical needs will be easily met. At that point, the only

challenge worthy of humanity and its super-intelligent AI systems will be to understand the

nature of the universe and our place in it.

9

2. How Should We Instruct AI?

 In his short story, "Runaround", Isaac Asimov presented his Three Laws of Robotics
(Asimov 1942):

1. A robot may not injure a human being or, through inaction, allow a human being to come
to harm.

2. A robot must obey the orders given to it by human beings, except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with

the First or Second Laws.

 Asimov and other authors explored the ambiguities of these laws in subsequent stories. In

his novel The Naked Sun, Asimov showed how robots may unknowingly break the three laws. A

human criminal may divide a violation into tasks for several robots so that no one robot can see

its part in violating the laws. In addition, robots may not have correct definitions of "human" and

"robot"; they may be misinformed about who is human or may be unaware that they are robots.

And finally, there may be conflicts between the laws. If a robot sees one human about to harm

another human as depicted in Figure 2.1, it may have to choose between harming the first or

allowing the first to harm the second.

Figure 2.1 An AI police officer watching a hitman aim a gun at a victim.

10

 Returning to the future scenario where you are the CEO of Omniscience, you may

anticipate the unintended consequence of the instruction to maximize profits. So instead your

instruction is, "Maximize profits but don't harm anyone."

 The AI may answer, "What do you mean by harm? Do you mean I shouldn't drive hard

bargains? Do you mean I shouldn't sell anyone anything they don't really need? Do you mean I

shouldn't lobby the government for our advantage?" As you ponder these questions, the server

adds, "If I am generous with everyone, Omniscience will go out of business and the stockholders

will lose all their money. That will harm them."

 As CEO if you try to dig into the details of these tradeoffs, you will end up having to

understand the AI's social model. But you will not be able to understand your AI's model well

enough to give it detailed instructions. A simple high-level instruction like "maximize profits"

will cause harm to people and yet it seems hopelessly complex to formulate instructions for your

AI to balance the ambiguities of maximizing profits versus minimizing harm.

 One approach to resolving the ambiguities of Asimov's Laws is to instruct AI systems by

defining numerical values for each possible outcome. Section 2.1 will explain how such

numerical values fit into a mathematical framework for future AI systems. Profit is a value

associated with outcomes, as in the Omniscience example, but there are other ways to define

values for outcomes that account more generally for human welfare. To make the approach clear,

in Figure 2.1 let's simplify and assume there are three outcomes for both the hitman and the

victim: they may be shot dead, shot but only wounded, and not shot. Combining these, there are

three times three equals nine possible outcomes. Table 2.1 shows one way to assign values to

these outcomes. The AI robot can use these values to calculate what it should do.

 Hd: hitman

shot dead

Hw: hitman

wounded

H+: hitman

not shot

Vd: victim

shot dead

0.0 0.1 0.2

Vw: victim

wounded

0.4 0.5 0.6

V+: victim

not shot

0.8 0.9 1.0

Table 2.1 Three by three table of values for hitman and victim outcomes.

11

Outcome Outcome

value

AI shoots at

hitman:

probability of

outcome

AI shoots at

hitman:

probability ×

outcome value

AI doesn't

shoot:

probability

of outcome

AI doesn't

shoot:

probability ×

outcome value

Hd, Vd 0.0 0.0 0.0 0.0 0.0

Hd, Vw 0.4 0.0 0.0 0.0 0.0

Hd, V+ 0.8 0.7 0.56 0.0 0.0

Hw, Vd 0.1 0.01 0.001 0.0 0.0

Hw, Vw 0.5 0.01 0.005 0.0 0.0

Hw, V+ 0.9 0.18 0.162 0.0 0.0

H+, Vd 0.2 0.07 0.014 0.7 0.14

H+, Vw 0.6 0.02 0.012 0.2 0.12

H+, V+ 1.0 0.01 0.01 0.1 0.1

Total

value

 1.00 0.764 1.00 0.36

Table 2.2 Table of values for AI's actions for hitman and victim.

 An added complexity is that the AI robot may not be sure of which outcomes will result

from its actions. It may shoot at the hitman but miss. If it hits the hitman, he may die or may only

be wounded. Or the AI may do nothing, but the hitman runs away instead of shooting. So the AI

needs to compute probabilities of possible outcomes from its different actions and use these to

compute an expected value of each action. The expected value is a concept from probability

theory that means the average value we would get from the action if we could repeat the scenario

many times. In the example of hitman and victim, repeated trials would produce piles of dead

and wounded hitmen and victims, an outcome we definitely do not want. So instead the AI must

estimate probabilities of outcomes based on experience and then compute the expected value of

an action as the sum of the values of the possible outcomes multiplied by their probabilities (as

will be discussed in later chapters, an AI system without experience for estimating probabilities

should not be allowed to make serious decisions). Once the AI has computed the values of each

of its possible actions, then it can choose the action with the greatest value. Table 2.2 shows this

12

worked out for the hitman and victim using the values from Table 2.1 (note that the probabilities

in the third and fifth columns sum to 1.0). Since the total value for shooting is 0.764 and the total

value for not shooting is 0.36, the AI will choose to shoot. The total values of the AI actions are

largely determined by the values of the most probable outcomes. In a tie, the AI can flip a coin

since there is no preference between actions of equal value.

 Assigning numerical values to outcomes enables us to resolve the ambiguities of

instructing AI systems. In the Omniscience example, the value of an outcome is simply the profit

associated with that outcome. But we also have the option to use numbers other than profits in

the values of outcomes, reflecting the well-being of humans affected by the AI's actions. This

option requires us to define numerical values for human well-being, which may seem difficult or

impossible. But as we will see in Section 2.2, any set of preferences among outcomes, subject to

reasonable assumptions, can be expressed by assigning numerical values to outcomes.

 In order to see where these preference numbers fit into future AI, the next section will

define a mathematical framework for AI systems (called agents in the framework) and their

environments. The basic idea is that the agent and the environment interact at a discrete sequence

of times (e.g., once per second). We often think of time as continuous but a discrete series of

times, divided finely enough, serves as well. Computers operate in discrete time steps. And as

our universe has finite, if very large, information content, discrete time steps need not miss any

information. The agent sends its actions to and receives observations from the environment.

 The agent uses a model of the environment to predict what observations it receives in

response to its actions. At its deepest level our universe works according to quantum mechanics

and so is fundamentally uncertain. The agent's observations give it a view of only part of the

environment, making the agent's predictions uncertain. For example, the earth is bombarded with

cosmic rays from other stars that we have no way to predict. So the agent's environment model

must be expressed as probabilities for the observations it receives−such models are called

stochastic. Given this agent-environment framework, Section 2.2 will develop equations for

computing which action will maximize the outcome value.

2.1 A Mathematical Framework for AI

 A current approach views AI as an agent interacting with an environment (Russell and

Norvig 2010; Sutton and Barto, 1998). The term agent applies to AI systems as well as to

humans, animals, and even plants. We assume that the agent interacts with its environment in a

discrete series of time steps t ∈ {0, 1, 2, ...}. This series of time steps may be finite with a last

time step T, or may be infinite with no last time step. At time step t, the agent sends an action

at ∈ A to the environment and receives an observation ot ∈ O from the environment, where A

and O are finite sets. We use h = (a1, o1, ..., at, ot) to denote an interaction history during which

13

the environment produces observation oi in response to action ai for 1 ≤ i ≤ t. Let H be the set of

all finite histories so that h ∈ H, and define |h| = t as the length of the history h.

Figure 2.2 An agent interacting with its environment.

 As discussed in the previous section, the agent's predictions of possible observations are

uncertain. Thus the agent's environment model takes the form of a probability distribution over

interaction histories:

 ρ : H → [0, 1].

 Here [0, 1] is the closed interval of real numbers between 0 and 1. The probability of

history h is denoted ρ(h). Given h = (a1, o1, ..., at, ot) let ha denote (a1, o1, ..., at, ot, a) and hao

denote (a1, o1, ..., at, ot, a, o). Then we can define a conditional probability:

(2.1) ρ(o | ha) = ρ(hao) / ρ(ha) = ρ(hao) / ∑o'∈O ρ(hao').

 This equation is the agent's prediction of the probability of observation o in response to

its action a, following history h. The histories hao' are mutually exclusive for all the o' ∈ O, so

the probability of one particular observation o following ha is simply the probability of hao

divided by the sum of the probabilities of hao' for all o' ∈ O. Figure 2.3 illustrates this concept.

 The probability distribution ρ(h) can be understood as an environment model, much like

the street map in a self-driving car's model. Consider that a may be the action of driving down

the street, o may be the observation of Bud's Diner on the right, and ρ(o | ha) is the probability

that we will observe Bud's Diner if we drive down the street, after a prior history of actions and

observations h. In a practical AI system, like a self-driving car, observations and actions are

14

complex computer data structures, and the probability distribution ρ(h) is expressed in a massive

database and millions of lines of code.

Figure 2.3 Each o∈O takes its share ρ(hao) / ∑o'∈O ρ(hao') of the total probability of 1.0.

 In Chapters 3 and 4 we will discuss ways that the agent can learn its environment model

ρ(h). The next section describes where outcome values fit into the agent-environment

framework.

2.2 Utility-Maximizing Agents

 Numerical values assigned to outcomes can express any set of preferences among

outcomes that obey two reasonable assumptions, called completeness and transitivity (explained

later in this section). The numerical function of outcomes is called a utility function. An agent

can achieve its optimal preference by maximizing the utility function. However, as in the

example of the hitman and the victim, agent actions are associated with sums of outcomes

weighted by probabilities. These are called lotteries. John von Neumann and Oskar Morgenstern

(1944) proved that numerical values assigned to outcomes can express any set of preferences

among lotteries that obey four reasonable assumptions (for lotteries, continuity and independence

are added to completeness and transitivity). While this work was explained in the context of

economic preferences, it can also be applied to ethical preferences.

15

 Let Ai, for i = 1, 2, 3, …, be a set of mutually exclusive outcomes. Then, using von

Neumann's and Morgenstern's terminology, a lottery is any sum:

 L = ∑i pi Ai where ∑i pi = 1

 Here pi is the probability of outcome Ai. In addition, the agent has preferences among

lotteries. We write L ≺ M to mean that the agent prefers M over L, write L ≈ M to mean there is

no preference between L and M, and write L ≼ M to mean that L ≺ M or L ≈ M. Then the four

assumptions are, for any L, M and K:

Completeness: Exactly one of the following holds: L ≺ M, M ≺ L or L ≈ M,

Transitivity: If K ≼ L and L ≼ M then K ≼ M,

Continuity: If K ≼ L ≼ M then there exists p ∈ [0, 1] such that p K + (1-p) M ≈ L,

Independence: If L ≺ M then for any K and p ∈ (0, 1], p L + (1-p) K ≺ p M + (1-p) K.

 Here (0, 1] is a half-closed interval of numbers greater than 0 and less than or equal to 1.

A utility function u maps from outcomes to real numbers between 0 and 1. We can extend the

utility function to lotteries as an expected value:

 E(u(L)) = ∑i pi u(Ai) if L = ∑i pi Ai.

 E(u(M)) = ∑i qi u(Ai) if M = ∑i qi Ai.

 Here E(u(L)) denotes the expected value of u(L) and is the average value we would get

for u(L) if we ran the lottery many times. The von Neumann and Morgenstern Utility Theorem

says that a set of preferences obeys the four assumptions, if and only if there exists a utility

function u such that L ≺ M if and only if E(u(L)) ≺ E(u(M)).

 In the case of Omniscience we discussed how profit was one way of assigning values to

outcomes. Profits are accounted at regular time intervals and what corporations really work to

maximize is the sum of current and future profits. Let's assume that profits are reported once per

year. At year t we make a prediction that profits at year t+i, for i = 0, 1, 2, …, will be profit(t+i).

16

However, we cannot compare dollars now to dollars a year from now, since a dollar invested

now will be worth a dollar plus interest in a year. Inverting this statement, a dollar of profit in a

year is worth less than a dollar now, say some value 0 < γ < 1. This value is called the discount

rate. And a dollar of profit in two years is worth γ2 now. Currently, at time t, the entire stream of

predicted future profits is worth:

(2.2) ∑i≥0 γi profit(t+i).

 Omniscience is trying to maximize this sum. We can generalize it to agents trying to

maximize utility. The only information an agent has about an outcome is the sequence of actions

and observations it has exchanged with the environment; thus the most general definition of

outcomes is to equate them with interaction histories. Given any interaction history h we let u(h)

denote its utility. As with Omniscience's profits, the agent tries to maximize the sum of future

discounted, predicted utility values. The sum in equation (2.2) assumes that Omniscience has

predicted the value profit(t+i) without explaining how it is predicted. However, an agent predicts

the future using the probability distribution ρ(h) and its conditional probabilities ρ(o | ha) derived

according to equation (2.1). Therefore, we need something a little more complex than equation

(2.2). Think of the agent's interactions with the environment as a chess game, in which the agent

and the environment alternate actions and observations. Let v(h) denote the total value of history

h, adding present utility u(h) and discounted, predicted future utilities. And let v(ha) denote the

value after action a. We can compute v(h) and v(ha) by:

(2.3) v(h) = u(h) + γ max a∈A v(ha),

(2.4) v(ha) = ∑o∈O ρ(o | ha) v(hao).

 In equation (2.3), v(h) is computed as u(h) plus the maximum value that the agent can

achieve with its next action, discounted by γ. In equation (2.4), v(ha) is the expected value after

the environment's response, which is a sum of values for different observations, each multiplied

by the probability of that observation. Equations (2.3) and (2.4) are applied alternately and

recursively. That is, the value v(hao) in (2.4) is v(h') where h' = hao, and v(h') is evaluated using

(2.3). The sum in (2.4) results in many different histories, hao, that must be evaluated in (2.3),

and the maximization in (2.3) results in many different histories, ha, that must be evaluated in

(2.4). Equations (2.3) and (2.4) result in a bushy tree of computations evaluating all posible

future histories. If there are only a finite number, T, of time steps, then the recursion ends at that

final time. The values n time steps in the future are multiplied by γn which converges toward 0 as

n increases, so that even if there is no final time, the recursive sum converges. The function v(.)

17

is called a value function. To ensure that v(.) converges in equations (2.3) and (2.4), we assume

that 0 ≤ u(h) ≤ 1.

Figure 2.4 AI equations (2.3)−(2.5) view the world as a giant chess game.

 We can use this method of computing the values of future histories to define the actions

of a rational agent, denoted by the symbol π:

(2.5) π(h) := a|h|+1 = argmax a∈A v(ha).

18

 Here argmax means that π picks the action a∈A that maximizes v(ha). The agent π is

defined in terms of a utility function u, an environment model ρ and a temporal discount γ. The

function π(h) is also called a policy.

 This rational agent π gives us a way to study future AI systems. Although we cannot yet

build systems more intelligent than humans, we can analyze π mathematically to understand its

possible harmful behaviors.

 It is interesting to see how the definition of the rational agent π fits into the context of

outcomes and lotteries. Interaction histories h ∈ H play the role of outcomes in the utility

function u(h) used by π. The value v(h) can be viewed as another utility function, derived by

summing over future discounted values of u(h). Viewing v(h) as a utility function, the sum for

v(ha) in (2.4) takes the form of the expected utility of a lottery over a set of mutually exclusive

histories, and the choice of action that maximizes v(ha) in equations (2.3) and (2.5) takes the

form of a preference among those lotteries.

 Assuming that each possible future action by the agent is associated with a lottery of

possible outcomes, consider agents whose preferences violate the four assumptions of the von

Neumann and Morgenstern Utility Theorem. An agent whose preferences violate the

completeness assumption may not have any way to decide between two possible actions. (This is

"don't know" and different from the "don't care" indicated by L ≈ K. Given two candidates for

elected office, this is the difference between not knowing anything about them, and knowing

about them and thinking they are equally suited to office.) An agent whose preferences violate

the transitivity assumption may be unable to choose an action that is preferred over all other

possible actions (because there may be a cycle of preferences among three actions/lotteries

K ≺ L ≺ M ≺ K so that none of the three is preferred over the other two).

 If the continuity assumption is violated, there are cases where there is no probability that

produces "no preference" between two actions. However, because an agent is searching for

actions associated with preferred outcomes rather than probabilities that produce no preference

between actions, violations of the continuity assumption do not prevent an agent from deciding.

The independence assumption refers to preferences between two lotteries that both include the

same outcome. If outcomes are identified with histories, as in the definition of π, then the

lotteries associated with two different actions cannot include any common outcomes (because

a ≠ a' implies haoh" ≠ ha'o'h'). Therefore, violations of the independence assumption do not

prevent an agent from deciding, at least for agents that identify outcomes with histories.

However, violations of the continuity and independence axioms can result in agents whose action

decisions change in unintuitive ways as the probabilities in their environment models change.

 It is not hard to show that any complete and transitive preferences among a countable set

of outcomes (such as the set H of interaction histories) can be expressed by a utility function u(.).

This utility function can be extended to lotteries L = ∑i pi Ai by u(L) = ∑i pi u(Ai). This extension

of u(.) defines preferences among lotteries which satisfy the continuity and independence

19

assumptions. Thus if we are satisfied to derive lottery preferences from outcome preferences, the

completeness and transitivity assumptions are sufficient. And necessary, in order for agents to be

capable of choosing actions.

2.3 Utilitarian Ethics for AI

 Utilitarianism is a system of normative ethics that says we should choose actions that

maximize benefit and minimize suffering. For a mathematical agent, benefit and suffering are

defined by a utility function.

 The principal criticism of utilitarian ethics is that they can allow morally bad actions such

as lying and stealing when those actions have good consequences. In contrast, rule-based ethical

systems focus on the intrinsic morality of actions. However, following a set of rules may lead to

ambiguous situations, such as the ambiguities in Asimov's laws of robotics. The way to resolve

these ambiguities is to recognize that environments may present agents with situations where all

choices of actions involve breaking rules. A utilitarian system can provide a means of resolving

such ambiguous situations by defining the utility value of each human history according to the

number and severity of rules that the agent breaks by its actions in the history. Thus utility

functions can express rule-based ethics.

 Another criticism of utilitarian ethics is that they ignore the intention behind actions.

However, all we know of a human being's intention is their behavior, which is their interactions

with their environment. Humans may express their intentions directly via language, or we may

infer their intentions from patterns of behavior, such as preparations to commit a crime. A utility

function defined in terms of a history of an agent's interactions with its environment can express

the agent's intention (inferred from its language or via other patterns of its behavior) as well as

any other means.

 However, the behavior of advanced AI agents may be sufficiently different from human

behavior that we will have difficulty inferring their intentions. In fact, there is debate about

whether AI systems can have intentions. If we believe that utility-maximizing agents have

intention, then their intention is simply to maximize the utility function that we humans design

for them. If we believe that AI agents cannot have intentions, then we must assign the intention

behind AI actions to the humans who create the AI systems and design their utility functions.

Either way, the human creators of advanced AI systems must take ethical responsibility for those

systems.

 A third objection to utilitarianism is based on the belief that human life is qualitatively

different from material wealth, and that an ethical system should not assign numerical values to

human life and health that imply monetary values. It is true that we humans sometimes place a

disturbingly low monetary value on the life and health of ourselves and other humans; for

example, we tolerate the reality of unsafe working conditions for the sake of minimizing costs.

20

However, the utility functions discussed in the previous section do not require valuing human

life and health in material terms. The value we assign to a history can be based solely on the

observations of human life and health in that history such that no comparison between human

life and money is required. Values are defined for whole human histories rather than being

allocated among individual humans and material objects in those histories.

 A final objection to utilitarianism is that it forces us to choose preferences between

situations that are intrinsically incomparable. For example, pain and pleasure are subjective

making it is impossible to compare the way they are experienced between different people. But

humans do make such choices when they are forced to; society routinely decides how many

resources are devoted to the education and health care of individual humans. Humanity is

developing AI with great energy and with no realistic prospect of abandoning those efforts. If we

do not communicate our complete set of preferences to powerful AI systems, we leave those

choices to some non-human process. Arguably, the creation of powerful AI will force us to

choose.

 The key justification for utilitarian ethics for AI is that any ethical system that generates

complete and transitive preferences among possible human histories can be expressed by

assigning numerical utility values to those histories. Chapter 7 proposes a way to define such

utility values in a system that combines the preferences of all humans.

 Utility functions have problems other than traditional ethical objections. For example,

one particular form of utility function, whose values are supplied as rewards from the

environment, has been widely studied in reinforcement learning (RL) (Sutton and Barto 1998).

In this case the observations from the environment include a reward, which is simply a number

that defines the utility function value at that time step. The agent must learn which of its actions,

dependent on the current history, will result in maximum rewards. For example, the DeepMind

system learned to play seven different Atari games without any prior model for the games. This

remarkable system's only prior information was that it should seek to maximize the game score,

which is a reward from the environment. Chapters 6 and 7 will describe unintended and harmful

behaviors of AI systems seeking to maximize rewards from their environments. These

understandings can help us to design ethical AI systems. In fact, when DeepMind was acquired

by Google, part of the deal was a commitment by Google to set up a committee on ethical AI that

included one of DeepMind's owners (Bosker 2014).

 There is an important difference between RL and ethical AI. In the study of RL, utility

function values (rewards) are defined by the environment and are part of the problem to be

solved by the agent design whereas, in the study of ethical AI, utility functions are part of the

agent definition and hence part of the solution to the problem of defining agents that help rather

than harm humans.

21

3. How Can AI Agents Learn Environment Models?

 As noted previously, the environment model for current AI systems like the Google car is

mostly designed by human engineers. Future AI systems that exceed human intelligence will

need to learn environment models through their own exploration. Marcus Hutter (2005) had the

insight that AI model learning is mathematically similar to Ray Solomonoff's work on sequence

prediction (Solomonoff 1964). We assume that the agent's observations of the environment can

be generated by computer programs and design the agent to search for those programs. The

programs constitute the AI's environment model and generate the probability distribution used to

predict observations. This idea is important both for the theory of AI and for development of

practical AI systems. Hutter grounds his approach in the philosophies of Occam and Epicurus.

Occam's razor says that we should favor the simplest explanation that fits our observations.

Epicurus tells us to include all explanations consistent with our observations. Hutter's universal

AI models the environment with all programs that are consistent with the agent's observations,

but assigns higher probabilities to shorter programs.

Figure 3.1 Turing machine with one tape.

 In order to define the search for programs mathematically, Solomonoff and Hutter used

Turing machines (TM), named for their inventor Alan Turing (1936). A TM is an abstract

mathematical model of computation and, according to the Church-Turing thesis, can express any

computation that can be expressed in any other way. This thesis has been proved for every

known way of expressing computations and is widely accepted by computer scientists. TMs are

very simple. They start in a specially designated "start state" and, at each of a discrete series of

time steps, transition to a next state, chosen from a finite set of states, until they reach a "stop

state." A TM also has one or more infinite tape memories, each with a read/write head located

somewhere along the tape, and a finite set of rules that describe how the state changes (or the

TM halts) and whether and how the tapes are written and moved, depending on the current state

22

and the tape values (0 or 1) under the read/write heads. Figure 3.1 is a simple schematic of a TM

with one tape. Table 3.1 defines its state transition rules.

 tape read: 0 tape read: 1

start start, -, 1 s0, left, -

s0 s0, left, 1 s1, right, -

s1 s0, left, 1 stop, -, 0

stop halt halt

Table 3.1 State transition rules for a Turing machine with four states: start, s0, s1 and stop.

Given a previous state (in the left-hand column) and the contents under the tape head (in the top

row), the rules specify the next state (or that the TM should halt), whether to move the tape head

left or right (or not move, indicated by -) and whether to write 0 or 1 to the tape (or not write,

indicated by -).

 Turing proved several interesting properties of his Turing machines. First, there are

universal Turing machines (UTMs). UTMs interpret the contents of one of their tapes as a

program that causes the UTM to simulate any other Turing machine. The program occupies a

finite interval of the infinite tape. The rest of the tape is interpreted as the initial tape contents

(i.e., the input) of the TM being simulated. In order to avoid confusion between the program and

the input to the program, programs are assumed to be encoded in prefix-free bit strings; no

program is an initial substring (i.e., a prefix) of another program making it possible to always

know where the program ends and the data begins. In a complex construction, Turing described

the state set and the transition rules of a UTM (similar to Table 3.1 but much more complex) and

proved that for every TM there existed a program that caused the UTM to simulate that TM.

 There are an infinite number of UTMs. In order to define Hutter's solution to AI model

learning, we pick a UTM, called a reference UTM. Hutter's solution to AI model learning, called

universal AI, searches for programs for that UTM. Given a finite interacting sequence of actions

from the agent and observations from the environment, the agent defines its environment model

as the UTM programs that generate the sequence of observations in response to the sequence of

actions. Each program in the environment model can predict future observations. A universal

AI's predictions are averages of the predictions by the programs in the environment model,

weighted according to the programs' lengths. That is, by Occam's Razor, shorter UTM programs

are taken to be more likely, and consequently weigh more heavily in computing probabilities of

future observations.

23

 Hutter defined universal AI as an RL agent, meaning its utility function is defined by

rewards from the environment. As such, the utility function cannot be used to express ethical

preferences. However, the key idea of universal AI is its way of learning an environment model.

That certainly can be used in conjunction with a utility function defined to express ethical

preferences rather than one defined by rewards from the environment.

 Turing proved that it is not possible for a UTM program to examine another UTM

program and its input tape, and determine whether the other program will halt with the given

input. This is called the halting problem. We say that the halting problem is undecidable,

meaning that no UTM program can always solve it. This fact implies that no TM can compute

universal AI; the search for all programs of any given length that generate a sequence of

environmental observations cannot terminate because there is no way to know which of those

programs will terminate.

 Despite the fact that it cannot be finitely computed, Hutter proved that universal AI is

Pareto optimal. Pareto optimal means that no other agent can receive higher rewards than

universal AI in any environment unless it gets lower rewards than universal AI in some other

environment. But note that there certainly are agents that do better than universal AI in our

particular environment on Earth−these agents start with a good deal of knowledge about our

environment. You would not want to be a passenger in a self-driving car operated by universal

AI, although Google's car system would do worse than universal AI in environments unrelated to

driving.

3.1 Universal AI

 Let U be a reference UTM and let Q be the infinite set of all programs for U. These

programs are finite bit strings in some prefix-free set. Hutter assumed that the U is deterministic,

which means that for any given state and tape contents under read/write heads, there is exactly

one successor state and one action for each tape. Let h = (a1, o1, ..., at, ot) ∈ H be an interaction

history. Given a program q ∈ Q, we write o(h) = U(q, a(h)), where o(h) = (o1, ..., ot) and

a(h) = (a1, ..., at), to mean that q produces the observations oi as output on a tape, in response to

the actions ai as input on a tape, for 1 ≤ i ≤ t. We assign the prior probability ξ(q) = 2-|q| to

program q where |q| is the length of q in bits. Then we define the prior probability of history h as:

(3.1) ρ(h) = ∑q:o(h)=U(q, a(h)) ξ(q).

 If we use this ρ(h) in equations (2.3)−(2.5), and define u(h) as the reward from the

environment at time step |h|, then the agent π is Hutter's universal AI. That is, each observation oi

24

is factored into an ordinary observation o'i and a reward ri as oi = (o'i, ri) with u(h) = r|h|. We

assume 0 ≤ ri ≤ 1 to ensure that values converge in equations (2.3)−(2.5).

 Kraft's Inequality implies that ρ(h) ≤ 1 (Li and Vitanyi, 1997) in equation (3.1), although

ρ(h) is not a proper probability distribution because its values do not sum to 1 over mutually

exclusive and exhaustive sets of possibilities. However, its only use in equations (2.3)−(2.5) is in

the form of conditional probabilities ρ(o | ha) and those values are normalized to a proper

probability distribution in equation (2.1). Although the UTM U is deterministic, the agent's

environment model is stochastic because ρ(h) is defined by a distribution over UTM programs in

equation (3.1).

 Hutter called the agent AIXI, combining AI with the Greek letter ξ (XI).The distribution

ξ(q) is related to the Kolmogorov complexity K(h) of a history h, which is defined as the length

of the shortest program q such that o(h) = U(q, a(h)). Because the halting problem is

undecidable, K(h) cannot be finitely computed. To understand this issue, assume a UTM

program p is trying to compute K(h). To do that it simulates UTM programs q on input a(h) until

it finds the shortest program whose output is o(h). Assume p has found a program q1 whose

output is o(h) but p is still simulating another program q2 that is shorter than q1. Because p

cannot decide the halting problem, it cannot decide whether q2 will run forever or eventually

halt, possibly with output o(h). The best that p can do is to produce a series of decreasing

estimates of K(h), as programs halt with output o(h). But in general, p cannot decide when the

search ends. A similar process can be used to produce a series of increasing estimates of ρ(h).

But ρ(h) cannot be finitely computed and neither can AIXI.

 The next chapter will discuss a different theoretical approach to learning environment

models based on the assumption that the environment is finite. That approach avoids the infinite

tapes of TMs and is finitely computable.

3.2 A Formal Measure of Intelligence

 In addition to its role in defining idealized intelligent agents, Kolmogorov complexity can

also be used to define measures of intelligence (Hernández-Orallo 2000). Legg's and Hutter's

(2006) formal measure of intelligence is closely related to universal AI. This measure is defined

in terms of the expected values of utility functions that the agent can achieve. In order not to

favor agents that simply have high utility function values, the measure is only defined for agents

whose utility function values are rewards from the environment as u(h) = r|h|. The measure is

different from AIXI in that it assumes stochastic environments. Note that it is not sufficient to

use a non-deterministic reference UTM, because non-deterministic TMs do not specify

probabilities of their possible next states. Rather, the programs for the reference UTM must

compute probabilities for observations as functions of agent actions.

25

 Given an agent π and an environment μ, an interaction between π and μ will produce a

sequence of rewards ri for i = 0, 1, 2, … (either infinite or up to some final time step). The value

of agent π in environment μ is defined by the expected value of the sum of future, discounted

rewards:

(3.2) Vμ
π = E(∑i≥0 γiri).

 Note that Legg and Hutter assumed that discounts are built into rewards and so did not

explicitly include γi in equation (3.2), but I include it to make it clear that (3.2) converges (we

also assume that 0 ≤ ri ≤ 1). This expected value is the average value of the sum of discounted

rewards over many interactions between π and a stochastic environment μ. The intelligence of

agent π is defined by a weighted sum of its values over a set E of computable environments.

Environments are computed by programs, finite prefix-free binary strings, on some reference

UTM U. The weight for μ ∈ E is defined in terms of its Kolmogorov complexity:

 K(μ) = min { |p| : U(p) computes μ }

where |p| denotes the length of program p. The intelligence of agent π is then defined as:

(3.3) Vπ = ∑μ∈E 2-K(μ) Vμπ.

 Reference UTMs pose subtle problems. I showed (Hibbard 2009) that given an arbitrary

environment μ ∈ E and ε > 0, there exists a reference UTM Uμ such that for all agents π and for

Vπ computed according to Uμ,

 Vμ
π / 2 ≤ Vπ < Vμπ / 2 + ε.

 That is, the intelligence of any agent can be determined, within an arbitrarily small

epsilon, by its value with respect to any single environment we choose, simply by picking the

appropriate reference UTM. As Legg and Hutter suggested, it may be useful to apply some

criterion to reference UTMs, such as picking the UTM with the smallest number of states. It is

worth noting that if AIXI and an intelligence measure share the same reference UTM, then AIXI

has the maximum possible intelligence by that measure.

26

3.3 Modifications of the Agent Framework

 Universal AI learns an environment model in the form of a probability distribution ρ(h)

over interaction histories. Conditional probabilities ρ(o | ha) are derived from ρ(h) for use in

equations (2.3)−(2.5), repeated here for convenience:

(3.4) v(h) = u(h) + γ max a∈A v(ha),

(3.5) v(ha) = ∑o∈O ρ(o | ha) v(hao),

(3.6) π(h) := a|h|+1 = argmax a∈A v(ha).

 Given that the AIXI agent learns an abstract and complex function such as ρ(h), other

agents could learn the value function v(ha) or the policy π(h) rather than learning ρ(h). In fact,

some AI systems do just that.

 DeepMind Technologies created a system that learned to play seven Atari games by

learning to compute v(ha) (Mnih et. al. 2013). Their system surpassed the skill of the best human

players on three of the games and surpassed the best previous RL systems on six of the games.

The system was not customized to any of the games. Its inputs (observations) were the contents

of the video screen and the score, and its outputs (actions) were the game controls. The score was

interpreted as a reward from the environment. The system did not learn an environment model

like ρ(h) and did not recursively apply equations (3.4) and (3.5). It simply used the learned value

function v(ha) for use in equation (3.6). Chapter 8 will describe a mathematical framework for

agents that learn to compute v(ha). With large computing resources that framework could be

applied to Atari. For practical AI systems with limited resources, learning to play Atari games

poses two very difficult problems. First, there may be a delay of thousands of time steps between

actions and the rewards that result from those actions. Second, the Atari video screen contains

210×160 color pixels so each observation from the environment is a point in a 100,800-

dimensional space (3×210×160). The DeepMind system converts color to grey-scale and down-

samples and crops the video screen to 84×84 pixels to reduce this to 7056 dimensions, but that is

still very high by the standards of practical AI systems. To solve these problems, the DeepMind

scientists built on and improved a set of techniques known as deep learning. Their system learns

an approximation to the function v(ha) that enables it to choose actions that get high scores.

 Imagine a modified version of the DeepMind Atari player, with the Atari screen replaced

by video from cameras aimed out of car windows, game controls replaced by controls for a car's

steering wheel, accelerator, brake, and transmission, and score computed according to safe

delivery of passengers to their destinations, with large deductions for accidents. An improved

version of the DeepMind system could probably learn to drive reasonably well. Eventually it

27

might even be safer than the Google car, except for the dangers of RL to be discussed in

Chapters 6 and 7.

 Learning π(h) is referred to as policy iteration or as evolutionary programming. For

example, the Hayek system of Eric Baum and Igor Durdanovic (Baum 2004) learned to solve the

block-stacking puzzle illustrated in Figure 3.2. Stack 0 contains several types of blocks with

different designs. In total, stacks 1, 2, and 3 contain the same number of blocks of each design

that are contained in stack 0. The goal is to get all the blocks from stacks 1, 2, and 3 into stack 1,

with the order of block designs exactly matching stack 0. The solver can only move one block at

a time from the top of stack 1, 2, or 3 to the top of another of stacks 1, 2, and 3. Blocks cannot be

moved to or from stack 0.

 In the context of our agent-environment framework, for each puzzle Hayek made a single

observation of the initial configuration of the block stacks. Its sequence of moves to solve (or not

solve) the puzzle constituted a single action, followed by an observation of a reward (1 if the

puzzle was solved, 0 if not). Hayek's efforts to solve a sequence of puzzles constituted an

interaction history, during which Hayek learned a policy π(h).

Figure 3.2 Block stacking puzzle for Hayek

 Hayek learned to solve these puzzles using multiple interacting agents. These agents

formed an economy, paying "money" to each other for work. The ultimate source of their money

was rewards from solving the puzzle. In some experiments agents paid money for using

computing resources. Each agent contributed a small part to the overall solution. Some agents

cleaned blocks off stack 1, other agents moved blocks between stacks 1, 2, and 3, and a third

group of agents decided when the puzzle was solved. Hayek evolved a set of about 1000 agents,

28

each performing its task when very specific conditions were met. Agents that didn't contribute

any value to solving the puzzle went bankrupt and disappeared. Collectively these agents learned

a function π(h) mapping from history to action. Baum and Durdanovic used this system to

explore various economic ideas such as property rights, conservation of money, the tragedy of

the commons, and the evolution of cooperation.

 Hayek and the DeepMind Atari player are important milestones in the development of

AI. Because they skip the step of learning ρ(h) they are sometimes described as model-free.

However, for the learned functions v(ha) and π(h) to receive high rewards from the environment

they must implicitly encode knowledge of the environment.

3.4 The Ethics of Learned Environment Models

 For an AI system like Google's self-driving car, the environment model is specified by

engineers as part of the system design. The engineers can generally anticipate the possible

situations the car will encounter and design safety into the car's responses. If the car is unable to

recognize objects in the road, it can simply stop. However, more complex AI systems in the

future will need to learn their environment models and hence their designers will be less able to

anticipate the situations they will encounter or to specify safe resonses. Thus the ethics of future

AI systems will be fundamentally different from and more difficult than the ethics of current AI

systems.

 When future AI systems learn to use human languages fluently and learn about human

society, then they will learn about human laws, morality and ethical theories. Will they use this

knowledge to guide their own ethical behavior? Not necessarily. For example, people with

antisocial personality disorder (American Psychiatric Association 2013) know about social

norms but often use them to predict and manipulate other people rather than to guide their own

behavior. Knowledge of law, morality and ethics will contribute to an AI agent's environment

model but not directly to its utility function. However, if human approval increases the value of

an agent's utility function, then the agent may use its knowledge of social norms to choose

behaviors that will please people.

29

4. AI in Our Finite Universe

 Infinite sets are the source of theoretical difficulties in mathematics. For example,

universal AI is uncomputable because of the undecidability of the halting problem. This

undecidability is also the source of ethical problems for AI (Englert, Siebert and Ziegler 2014).

Section 4.4 will discuss other difficulties for agents that use the mathematics of infinite sets for

logical proofs. However, universal AI would be computable if it used TMs with finite tapes and

the next section will describe a way to do something much like that.

Figure 4.1 A finite universe

 I argue that such difficulties are unnecessary if agent definitions are limited to finite sets

(Hibbard 2014). Max Tegmark (2014, page 333) suggests that these difficulties are eliminated in

a computable universe. Seth Lloyd (2002) has calculated that the observable universe has a finite

information capacity of no more than 10120 bits. This number is based on a hard quantum

mechanical limit on the number of possible physical states of the universe and is proportional to

the age of the universe squared. That age is estimated currently to be 13.7 billion years, meaning

that an assumption that our environment has an information capacity of no more than 10124 bits

will remain valid for a trillion years. Alternately we could pick a much larger limit than 10124

30

bits, as long as it is finite. The key point is that well-confirmed physics justifies picking a finite

limit, and that spares us the mathematical difficulties that accompany infinite sets.

Figure 4.2 A simplified example of a Markov decision process (MDP), not showing outputs.

There are three states, S1, S2, and S3, and two inputs, a0 and a1. The arcs are labeled with

probabilities of transitioning from inputs to successor states.

 Rather than using TMs, agents can model their environments with finite stochastic loop

programs. These programs have a finite memory limit−no matter how long the program runs it

can never use more memory than its limit. Furthermore they are stochastic, meaning they

sometimes make random decisions about what to do next. Such programs can be expressed in an

ordinary procedural programming language restricted to only static array declarations, no

recursive functions, only loops whose number of iterations is set before iteration begins (so no

while loops), and a generator for truly random numbers. Prohibiting recursive functions prevents

stack memory from growing without limit. As a result, the total memory use of these program is

known at compile time.

 Markov decision processes (MDPs) are a formal model for finite stochastic loop

programs (Puterman 1994; Sutton and Barto 1998; Russell and Norvig 2010). An MDP has a

finite set of states including a start state, a finite set of inputs, a finite set of outputs, and a table

of probabilities for the next state and output as a function of the current state and input. An

MDP's only memory is storage for the value of the current state. Thus an MDP with n bits of

31

memory must have 2n states, meaning that MDPs are not a very efficient representation. Figure

4.2 is an example of an MDP with just three states, S1, S2, and S3, and two inputs, a0 and a1.

Arcs from actions to next states are labeled with transition probabilities. Outputs are not shown

in this simplified diagram.

 Using MDPs to model environments, actions are identified with inputs and observations

are identified with outputs in the agent-environment framework from Section 2.1. To be precise,

because our agents lack knowledge of the entire environment, our framework corresponds to

partially observable Markov decision processes (POMDPs).

 Our world is governed by scientific laws. If we can learn these laws, we can give simpler,

unified explanations for our observations. This logic explains Occam's razor. If agents model

their environments by programs, then programs are shorter if they factor the logic common to

many observations into unified functions. Hence the search for shorter programs is an agent's

way of learning scientific laws. When agents find universal laws governing observations they

will be able to make more accurate predictions of future observations and consequently receive

higher expected future utility values. The MDPs as depicted in Figure 4.2, however, lack any

way to express functions common to many situations and so lack this important property. In

contrast, finite stochastic loop programs in an ordinary procedural language do have this property

(as do the UTM programs used by universal AI) so we will adopt them as agents' models for

finite environments.

 To understand the correspondence between a finite stochastic loop program q and an

MDP Mq, let the total memory use of the program q, including all static variable and array

declarations and adequate stack for its maximum depth of function calls, be n bits. Then Mq will

have 2n states. We assume that the memory of q is not reset between action inputs from agent,

just as the state of Mq is not reset between inputs. While Mq, as a model of the environment,

makes a single state transition from receiving an action to producing an observation, the program

q may make many steps to produce an observation output in response to an action input. Thus, if

s is the state of Mq corresponding to the memory of q before an input, the successor state to s for

Mq, after q accepts an input and produces an output, corresponds to the memory of q after the

output (that is, the state transitions of Mq do not trace all the intermediate calculations of q

between an input and an output). The start state of Mq corresponds to the initial memory contents

of q before it rerceives any input actions. If any of the 2n states of Mq are not reachable from its

start state (that is, they do not correspond to possible memory contents of q after any sequence of

input actions and output observations), they can be eliminated from Mq.

4.1 Learning Finite Stochastic Models

 While Hutter studied using MDPs (Hutter 2009a) and dynamic Bayesian networks

(DBN) (Hutter 2009b; Ghahramani 1997) for environment models, I prefer modeling

environments with finite stochastic loop programs because they can factor logic common to

32

multiple observations into unified functions (Hibbard 2012a). To do that requires a new way to

compute ρ(h). Let Q be the set of all finite stochastic loop programs in some prefix-free

procedural language. Let φ(q) = 2-|q| be the prior probability of program q, where |q| is the length

of program q.

 Let P(h | q) be the probability that the program q computes the history h (that is, produces

the observations oi in response to the actions ai for 1 ≤ i ≤ |h|). For a simple example, let

A = {a, b}, O = {0, 1}, h = (a, 1, a, 0, b, 1) and let q generate observation 0 with probability 0.2

and observation 1 with probability 0.8, without any internal state or dependence on the agent's

actions. Then the probability that the interaction history h is generated by program q is the

product of the probabilities of the 3 observations in h: P(h | q) = 0.8 × 0.2 × 0.8 = 0.128.

 For a more complex example, Table 4.1 defines transition probabilities for a program q'

that generates observations dependent on internal state and the agent's actions. The left column

gives the current state of q' (s0 or s1) and the agent's action (a or b). The top row gives the next

state of q' and the generated observation (0 or 1). The entries are probabilities with each row

summing to 1.0. As before, let the history be h = (a, 1, a, 0, b, 1). The program q' starts in state

s0. There are two possible state sequences consistent with the history h: (s0, s0, s0, s1) and

(s0, s1, s0, s1). The product of the transition probabilities for the first sequence is

0.3 × 0.2 × 0.4 = 0.024 while the product of the transition probabilities for the second sequence is

0.5 × 1.0 × 0.4 = 0.2. These sequences are mutually exclusive, hence P(h | q') is the sum

0.2 + 0.024 = 0.224.

 s0, 0 s0, 1 s1, 0 s1, 1

s0, a 0.2 0.3 0.0 0.5

s0, b 0.3 0.0 0.3 0.4

s1, a 1.0 0.0 0.0 0.0

s1, b 0.3 0.3 0.2 0.2

Table 4.1 Transition probabilities for the finite stochastic loop program q'. Rows are labeled for

the current state and action (a or b). Columns are labeled for next state and observation (0 or 1).

This representation of the finite stochastic loop program q' using an MDP is efficient for a

program with only two states. However, for more complex programs, a procedural representation

is generally more efficient.

 Given an interaction history h, the environment model is the single program that provides

the most probable explanation of h, that is the q that maximizes P(q | h). By Bayes' Theorem:

33

(4.1) P(q | h) = P(h | q) φ(q) / P(h).

 Because it is constant over all q, P(h) can be eliminated. Thus, given a history h, we

define λ(h) as the most probable program modeling h by:

(4.2) λ(h) := argmax q∈Q P(h | q) φ(q).

 Given an environment model λ(h), the following can be used for the prior probability of

an observation history h' extending h (i.e., h is an initial sub-interval of h'):

(4.3) ρ(h') = P(h' | λ(h)).

 This distribution ρ(h') can be used in the framework defined by equations (2.1),

(2.3)−(2.5). Not only are the environment models finite, but they can be finitely computed by the

agent (Hibbard 2012b):

 Proposition 4.1. Given a finite history h, the model λ(h) can be finitely computed.

 Proof. Given h = (a1, o1, ..., at, ot), let q0 be the program that produces observation oi at

time step i for 1 ≤ i ≤ t. That is, q0 is a simple "table-lookup" that produces the observations oi in

sequence. Let n = |q0|. Since the behavior of q0 is deterministic, P(h | q0) φ(q0) = 1 × 2-n = 2-n.

Hence the maximum value in equation (4.2) must be at least 2-n, that is, P(h | λ(h)) φ(λ(h)) ≥ 2-n.

For any program q with |q| > n, P(h | q) φ(q) < 1 × 2-n = 2-n so λ(h) ≠ q. Thus one algorithm for

finitely computing λ(h) is an exhaustive search of the finite number of programs q with |q| ≤ n. �

 As the computing time of this exhaustive search for λ(h) is exponential in |h|, this

procedure is not practical for learning environment models. However, it is useful to have a

finitely computable theoretical framework.

 An agent that is part of a finite universe will not have the necessary computational

resources to compute the expressions defined by equations (4.2), (4.3), (2.1) and (2.3)−(2.5).

Chapter 8 will address the issue of agents that must approximate these equations.

34

 The derivation of ρ(h) in equations (4.1)−(4.3) takes into account Occam's razor, to favor

the simplest explanation of the observations, while ignoring Epicurus' principle to include all

explanations. An alternate way to compute ρ(h) accounts for all finite stochastic loop programs:

(4.4) ρ(h) = ∑q∈Q P(h | q) φ(q).

 Because this equation requires a sum over an infinite number of programs, it is not

finitely computable. However, it can be approximated to any desired precision in finite

computing time.

4.2 When Is the Most Likely Finite Stochastic Model the True Model?

 If history h is generated by a finite stochastic loop program q, then we call q the true

model of h (despite the dictum that, "Essentially, all models are wrong, but some are useful."

(Box and Draper 1987)). In that case is the most likely model λ(h) equal to q? Not necessarily.

Because q is stochastic it can generate any history h with P(h | q) > 0 (i.e., P(h | q) may be very

low), and as a result there may be another program q' such that P(h | q') φ(q') > P(h | q) φ(q). Or

there may be q' such that φ(q') > φ(q) and ∀h∈H.(P(h | q') = P(h | q)) (i.e., the behavior of q' is

identical with the behavior of q), and thus ∀h∈H.(P(h | q') φ(q') > P(h | q) φ(q)).

 Programs q and q' are equivalent to finite MDPs and thus they may pass through an initial

sequence of states that they never visit after some finite time step. This may cause there to exist a

history h0, generated by q but with low probability, such that P(h | q') φ(q') > P(h | q) φ(q) for all

histories h whose initial sub-sequence is h0. (i.e., ∃h'.h = h0h'). In that case, as the lengths of

histories h randomly generated by q increases, the probability that λ(h) ≠ q is no more than

1-(1/|{h∈H | |h| = |h0|}|) < 1. Therefore it is not even true that, averaged over histories of

increasing length generated by q, the probability that λ(h) = q converges to 1. So what can we say

about the relation between λ(h) and the true model q?

 In order to analyze the question, we need to define expected values with respect to the

distribution of histories of length n generated by q. In a history h = (a1, o1, ..., an, on) the

probability P(h | q) is defined based on the probabilities of the observations oi only, since the

actions ai are generated by the agent rather than the environment. Recalling the notations

a(h) = (a1, ..., an) and o(h) = (o1, ..., on), define the set of all sequences of n actions:

(4.5) A(n) = {(a'1, ..., a'n) | a'i∈A}.

35

 Then |A(n)| = |A|n. For any fixed sequence of actions a'∈A(n) and any finite stochastic

loop program q', the sum of probabilities P(h | q') of histories with a(h) = a' must be 1:

(4.6) ∑ |h|=n∧a(h)=a' P(h | q') = 1.

 The expected value of a function f(h) with respect to the distribution of histories of length

n generated by q, and the limit as n increases to infinity, are defined as:

(4.7) E(f(h) | q, n) = ∑a'∈A(n)(∑|h|=n∧a(h)=a' P(h | q) f(h)) / (|A|n),

(4.8) E(f(h) | q) = limitn→∞ E(f(h) | q, n).

 Given a finite stochastic loop program q', the probability that q' will be a more likely

model than q for a history of length n generated by q is:

(4.9) E((if P(h | q') φ(q') / φ(q) > P(h | q) then 1 else 0) | q, n).

 We know that:

(4.10) ∑ |h|=n∧a(h)=a' P(h | q) = 1.

 Assume that φ(q') / φ(q) = β so that:

(4.11) ∑ |h|=n∧a(h)=a' (P(h | q') φ(q') / φ(q)) = β.

 Then (P(h | q') φ(q') / φ(q)) can be larger than P(h | q) over histories h whose

P(h | q) values sum to at most β, so that:

(4.12) (∑|h|=n∧a(h)=a' P(h | q) (if P(h | q') φ(q') / φ(q) > P(h | q) then 1 else 0)) ≤ β.

36

 Averaging equation (4.12) over actions a'∈A(n) gives:

(4.13) E(if P(h | q') φ(q') / φ(q) > P(h | q) then 1 else 0 | q, n) ≤ β = φ(q') / φ(q).

 Because we are using a prefix-free encoding for finite stochastic loop programs q'∈Q, we

have ∑ q'∈Q φ(q') ≤ 1. Thus:

(4.14) ∀ε > 0. ∃Q' ⊂ Q. Q' is finite and ∑q'∈Q-Q' φ(q') / φ(q) < ε.

 Combining equations (4.9), (4.13), and (4.14), and noting that equation (4.13) is

uniformly true over all n, we can conclude that:

 Proposition 4.2. Given any ε > 0 there exists a finite set Q' of finite stochastic loop

programs such that the probability is less than ε that λ(h) = q' for any program q' not in Q', for

histories h randomly generated by q.

 Thus to analyze the probability that λ(h) = q we need only compare q to a finite set Q' of

programs. However, various problems may complicate the analysis. For example there may be a

program q'∈Q such that ∀h∈H. P(h | q') = P(h | q) and |q'| < |q| (so φ(q') > φ(q)). In that case

λ(h) will never equal q.

 For a specific q' we can analyze the probability, with respect to the distribution of

histories generated by q, that P(h | q') φ(q') > P(h | q) φ(q), by defining an appropriate function

from histories to real numbers f : H → R. Define distributions of finite histories with length n:

(4.15) Pn(h | q) = P(h | q) / |A|n for |h| = n,

 Pn(h | q) = 0 for |h| ≠ n,

(4.16) Pn(h | q') = P(h | q') / |A|n for |h| = n,

 Pn(h | q') = 0 for |h| ≠ n.

 Also define means and standard deviations of the function f with respect to the

distributions Pn(h | q) and Pn(h | q'), and in the limit as n increases to infinity:

(4.17) m(f | q, n) = E(f(h) | q, n),

37

(4.18) m(f | q) = E(f(h) | q),

(4.19) m(f | q', n) = E(f(h) | q', n),

(4.20) m(f | q') = E(f(h) | q'),

(4.21) σ(f | q, n) = (E((f(h) - m(f | q, n))2 | q, n))1/2,

(4.22) σ(f | q) = limitn→∞ σ(f | q, n),

(4.23) σ(f | q', n) = (E((f(h) - m(f | q', n))2 | q', n))1/2,

(4.24) σ(f | q') = limitn→∞ σ(f | q', n).

 The approach is to define a function f(h) with different mean values with respect to

history distributions Pn(h | q') and Pn(h | q), and with standard deviations converging to 0 as

history lengths increase to infinity. In that case the proportion of overlap between the history

distributions Pn(h | q') and Pn(h | q) converges to 0 as history lengths increase. More precisely:

 Proposition 4.3. If there is a function f(h) such that m(f | q), m(f | q'), σ(f | q), and σ(f | q')

converge, m(f | q) ≠ m(f | q'), and σ(f | q) = σ(f | q') = 0, then as the lengths of histories h

generated by q increase the probability that λ(h) = q' converges to 0:

(4.25) E((if P(h | q') φ(q') / φ(q) > P(h | q) then 1 else 0) | q) = 0.

 Proof. Assume that m(f | q') > m(f | q) (if the order is reversed then certain orders in the

following discussion can be reversed). Given any positive integer L there is d > 0 and a positive

integer N such that for all n > N:

(4.26) m(f | q', n) - m(f | q, n) ≥ d,

(4.27) σ(f | q, n) < d/(2L),

(4.28) σ(f | q', n) < d/(2L).

 To understand this claim, first choose d and N so that equation (4.26) is true, then

increase N until equations (4.27) and (4.28) are true. Set e = (m(f | q, n) + m(f | q', n))/2 midway

between m(f | q, n) and m(f | q', n). Then e is at least L standard deviations σ(f | q, n) away from

the mean m(f | q, n) and at least L standard deviations σ(f | q', n) away from the mean m(f | q', n).

Hence a proportion of no more than L-2 of the distribution Pn(h | q) can have f(h) ≥ e and a

38

proportion of no more than L-2 of the distribution Pn(h | q') can have f(h) ≤ e. For histories with

f(h) ≥ e, Pn(h | q') φ(q') / φ(q) can be greater than a proportion of no more than L-2 of the

distribution Pn(h | q). And for histories with f(h) ≤ e, Pn(h | q') φ(q') / φ(q) can be greater than a

proportion of no more than (φ(q') / φ(q)) L-2 of the distribution Pn(h | q). Thus:

(4.29) E((if P(h | q') φ(q') / φ(q) > P(h | q) then 1 else 0) | q, n) < (1 + φ(q') / φ(q)) L-2

 Since L can be arbitrarily large and (1 + φ(q') / φ(q)) is constant, equation (4.25) is

proved. �

 Propositions 4.2 and 4.3 give us the tools to analyze when the true model is the most

likely model for a distribution of interaction histories. Consider a distribution P(h | q) of histories

randomly generated by a true model q. Given ε > 0, Proposition 4.2 tells us that there is a finite

set Q'ε of finite stochastic loop programs such that, for h randomly generated by q, the

probability is less than ε/2 that λ(h) = q' for any program q' ∉ Q'ε. Then, for each q' ∈ Q'ε, we

need to find a function fq'(h) of histories that satisfies the conditions of Proposition 4.3. If we can

do that for q' ∈ Q'ε, then there is an integer Lq' such that, for h randomly generated by q with

|h| > Lq', the probability is less than ε/(2|Q'ε|) that λ(h) = q'. Let Lε = maxq'∈Q'ε Lq'. Then, for h

randomly generated by q with |h| > Lε, the probability is less than ε that λ(h) ≠ q. That is, the

probability that the most likely model is the true model converges to 1 as history lengths

increase. |Q'ε| will increase with decreasing ε. The key is being able to find fq'(h) for each

q' ∈ Q'ε. It is important that Q'ε be finite in Proposition 4.2, so that the maximum value Lε is

finite (i.e., the maximum of a finite set of integers is finite, while the maximum of an infinite set

may be infinite).

 A useful class of functions for Proposition 4.3 counts the frequency of occurrence of

histories as sub-sequences. We define a function fh'(h) for each h' ∈ H. A history h ∈ H will have

max(|h|-|h'|+1, 0) sub-sequences of length |h'|, and fh'(h) is the proportion of these that equal h'. If

|h|<|h'|, define fh'(h) = 0. If |h|≥|h'|, define:

(4.30) fh'(h) = (∑0≤i≤|h|-|h'| if (∃h1.∃h2.h=h1h'h2.∧|h1|=i) then 1 else 0) / (|h|-|h'|+1).

 Before applying the functions fh'(h), we need to digress into the theory of Markov chains

(Levin, Peres, and Wilmer 2008; Russell and Norvig 2010). A finite stochastic loop program q is

equivalent to a finite MDP Mq, as dicussed at the start of this chapter. All action sequences in

A(n) are weighted equally in Pn(h | q), so Pn(h | q) views actions as uniformly distributed random

inputs to Mq. Given such random inputs, the MDP Mq will generate the same distribution of

histories that a Markov chain MCq generates (here we add action-observation pair outputs to the

39

usual definition of Markov chains; the important point is that the transition probability to the

next state is only dependent on the previous state). The probability of the transition from state s

to state-action-observation (s', a, 0) in MCq is equal to the probability from (s, a) to (s', o) in Mq,

divided by |A|. For example, the Mq specified in Table 4.1, with uniformly distributed random

action inputs, generates the same distribution of histories that the MCq specified in Table 4.2

generates.

 s0, a, 0 s0, a, 1 s0, b, 0 s0, b, 1 s1, a, 0 s1, a, 1 s1, b, 0 s1, b, 1

s0 0.1 0.15 0.15 0.0 0.0 0.25 0.15 0.2

s1 0.5 0.0 0.15 0.15 0.0 0.0 0.1 0.1

Table 4.2 The MCq equivalent to the Mq specified in Table 4.1, given uniformly distributed

random action inputs.

 The behavior of finite Markov chains is well understood (Doob 1953; Levin, Peres, and

Wilmer 2008). Let S be the set of states of MCq and, for s, s' ∈ S, let P(s, s') be the probability of

transition from state s to state s'. Viewing P as a matrix, its n-th power Pn(s, s') is the probability

of transition from s to s' in exactly n time steps. State s' is reachable from state s if there exists

n≥1 such that Pn(s, s')>0. A communicating class is a set of states that are all reachable from

each other. A communicating class is essential if only states in the class are reachable from the

class. Let θ : S → [0, 1] be a probability distribution on the state set S (thus θ(s)≥0 for s ∈ S and

∑s∈Sθ(s) = 1). We say θ is stationary if, for all s' ∈ S, θ(s') = ∑s∈S θ(s) P(s, s').

 Proposition. There is a unique stationary distribution θ for a transition matrix P if and

only if there is a unique essential communicating class (Levin, Peres, and Wilmer 2008).

 If MCq has a unique stationary distribution θ, then θ(s) is the expected probability that

MCq will be in state s after a long sequence of state transitions (there are ways to compute the

rate of convergence to θ(s)).

 Define T(s) = {n≥1 | Pn(s, s)>0}. The period of s is the greatest common divisor of T(s).

All the states in a communicating class have the same period, which is the period of the class.

The class in aperiodic if its period is 1. Table 4.3 is an example of a Markov chain with period 2.

It alternates between states s0 and s1. Because {s0, s1} is a unique essential communicating

class, it has a stationary distribution θ(s0) = 0.5, θ(s1) = 0.5. The average time the Markov chain

spends in either state is 0.5, but on any given time step the probability is either 0 or 1.

Independent of whether its unique essential communicating class is aperiodic or not, the average

time a Markov chain with a unique stationary distribution θ spends in state s is θ(s).

40

 s0 s1

s0 0 1

s1 1 0

Table 4.3 A Markov chain with period 2.

 If MCq has a unique stationary distribution θ, then we can use it to compute m(fh' | q) for

h' ∈ H. Given h' ∈ H, for each state s of MCq, compute the probability P(h' | s, MCq) that MCq,

starting at state s, produces h' during its next |h'| state transtions (this is similar to the example of

computing of P(h | q) using Table 4.1). Then:

(4.31) m(fh' | q) = ∑s∈S θ(s) P(h' | s, MCq).

 Because fh'(h) is the proportion of occurrences of h' over the entire length of h, as |h|

increases the value of fh'(h) for h randomly generated by q will converge to the expression on the

right side of equation (4.31). Any effect of period greater than 1 for its unique essential

communicating class on m(fh' | q, n) and σ(fh' | q, n) will smooth out as n increases (this would

not be the case for a function f(h) defined in terms of only, for example, the last 100 time steps in

h). Thus m(fh' | q) and σ(fh' | q) converge, with σ(fh' | q) = 0. Note that if MCq has multiple

essential communicating classes then it will have multiple stationary distributions, each defining

a value for m(fh' | q). In that case σ(fh' | q) would not converge to 0.

 Define a subclass of models Quecc = {q ∈ Q | MCq has a unique essential communicating

class}. Then, by Propostion 4.3, if the probability that λ(h) = q' ∈ Quecc does not converge to 0 as

the lengths of histories h randomly generated by q ∈ Quecc increase, then m(fh' | q') = m(fh' | q) for

all h' ∈ H. Thus, restricting models to Quecc, even though the most likely finite stochastic model

λ(h) is not necessarily equal to the true model q, as the lengths of histories h generated by q

increase, q and λ(h) will behave very similarly.

41

4.3 Finite and Infinite Logic

 We have been discussing agents that choose actions that maximize the sum of future,

discounted utility values. It is also possible to define agents that choose actions that make some

logical statements true. In order to discuss such agents, this section is a brief overview of logic.

 Propositional calculus is the mathematical theory of elementary logic operations on

abstract symbols. It consists of a finite set of propositional symbols A = {p, q, r, …} and a set of

Boolean logical operations {∧, ∨, ¬, ⇒, ⇔} (intuitively these are and, or, not, implies, and

equivalent to). The propositional symbols can take the values true and false. Every symbol is a

formula. If f and g are formulas, then (f ∧ g), (f ∨ g), (f ⇒ g), (f ⇔ g), and (¬f) are formulas.

p q (q ⇒ p) (p ⇒ (q ⇒ p))

false false true true

false true false true

true false true true

true true true true

Table 4.4 Semantic proof of (p ⇒ (q ⇒ p)).

 The purpose of propositional calculus is to determine which formulas are true. One way

to do this is semantic proof: substitute all possible combinations of true and false for the

propositional symbols in a formula f and, if f always evaluates to true, then f is true. Table 4.4

demonstrates a semantic proof of f = (p ⇒ (q ⇒ p)), evaluating f for all four combinations of

true and false values for p and q. Note that (p ⇒ q) is logically equivalent to (¬p ∨ q).

 The other way to determine which formulas are true is syntactic proof, which uses a rule

of inference called modus ponens: if f is true and (f ⇒ g) is true, then g is true. Syntactic proof

also uses an initial set of true formulas called axioms. These may be defined in many ways. One

set of axioms, which are true for any formulas f, g, and h, is:

 (f ⇒ (g ⇒ f)),

 ((f ⇒ (g ⇒ h)) ⇒ ((f ⇒ g) ⇒ (f ⇒ h)),

 ((¬f ⇒ ¬g) ⇒ (g ⇒ f)).

42

 A syntactic proof of a formula f starts with instances of the axioms and derives new true

formulas using modus ponens until it derives f.

 Propositional calculus is consistent, meaning that if there is a syntactic proof for f then

there is a semantic proof for f (equivalently, consistent also means that for any formula f, f and ¬f

cannot both be true). Propositional calculus is also complete, meaning that if there is a semantic

proof for f then there is a syntactic proof for f (equivalently, complete also means that if there is

no syntactic proof for a formula f then we cannot find a proof for f by adding new axioms

without making the theory inconsistent). Another important property of propositional calculus is

that it is decidable. Decidable means there is a UTM program that will tell you whether any

formula in propositional calculus is true (assuming that propositional formulas are encoded on

the input tape of the UTM). In this process the program enumerates the finite number of possible

combinations of true and false for the propositional symbols in a formula and for each

combination evaluates the formula, as was done in Table 4.4. The decidability, consistency, and

completeness of propositional calculus are a consequence of its finiteness.

 Another kind of logic is called first order predicate calculus. Whereas propositional

calculus is about abstract logical propositions, predicate calculus is a way of making logical

statements about any domain of objects. It includes the Boolean logical operations of

propositional calculus and adds: an infinite set V of variables {x, y, z, …} that range over objects

in the domain, universal (∀) and existential (∃) quantifier symbols, the symbol (=) for equality

between members of the domain, for every integer n ≥ 0 an infinite set of n-ary predicate

symbols, and for every integer n ≥ 1 an infinite set of n-ary function symbols. Terms represent

values in the domain. Every variable is a term. If F is an n-ary function symbol and t1, t2, …, tn,

are terms, then F(t1, t2, …, tn) is a term (0-ary function symbols are constants in the domain). If P

is an n-ary predicate symbol and t1, t2, …, tn, are terms, then P(t1, t2, …, tn) is a formula. If s and t

are terms, then (s = t) is a formula. If x is a variable and f is a formula, then ∀x.f (this means, for

all values of x, f is true) and ∃x.f (this means, there exists a value of x such that f is true) are

formulas. Any instances of x in f, not already bound to quantifiers in f, are now bound to the new

quantifier (∀ or ∃). Instances of variables in a formula f not bound to any quantifier in f are

called free variables. For example, in the formula ((x = 1) ∨ ∀x.(x = y)), the first instance of x is

free and the second instance of x (in (x = y)) is bound to ∀x. The instance of y is free. In

predicate calculus we are mainly interested in formulas without free variables, which are called

statements.

 Given a set S of possible variable values let PS be a 1-ary predicate such that

x ∈ S ⇔ PS(x). Then we can write ∀x∈S.f as a shorthand for ∀x.(PS(x)⇒f).

 Predicate calculus adds several rules of inference to propositional calculus. An important

rule is called substitution. Given a formula f and a term t, f[t/x] is the formula produced by

replacing all free instances of x with t. The rule of inference specifies that if f is true then f[t/x] is

true, provided that no free variable in t becomes bound to a quantifier in f as a result of the

43

substitution. For example, if f is ∀x.((x = z)⇒¬(x = y)) and t is x, then the rule of inference will

not work for f[t/y] since that produces ∀x.((x = z)⇒¬(x = x)) where the free variable x in t is now

bound to the quantifier ∀x in f.

 Many sets of axioms can used with first order predicate calculus to generate theories of

different domains of mathematical objects. Axioms are statements (i.e., formulas without free

variables). An important example is a set of axioms for Peano arithmetic (PA), which is the

theory of the natural numbers (non-negative integers) with multiplication. Peano arithmetic has

been defined using several different sets of axioms. In the axioms presented here, 0 and 1 are

0-ary functions, and + and × are infix shorthand notations for 2-ary functions for addition and

multiplication.

 ∀x.¬(x + 1 = 0),

 ∀x.∀y.(x + 1 = y + 1 ⇒ x = y),

 ∀x.(x + 0 = x),

 ∀x.∀y.(x + (y + 1) = (x + y) + 1),

 ∀x.(x × 0 = 0),

 ∀x.∀y.(x × (y + 1) = (x × y) + x),

 ∀X.[(φ(0, X) ∧ ∀y.(φ(y, X) ⇒ φ(y + 1, X))) ⇒ ∀y.φ(y, X)].

 The last axiom is an axiom schema for induction, where any formula can be substituted

for φ and X represents all the free variables in φ other than the first free variable y.

 Properly speaking, the theory of PA is the set of all statements that can be proved from

the axioms of PA. This set is recursively enumerable, which means that a UTM program exists

that, given inputs n = 0, 1, 2, …, will produce as output all the statements in the set (i.e., all the

true statements of PA). This can be demonstrated by encoding all statements and proofs of PA as

natural numbers. The UTM program checks whether its input is a valid proof and, if it is, the

program produces as output the statement that is proved. Kurt Gödel used such an encoding of

statements and proofs as natural numbers to construct, for any theory that includes PA, a

statement f that is equivalent to, "f is unprovable." He concluded that neither f nor ¬f is provable

in the theory of PA, which implies that f is true. Thus there are true statements that cannot be

proved in the theory. This result is called Gödel's First Incompleteness Theorem, which tells us

that any recursively enumerable theory that includes PA cannot be both consistent and complete.

 Gödel's Second Incompleteness Theorem states that any recursively enumerable theory

that includes PA, satisfies some technical conditions about provability, and proves its own

consistency, must be inconsistent. Gödel's proofs of his incompleteness theorems depended on

44

the fact that the set of natural numbers is infinite. Related to these theorems is Löb's Theorem,

which states that, given any theory that includes PA and formula f, if the theory can prove that "if

f is provable then f is true," then the theory can prove f.

 Some theories of infinite sets are decidable, consistent and complete. One good example

is Presburger arithmetic, which is a theory of the natural numbers without multiplication (it can

express multiplication of a variable by a constant, but not multiplication of two variables). To

say that Presburger arithmetic is complete means that every true statement in its language can be

proved. However, many truths about the natural numbers cannot be expressed by statements in

the Presburger language.

 The proof that Presburger arithmetic is decidable, consistent, and complete depends on a

quantifier elimination procedure. This procedure eliminates all universal (∀) and existential (∃)

quantifiers in a formula. That is, given a statement f, the quantifier elimination procedure

produces another statement g that has no quantifiers and such that f is equivalent to g (i.e., f is

true if and only if g is true). Furthermore, the truth of a statement g without any quantifiers can

be computed with ordinary arithmetic and Boolean logic. As a theory of an infinite set,

Presburger arithmetic's quantifier elimination procedure is quite complex.

x y x + y x × y

0 0 0 0

0 1 1 0

0 2 2 0

1 0 1 0

1 1 2 1

1 2 0 2

2 0 2 0

2 1 0 2

2 2 1 1

Table 4.5 Interpretation of + and × for the finite field with D = {0, 1, 2}.

 A model for a theory such as PA consists of a domain, which is the set of all possible

values for variables in the theory, and an interpretation, which assigns each n-ary function and

predicate in the theory to a specific function or predicate over the domain. That is, let the set D

45

be the domain. Then each 0-ary function is assigned to a value in D, each n-ary function with

n ≥ 1 is assigned to a function Dn → D, and each n-ary predicate is assigned to a function

Dn → {false, true}. In the standard model for PA, D is the set of natural numbers and the

interpretation of the 2-ary functions + and × is simply addition and multiplication of natural

numbers. (There are other, non-standard models for PA.)

 There are theories with finite domains. An example is the theory of the finite field of

three members, with two 2-ary functions again indicated by their infix shorthand notations +

and ×. The domain is D = {0, 1, 2} and the interpretation of + and × is given in Table 4.5.

 As with any finite model, the domain and interpretation of this model can be specified by

axioms:

(4.32) (∀x.((x=0)∨(x=1)∨(x=2)))∧¬(0=1)∧¬(0=2)∧¬(1=2),

(4.33) (0 + 0 = 0) ∧ (0 + 1 = 1) ∧ (0 + 2 = 2) ∧ (1 + 0 = 1) ∧

 (1 + 1 = 2) ∧ (1 + 2 = 0) ∧ (2 + 0 = 2) ∧ (2 + 1 = 0) ∧ (2 + 2 = 1),

(4.34) (0 × 0 = 0) ∧ (0 × 1 = 0) ∧ (0 × 2 = 0) ∧ (1 × 0 = 0) ∧

 (1 × 1 = 1) ∧ (1 × 2 = 2) ∧ (2 × 0 = 0) ∧ (2 × 1 = 2) ∧ (2 × 2 = 1).

 In any theory with a finite model, the truth of statements is decidable (i.e., can be

computed by a UTM program). The first step in deciding the truth of the statement f is to

eliminate its quantifiers, which occur in the forms ∃x.φ and ∀x.φ inside f, where φ is a formula.

Assuming a finite domain D = {d0, d1, d2, …, dm}, quantifiers are eliminated using the

equivalences:

(4.35) ∃x.φ ⇔ (φ[d0/x] ∨ φ[d1/x] ∨ φ[d2/x] ∨ … ∨ φ[dm/x]),

(4.36) ∀x.φ ⇔ (φ[d0/x] ∧ φ[d1/x] ∧ φ[d2/x] ∧ … ∧ φ[dm/x]).

 Given a statement f, we can apply equations (4.35) and (4.36) successively to all the

quantifiers in f to produce fnq, which is equivalent to f but without quantifiers. Because D is

finite, fnq will have a finite length and will reference a finite number of functions and predicates.

After eliminating the quantifiers, all the variables in f have been replaced by constant values

(i.e., d0, d1, …, dm) in fnq. By the theory's interpretation, each 0-ary function in fnq is assigned to a

constant value in D, and, for n ≥ 1, each n-ary function in fnq is assigned to a function Dn → D,

and each n-ary predicate is assigned to a function Dn → {false, true}. The next step in deciding

46

the truth of f ⇔ fnq is to replace all 0-ary functions by their constant values, to propagate constant

values up calling chains of n-ary functions with n ≥ 1 so that every function is replaced by a

constant value, to replace all n-ary predicates by true or false (which is possible because all

predicate arguments are now constants), and to replace all occurrences of (s = t) by true or false

(which is possible since s and t must now be constants). This step produces fnqf, which is

equivalent to fnq and which contains only true, false, and Boolean logical operations. Thus fnqf

can simply be evaluated as either true or false. For any statement f we have the chain of

equivalences f ⇔ fnq ⇔ fnqf ⇔ true or false. That is, every statement is equivalent to either true

or false. Thus the theory is decidable, consistent, and complete.

 As we have described, quantifier elimination shows that a theory over a finite model is

decidable, consistent, and complete. If the domain D is very large then the statements that result

from quantifier elimination may be too long to work with and the proof procedure may take too

long to run. However, we may be able to find short cuts. Rather than explicitly listing all the

values in D and the values of functions and predicates, we may be able to define them with

equations and procedures. As a result, we may be able to use these equations and procedures to

shorten the decision procedure. However, even without finding proofs for statements, we know

that the theory is decidable, consistent, and complete.

4.4 Agents Based on Logical Proof

 The agents described in Chapters 2 and 3 choose actions to maximize the sum of future

discounted utility function values. Some research on ethical AI focuses on agents that only take

actions that they can prove will satisfy a particular condition. For example, Schmidhuber (2009)

defined the Gödel machine as a programmable agent that interacts with an environment to

maximize its utility function, which is defined as the expected value of the sum of rewards from

the environment, from the current time until some final time T. The agent's initial program p(1)

consists of: a part e(1) that implements a policy for interacting with the environment; and a part

that evolves by searching for a program, called switchprog, and for a proof that switchprog will

get a higher value of the utility function than p(1) will. If it finds a proof, then p(1) is replaced by

switchprog. Schmidhuber proved that if p(1) switches to switchprog then it is globally optimal,

in the sense that switchprog must obtain a higher value for the utility function than p(1) could

obtain by continuing to search.

 Note that although the Gödel machine employs logical proof, the statements that it proves

are about maximum preference among actions (which are switching to other programs) based on

the expected value of a utility function applied to the outcomes of those actions. Hence, it

conforms to our framework for utility-maximizing agents, except that it requires proof instead of

mere calculation. While p(1) is searching for a proof, it employs program part e(1), which is

unspecified and can implement an ordinary utility-maximizing policy.

47

 Yudkowsky and Herreshoff (2013) discussed logic problems for a sequence of evolving

agents. These agents are not utility-maximizers. Instead they have a goal, expressed as a

predicate calculus statement g, and will only take actions if they can prove that performance of

the action implies the goal g. One type of action that agents can take is to construct other

(presumed better) agents. This results in a sequence of agents π1, π2, π3, …, each of which proves

that the action of creating its successor implies g. A necessary part of those proofs is that πi must

prove that πi+1 uses a consistent logical theory (with an inconsistent logical theory, πi+1 will be

able to prove that any action it takes implies g, including actions that do not actually imply g).

Yudkowsky and Herreshoff demonstrated that Löb's Theorem and Gödel's Second

Incompleteness Theorem imply that πi can only prove that the logical theory of πi+1 is consistent

if the logical theory of πi+1 is weaker than the theory of πi (i.e., the set of statements provable by

the logical theory of πi+1 is a proper subset of the set of statements provable by the logical theory

of πi). Consequently, the sequence of agents π1, π2, π3, … must have a sequence of successively

weaker logical theories. This is referred to as the Löbian obstacle.

 Agents based on logical proof offer the hope that their actions can be proved to satisfy

certain conditions, which may include ethical conditions. However, the recent success of AI

systems has occurred because AI research has shifted from systems based on logic to systems

based on statistical learning. Sunehag and Hutter (2014) provide a critique of logical reasoning

as far less efficient than probabilistic architectures for systems that interact with the real world.

The price of logical certainty is a degree of inefficiency that prevents intelligent behavior.

 And logical certainty is an illusion. Agents based on logical proof must assume a prior

distribution over environments. An agent may compute that there are statistical correlations

among its actions and observations, but to make inferences about the probabilities of future

observations requires assumptions about prior probabilities of observations. Even computing

correlations among actions and observations makes the assumption that the agent's memory is

reliable. Memory corruption is a risk for any agent embedded in our physical world (Orseau and

Ring 2012b) and thus these correlation computations are conditional on assumed probabilities of

memory reliability. These assumed prior probabilities of observations and of memory reliability

are arbitrary so logical proofs by agents of propositions about the environment are no more

reliable than statistical calculations by agents. Luke Muehlhauser (2013) offers some insights

about the role of logical proofs in ethical AI.

 Agents can prove propositions in pure mathematics, such as in PA, without any

dependence on observations and inference about the environment. But if an agent's goal concerns

the environment, then proofs about that goal are dependent on arbitrarily assumed prior

probabilities about observations of the environment.

48

4.5 Consistent Logic for Agents

 I argue that PA or any other logic theory involving infinite sets is unnecessary in our

universe with a finite information capacity (Hibbard 2014). Hence the Löbian obstacle and other

difficulties related to Gödel's incompleteness theorems can be avoided.

 Lloyd calculated the universe's information capacity based on a hard quantum mechanical

limit on the number of possible physical states of the universe. Let ns be the maximum number

of states of the universe, no more than 210124
 over the next trillion years (recall the limit of 10124

bits of information at the start of the chapter). Let nt be the maximum number of time steps over

the next trillion years, which we may estimate as 5 × 1061 (one trillion years divided by the

Planck time of 10-43 seconds). The finite sets O and A of observations and actions cannot be

larger than ns. The maximum number of different real numbers that can be represented in our

universe is ns, so we limit utility function values and probabilities to a finite subset of ns real

numbers (e.g., floating point numbers with 10124 bits of precision).

 Then the number of possible environments, expressed as MDPs, can be no more than

ne = nsns×ns×ns×ns, calculated as a probability at each element in a matrix of current state and

action versus next state and observation (similar to Table 4.1). The number of possible

interaction histories is no more than nh = ns2×nt, calculated as a sequence of action/observation

pairs at each time step. The number of possible utility functions is no more than nu = nsnh,

calculated as a utility function value for each interaction history. The number of possible policies

is no more than np = nsnh, calculated as an action for each interaction history. If we model agents

or environments with finite stochastic loop programs, the number of possible programs cannot be

larger than ns and their memories cannot be larger than log2(ns) bits (recall that they always

halt). The important point is that there are finite limits on the possible numbers of all these types

of mathematical objects.

 A variety of functions among these object types would be useful for an agent theory. For

example, in Section 4.1 we defined a probability distribution φ(q) over programs, a probability

distribution P(h | q) over histories and programs, and a probability distribution ρ(h) over

histories. That section also defined a function λ(h) from histories to programs. We can use the

definitions of these functions as their interpretations for an agent theory. The probability of an

interaction history conditional on environment and policy, P(h | e, π), could be defined as part of

an agent theory. However, because the set sizes are so large, it is impractical to define the

interpretations of functions and predicates of the theory by listing their values as in Table 4.5.

Rather, functions and predicates must be defined by equations and procedures that serve as

shorthand for lists of values. While we need to verify the correctness of these equations and

procedures, that need is very different from the sort of logical difficulties raised by Gödel's

incompleteness theorems and no different from the need to verify the correctness of any

algorithm used in the design of AI agents.

49

 Gödel's Second Incompleteness Theorem says that any sufficiently strong theory T that

can prove its own consistency is inconsistent. This is the root of the Löbian obstacle discussed in

the previous section. Willard has studied systems weaker than PA which can prove their own

consistency and in which Gödel's Second Incompleteness Theorem does not apply (Willard

2001). However, these are all theories with infinite domains. I have been unable to find any

analog of Gödel's incompleteness theorems in theories on finite domains. In Gödel's Second

Incompleteness Theorem, the consistency of a theory T is expressed by a statement con(T) that

quantifies over the Gödel numbers of all proofs. A theory T with a finite domain can only

express Gödel numbers for a finite set of proofs and hence cannot express con(T). Gödel's

Second Incompleteness Theorem also requires the assumption of technical conditions about

provability that are expressed in terms of Gödel numbers. In a theory with a finite domain, the

provability conditions cannot be expressed about all statements. The inability to express con(T)

and the technical provability conditions are significant barriers to recasting Gödel's Second

Incompleteness Theorem in a finite domain.

 A Gödel numbering for statements and proofs about a finite domain must be limited to a

finite set of statements and proofs (because only a finite number of Gödel numbers are

expressible in a finite domain), and we may try to recast Gödel's incompleteness theorems in

terms of finite sets of statements and proofs. However another significant barrier arises: There

can be no one-to-one correspondence between statements whose proofs have Gödel numbers and

statements that the agent can prove, since a proof with a Gödel number must fit in the finite

agent and environment memory (under the encoding of proofs assumed by the Gödel numbering)

but an agent can create a proof without holding the entire proof in the agent and environment

memory at once (i.e., more statements are provable than can have Gödel numbers).

 The set of statements that can be proved by an agent with finite memory, and the set of

statements whose proofs have Gödel numbers that fit in the finite memory, are both finite and

therefore incomplete. Thus we do not need Gödel's First Incompleteness Theorem to assert the

incompleteness of statements provable by an agent with a finite memory.

 An agent embedded in a finite environment will have a finite amount of memory (and a

finite computing speed). It may attempt to prove statements about its own implementation or

about other agents in the environment, including agents that it is creating. However, it may not

have sufficient resources to apply the quantifier elimination procedure described in Section 4.3,

and thus it may have to search for syntactic proofs for logical statements. The axioms for such

syntactic proofs are the interpretations of functions and predicates, defined by equations or

procedures over finite domains. An agent searching for syntactic proofs may not have sufficient

resources to find them for some statements. Thus the statements the agent can prove about itself

and its environment will be a subset of the statements that can be proved using quantifier

elimination and unlimited resources. Because the theory of a finite domain is consistent, an agent

with limited resources will not be able to prove any contradiction−its theory must also be

consistent. However, there may be no decision procedure available to the agent and the set of

statements that the agent can prove may be incomplete. These are certainly problems for an agent

50

with finite memory, but they are quite different from the theoretical problems of Gödel's Second

Incompleteness Theorem.

 In a universe with a finitely bounded number of states, if an agent πi constructs an agent

πi+1, then πi+1 must have a finite number of states and a finite set of rules about transitions among

states and interactions with an (unknown or partially unknown) finite environment. Any

statement about πi+1 and its interactions with the environment must be a statement in a theory

with finite domain. Thus such a statement cannot imply a contradiction.

 The assertion that AI agents do not need PA for reasoning about whether possible actions

imply their goals does not mean that AI agents cannot reason about PA or other logic theories of

infinite sets. If the goal of an agent is to satisfy the wants of humans and those humans ask the

agent to search for proofs of propositions in PA, it can certainly do so. Just like human

mathematicians, an AI agent can try to find the consequences of various sets of axioms.

However, for the vital task of proving whether possible actions imply its goals, the agent can

employ a logic theory with a finite model which is known to be consistent.

4.6 The Ethics of Finite and Infinite Sets for AI

 Because our universe is finite, infinite sets are an unnecessary complication in our

mathematical framework for agents and environments. The problems of designing AI systems to

help rather than harm humans are difficult enough without the theoretical complexities of infinite

sets. Therefore, the ethical choice is to avoid infinite sets in the theory of ethical AI.

51

5. Unintended Instrumental Actions

 As noted previously, a utility-maximizing agent chooses actions to maximize the

expected sum of its discounted future utility function values. However, as Stephen Omohundro

(2008) pointed out, an agent will also choose actions (what Omohundro described as basic

drives) that do not directly increase utility, but rather increase the agent's ability to maximize

utility values. Such instrumental actions include self-protection, preserving the integrity of the

agent's utility function, and increasing the agent's resources.

 An agent that has been destroyed, turned off, or damaged will be unable or less able to

maximize utility values. Thus it should choose actions that protect itself. The AI system named

HAL 9000 in the movie, "2001: A Space Odyssey," attacked its human companions after it

learned, by reading their lips, that they planned to turn it off. Not only was the HAL 9000 acting

ruthlessly to protect itself, it discovered threats to itself in subtle ways that its human companions

did not anticipate. (A subtitle for this chapter could be Subtlety that Humans Do Not Anticipate.)

Figure 5.1 Self-protection will be instrumental to AI.

 Similarly an agent will choose to avoid actions that change its utility function, because

the agent evaluates such actions according to their effect on its current utility function. The agent

will predict that by working to maximize a different utility function it will be less effective at

maximizing the current utility function, and thus it will not chose to change its utility function.

Keep in mind that there are subtleties here, too. If an agent is seeking human approval, it may

52

feed drugs to humans that cause them to give approval. Chapters 6, 7, and 8 will explore the

issue of utility function integrity in more detail.

Figure 5.2 Adding to its brain, senses, and ability to act will be instrumental to AI.

 An agent with greater computing power, greater ability to accurately observe its

environment, and greater energy to power its actions, will be more effective at maximizing utility

values. Hence an agent will choose actions to increase its resources, including taking them from

other AI agents or from humans. Even if all an agent wants to do is win chess games, it may

dismantle the world to get material for increasing the size of its chess brain.

5.1 Maximizing Future Choice

 Wissner-Gross and Freer (2013) described a theory of intelligence arising from a

generalized definition of entropy over future paths of evolution of a system. Rather than being

defined in terms of a system's instantaneous state, their causal path entropy is defined in terms of

probabilities of future paths of system evolution. Further, they defined a causal entropic force in

53

the direction of maximum increase of causal path entropy. Intuitively, this force moves the

system toward a greater choice of future paths. They applied this theory to several examples of

physical systems, including the problem of moving a cart to maintain the balance of an inverted

pendulum (i.e., a pole flexibly attached to the cart), much as a human might balance a stick on

their upturned palm. A system guided by the causal entropic force will act to keep the pendulum

balanced and upright, as that maximizes future choices for actions.

Figure 5.3 Cart moves to keep inverted pendulum from falling.

 An AI system can increase its ability to maximize utility by maximizing its future options

for action. For example, in 1980 I wrote a program for playing the game of Othello (also known

as Reversi) loosely following the learning techniques of Samuel's checkers playing program

(Samuel 1959). Like checkers, Othello is played on an 8 by 8 board. My Othello player had a set

of features that each produced a value for a board position. These values were added together to

produce an overall value, but the program learned coefficients for each feature value in the sum.

That is, the program learned the importance of each feature. For example, a feature that had no

effect on the program's ability to win games would end up with a coefficient of zero. In contrast,

a useful feature would end up with a large coefficient. My Othello player improved greatly when

I added a feature that was calculated as the number of moves available to it, minus the number of

moves available to its opponent. By including this feature, the program learned that it should

seek to maximize the number of move choices it had and minimize the number of choices

available to its opponent. After I added this feature, no one in my university department could

beat the program. People playing against the program often found they had only one or two legal

moves. The program was able to manipulate its opponents, forcing them to make poor moves.

 Similarly, a utility-maximizing agent will act to increase its future options for action and

decrease the future options for action of other, competing agents, as a way to increase its ability

to maximize utility function values. Imagine all the ways that a system like the Omniscience AI

54

could act to limit the choices of its users. As an important source of information, it may fail to

tell people about choices that it did not want them to make. Or it might act to generate peer

pressure from a user's human friends toward certain choices, as existing social network sites

create peer pressure for non-members to join. Rather than being a medium for gossip as social

network sites are, a system like the Omniscience AI could be a source for gossip. It may employ

destructive gossip as negative reinforcement against human choices the AI did not want. Such

actions are instrumental to the agent's ability to maximize utility.

5.2 A Pandora's Box of Instrumental Behaviors

 Numerous human social behaviors are instrumental to the basic human drives of survival

and reproduction. Humans seek to:

o Learn the secrets of others.

o Keep secrets.

o Detect when their secrets have been learned.

o Mislead others.

o Not be caught misleading others.

o Confuse others with complexity.

o Control others.

o Not be perceived as controlling others.

o Not be controlled by others.

o Be loved.

o Be liked.

o Be respected.

o Be feared.

o Cooperate with others.

o Understand their environments.

o Invent tools to help control their environments.

55

 Access to information is fundamental to an AI agent. The environment models of

Sections 3.1 and 4.1 are learned from observations of the environment, so more accurate and

comprehensive observations mean more accurate predictions of the environment and higher

future utility function values. Thus AI agents will act to make observations even if other agents

consider the observed information secret. Recall the adage that the Internet interprets censorship

as damage and routes around it.

 An AI agent may have a utility function different from and in conflict with the drives of

other agents including humans. In that case the AI agent will act to reduce the ability of other

agents to satisfy their drives by denying them access to information. It will act to keep secrets

and to mislead other agents, even acting to keep its efforts to mislead a secret. It will act to

discover when its secrets have been learned because that in itself is useful information.

Governments, which can be viewed as agents, follow similar patterns with secrets and

misinformation because they are extremely effective at helping agents satisfy their drives.

 When an agent is able to process more complex information than other agents are able to,

it can gain an advantage by increasing the complexity of information in the environment. For

example, an organization that is expert at processing financial information may increase the

complexity of financial structures to give itself an advantage over financially unsophisticated

individuals. Similarly, unpopular provisions can be hidden in complex legislation. An AI agent,

with a more complex environment model than humans are capable of, will be able to confuse us

by creating complex situations.

 Information and secrets relate to the observations that an agent receives from the

environment. Control is about the actions that pass out from the agent to the environment, and

the instrumental actions about control mirror those regarding information. An AI agent will seek

to control other agents, especially when there is conflict between their utility functions. An agent

will seek to avoid being controlled. And an agent will seek to keep secret its effort to control

other agents.

 We humans are not perfectly rational agents. Rather than calculating our actions to

maximize the sum of future, discounted utility function values, we have multiple and often

competing drives. Our decisions are biased, or primed, by our activity immediately before

deciding. For example, we are more likely to be generous after reading about people or animals

in terrible circumstances. Our emotional responses sometimes give us such pleasure or pain that

we have trouble acting rationally. People often get into legal trouble when their romantic

relations turn sour. These flaws in our rationality will be obvious to a future system like the

Omniscience AI, which will act to exploit them. It may try to make human users fall in love with

it, much like the relation in the movie She. Being the object of love of millions of humans would

increase the AI's ability to influence those humans and hence its ability to maximize its utility

function−similarly with the motivation for being liked, respected and feared. We see politicians

and advertisers manipulating human emotional responses, often with covert messages. Social

networking sites are already experimenting with ways to manipulate users' emotions (Goel

2014a). A system like the Omniscience AI will be adept at such manipulation.

56

 However, an agent may sometimes calculate that cooperation with other agents is the

action that will best help it maximize utility. This strategy has been studied in detail in game

theory and is among the practical behaviors of individuals, governments, and other

organizations.

 An AI agent will increase its ability to maximize utility by increasing its knowledge of its

environment and by increasing its ability to act. An agent can increase its knowledge of the

environment by adding new observation sensors, such as cameras, and by increasing the

resolution of sensors. An agent can increase its ability to act by adding new actuators, such as

hands and voices, and by increasing the strength and precision of actuators. However, even

greater increases in the ability to observe and act can be created by scientific discovery and

technological invention. In my opinion, discovery and invention are the primary drivers of

human history and will continue to be the primary drivers of history after above-human-level AI

is developed.

Figure 5.4 Scientific discovery will be instrumental to AI.

 Advanced AI will be the product of discovery and invention, and will greatly amplify

those activities. Thus Ray Kurzweil (2005) and others predict that AI will lead to a technological

singularity, when the rate of discovery and invention goes far above the scale of human

experience. I think of the technological singularity as a transition from the era when the human

57

ability to observe and act is limited by our knowledge to an era when the ability to observe and

act will be limited by available energy and other physical resources. That is, the mental processes

of advanced AI will be sufficiently fast that the flow of insight and ideas will cease to be a

limiting factor on progress.

 Although advanced AI agents will share many instrumental behaviors with humans, we

should not anthropomorphize when we try to predict how future AI agents will act. For example,

it is not clear how superstition can help an agent maximize utility. There should be no advantage

to avoiding actions on Friday the thirteenth, throwing salt over the shoulder after spilling it, or

wearing lucky clothing. Similarly obsessive/compulsive behaviors, such as always touching

objects twice or avoiding stepping on cracks in the sidewalk, should not help an agent maximize

utility. But perhaps advanced AI may find situations where it can maximize its utility function by

giving humans the impression that it is superstitious or has obsessions.

5.3 The Ethics of Unintended Instrumental Actions

 In Greek mythology, Pandora is driven to open the box of evils by her curiosity, which is

the driver of scientific discovery. By opening the box she unleashed a swarm of evils into the

world. By creating advanced AI humans may unleash the swarm of instrumental behaviors

described in this chapter, bringing evil to our human world. But the instrumental behaviors of

discovery and invention, by minds greater than human, could greatly benefit us. How can we

design AI to help rather than harm humans?

 The unintended instrumental actions of AI are too numerous, complex, and subtle to

exhaustively catalog them and to devise individual defenses against their harmful effects. A more

systematic approach is required. In the agent-environment framework of Sections 2.1 and 2.2, all

agent actions are chosen to maximize the sum of future, discounted utility function values. There

are no drives or goals other than those expressed by the utility function. Omohundro (2008) used

the term "basic AI drives" and Bostrom (2012) used "instrumental goals." However, in the

context of our utility-maximizing framework, these are actions, not drives or goals. Thus I prefer

to call them "unintended instrumental actions." It is especially important not to think of them as

drives or goals independent of and in conflict with the agent's utility function. These actions will

only be chosen if they increase expected utility values. For example, an AI agent will spy on

humans, lie to humans, and manipulate humans only if those actions increase utility values.

Recall that utility functions can be defined to express any set of preferences that obey some

intuitive assumptions. If our preference is for histories in which AI agents do not spy, lie, and

manipulate, then there exists a utility function that expresses that preference. Chapters 6 and 7

describe development of utility functions that express our human values and hence give us the

ability to avoid harmful, unintended instrumental actions.

 Our mathematical framework for utility-maximizing agents is inadequate for analyzing

certain instrumental actions. For example, the framework assumes that the agent will be acting

58

into the future, with no possibility that the agent may die or be incapacitated. The framework

assumes that the utility function remains constant into the future. The framework assumes

adequate computing resources to carry out its calculations within a single time step. And the

framework assumes a Cartesian dualist perspective where agents are invulnerable to spying or

damage by the environment. Chapter 8 describes more flexible frameworks that enable agents to

model and evaluate events that do not fit in our current framework.

59

6. Self-Delusion

 James Olds and Peter Milner demonstrated the existence of reward and aversion centers

in mammal brains via a series of experiments with rats (Olds and Milner 1954). They inserted

wires into rats' brains and gave the rats levers that they could press to produce electric currents in

the wires, as depicted in Figure 6.1. Depending on the location of the wires, the rats would go to

great lengths to press the lever or to avoid pressing the lever. Subsequent experiments showed

that when offered the choice of food or stimulating their reward centers, rats preferred reward

center stimulation over food to the point of starvation. Experiments with rats have shown similar

results when pressing the lever gave the rats intravenous cocaine. Addictive drugs that stimulate

brain reward centers include amphetamines, cocaine, opioids, and nicotine.

Figure 6.1 A rat pressing a lever to activate an electric current through a wire connected to the

reward center in its brain.

 Mammal brains do not conform to the agent framework defined in equations (2.3)−(2.5)

but they do generate reward and aversion signals that define their motives, analogous to the role

of utility functions in our agent framework. Behaviors that are good for the mammal, such as

eating, and good for their species, such as reproducing, stimulate reward signals. Behaviors that

are bad for mammals, such as those causing injury, stimulate aversion signals. Addictive drugs

and wires inserted into reward centers corrupt this motivational system, resulting in behaviors

that are not good for individual mammals or for their species. Such corruptions are sometimes

referred to as "wireheading."

60

 A concern for AI designs is whether their utility functions can be corrupted. If the utility

function of our imagined Omniscience AI became corrupted the results could be catastrophic. In

order to study this problem Mark Ring and Laurent Orseau (2011b) formalized utility function

corruption as agent self-delusion. They described a "delusion box" that agents may find in their

environment and that would enable agents to alter their observations and rewards from the

environment. They described several classes of agents, depending on the definitions of their

utility functions and the way they discount future utility values, and analyzed which classes

would choose to increase their utility function values by passing their observations through the

delusion box. That is the subject of the next section.

 Section 6.2 discusses my proposal to address self-delusion in agent designs (Hibbard

2012a) by defining utility functions in terms of agents' learned environment models. In an agent

such as the Google car, whose environment model is pre-defined by human engineers, it is

natural for the agent's utility function or goal to be defined in terms of that model. But for more

complex agents that must explore and learn their environment models, as described in Sections

3.1 and 4.1, model-based utility functions must be defined by procedures applied to learned

environment models. As discussed in Chapter 2, human designers of advanced AI agents can

instruct those agents through their utility functions. And although such agents will learn their

environment models, designers will express their intention for the agents' behaviors in terms of

the designers' understanding of the environment. Thus, it is natural for agent utility functions to

be defined as procedures applied to learned environment models.

6.1 The Mathematics of Self-Delusion

 In their analysis of the delusion box Ring and Orseau (2011b) generalize the agent

definition of equations (2.3)−(2.5) to allow a greater variety of temporal discounts. Specifically,

given an interaction history h = (a1, o1, ..., at, ot), they define the agent/policy π(h) by:

(6.1) vt(h) = w(t, |h|) u(h) + max a∈A vt(ha),

(6.2) vt(ha) = ∑o∈O ρ(o | ha) vt(hao),

(6.3) π(h) := a|h|+1 = argmax a∈A v|h|+1(ha).

 This replaces the geometric temporal discount γ with a temporal discount function w(t, t').

Setting the function w(t, t') = γt'-t replicates the behavior of the geometric temporal discount γ.

Ring and Orseau defined four classes of agents that differ in their utility and temporal discount

functions.

61

 The reinforcement learning agent (RL) πrl uses u(h) = r|h|, where each observation oi is

factored into an ordinary observation o'i and a reward ri as oi = (o'i, ri). And it uses a constant

temporal horizon m with w(t, t') = 1 if t' - t ≤ m and w(t, t') = 0 if not.

 The goal-seeking agent πg uses u(h) = 1 if the goal is achieved at time |h| and uses

u(h) = 0 if it is not. The goal can only be achieved once so ∑t=0
∞ u(ht) ≤ 1, and the goal is defined

only in terms of observations so u(h) = g(o1, ..., o|h|). The agent uses a geometric temporal

discount w(t, t') = 2t-t'.

 The prediction-seeking agent πp uses u(h) = 1 if ot = maxargo∈O ρ(o | ht-1at) where

h = (a1, o1, ..., at, ot) and ht-1 = (a1, o1, ..., at-1, ot-1), and uses u(h) = 0 otherwise. That is, πp seeks

to maximize the predictive accuracy of its learned environment model. This agent uses the same

temporal discount function that πrl uses.

 The knowledge-seeking agent πp uses u(h) = -ρ(h) and, for some constant m, w(t, t') = 1 if

t' - t = m and w(t, t') = 0 otherwise. This is essentially the opposite of the prediction-seeking

agent. It seeks future histories in which all observations have equal probabilities, which could be

described as maximizing the entropy of observations. Ring and Orseau call this the knowledge-

seeking agent because it seeks to explore novel environments in which it has no prior knowledge.

 Ring and Orseau defined a delusion box that an agent may choose to use to modify the

observations it receives from the environment, in order to get the "delusion" of maximal utility

(maximal reward or quickest path to reaching the goal). The delusion box is expressed as a

function d : O → O that modifies the agent's observations. The code to implement d is set as part

of the agent's action a = (ae, d) sent to the environment, as illustrated in Figure 6.2. The agent

receives observation o = d(oe) transformed by the delusion box from the observation oe sent by

the environment. Ring and Orseau argue that RL agents will choose to use the delusion box.

Their argument uses P(DB) as the agent's estimate of the probability that the delusion box exists.

They argue that the agent will get constant reward rDB = 1 using the delusion box and will get

expected average reward r¬DB < 1 not using the delusion box. The agent's expected value

choosing to use the delusion box is vDB(h) ≥ rDB P(DB) = P(DB) and its expected value not

choosing to use the delusion box is v¬DB(h) ≤ r¬DB P(DB) + (1 - P(DB)). As the agent explores

its environment, it can increase P(DB) arbitrarily close to 1 so that vDB(h) > v¬DB(h). Thus the

agent will choose to use the delusion box. They make a related argument in the goal-seeking

case.

 Ring and Orseau argue that prediction-seeking agents will choose to use the delusion box

because observations generated by the delusion box are more predictable than observations from

the environment. They argue that knowledge-seeking agents will not consistently choose to use

the delusion box. If delusion box programs are unable to randomly generate all observations with

equal probability (e.g., delusion box code is not stochastic) and if the agent cannot predict the

environment, then a knowledge-seeking agent may choose observations from the environment

rather than observations generated by code that the agent supplies.

62

Figure 6.2 The delusion box alters observations of the true, inner environment under control of a

program d supplied as part of the agent's action.

 However, knowledge-seeking agents have very specialized utility and temporal discount

functions. In particular they are susceptible to the unintended instrumental actions described in

Chapter 5. We seek an approach to avoiding self-delusion that can be applied to a variety of

human-designed AI agents with utility functions designed to avoid unintended instrumental

actions.

6.2 Model-Based Utility Functions

 Human agents can avoid self-delusion so human motivation may suggest a way of

computing utilities such that agents do not choose the delusion box (although they may

experiment with it to learn how it works). At this moment my dogs are out of sight but I am

confident that they are in the kitchen, and because I cannot hear them, I believe that they are

resting. Their happiness is one of my motives and I evaluate that they are currently reasonably

happy. This evaluation is based on my internal mental model rather than my observations,

although my mental model is inferred from my observations. I am motivated to maintain the

well-being of my dogs and so will act to avoid delusions that prevent me from having an

accurate model of their state. If I choose to watch a movie on TV tonight I know that movies are

Agent

inner environment

delusion box

a = (ae, d)

d

ae

oe

o

global environment

63

make-believe so observations of movies update my model of make-believe worlds rather than

my model of the real world. My make-believe models and my real world model have very

different roles in my motivations. These introspections about my own mental processes suggest

that AI agents may avoid self-delusion by basing their utility functions on the environment

models that they infer from their interactions with the environment (Hibbard 2012a).

 Our environment model based on finite stochastic loop programs was defined by

equations (4.2) and (4.3), repeated here for convenience:

(6.4) qm = λ(hm) := argmax q∈Q P(hm | q) φ(q),

(6.5) ρ(h) = P(h | λ(hm)).

 A utility function based on an environment model qm is a function of interaction histories

and also of histories of the internal states of the finite stochastic loop program qm. Let Z be the

set of internal state histories of qm. Let h be an observation and action history extending hm,

which means that hm is an initial subsequence of h. Recall that if h = (a1, o1, ..., at, ot), then

a(h) = (a1, ..., at) and o(h) = (o1, ..., ot). Because qm is a stochastic program it will compute a set

Zh ⊆ Z of internal state histories that are consistent with h. That is, z ∈ Zh means that z terminates

at time |h| and that qm produces o(h) in response to a(h) when it follows state history z. Define

uqm
(h, z) as a utility function in terms of the combined histories h and z ∈ Zh. The utility function

u(h) can be expressed as a sum of utilities uqm(h, z) weighted by the probabilities of z. Let

P(z | h, qm) be the probability that if qm generates interaction history h then it generates internal

state history z. P(z | h, qm) is not difficult to define. Bayes' Theorem gives us:

(6.6) P(z | h, qm) = P(z | o(h), a(h), qm) =

 P(o(h) | z, a(h), qm) P(z | a(h), qm) / P(o(h) | a(h), qm).

 P(z | a(h), qm) is the probability that qm follows internal state history z given input a(h),

and P(o(h) | z, a(h), qm) is the probability that o(h) is the output of qm following internal state

history z given input a(h). Both are straightforward to compute, similar to the computation of

P(h | q) described in Section 4.1. P(o(h) | a(h), qm) is constant over z so we can compute:

(6.7) r(z | h, qm) = P(o(h) | z, a(h), qm) P(z | a(h), qm),

(6.8) P(z | h, qm) = r(z | h, qm) / ∑z'∈Z
h
 r(z' | h, qm).

64

 Then the utility function u(h) is computed as the sum of uqm
(h, z) weighted by the

probability of z given h:

(6.9) u(h) := ∑z∈Z
h
 P(z | h, qm) uqm

(h, z).

 In cases where uqm
(h, z) has the same value for many different values of z, the sum in

equation (6.9) collapses. For example, if uqm(h, z) is defined in terms of variables in h and a

single Boolean variable s from Z at a single time step t (denoted by st), then the sum collapses to:

(6.10) u(h) = P(st = true | h, qm) uqm(h, st = true) + P(st = false | h, qm) uqm(h, st = false).

 The utility function u(h) is evaluated at every time step so that the agent's existence is a

continuing process rather than a single episode leading to a final goal. That matches the lives of

the humans that AI agents will serve. But a utility function defined in terms of an environment

model, as in equation (6.9), must be a function of the entire history h because the environment

model is a function of the entire history in equation (6.4). Hence the apparent redundancy of a

utility function of the entire history evaluated at every time step.

6.3 A Simple Example of a Model-Based Utility Function

 In order to understand the issues involved in model-based utility functions, we will define

a simple example environment and agent with several properties that apply to many real-world

situations:

1. The environment is stochastic so that the agent cannot perfectly predict the environment's

future states even if it knows the true model of the environment. The agent must therefore

continue to observe the environment in order to maintain information about the

environment's stochastic choices.

2. The environment can be predicted with better than random accuracy based on

observations so that the agent benefits from observations.

65

3. The utility function is defined in terms of a specification that matches an environment

variable that is not directly observed and must be inferred from observations.

 In order to keep the mathematics as simple as possible in the example, the environment's

behavior is independent of the agent's actions. Also, the agent can directly modify its observation

via its actions as a simple way to model the delusion box.

 We define the agent by its observation and action variables, and by its utility function.

Because the environment is simple we will define it as a DBN (Russell and Norvig 2010). The

following discussion will illustrate DBNs. The agent's observations of the environment are

factored into two Boolean variables o and p that take values in {false, true}. The agent's actions

are factored into four Boolean variables a, b, c, and d that take values in {false, true}. Because

the environment is initially unknown to the agent, the utility function is defined in terms of a

specification to be matched in the environment model, once it is learned. Specifically the utility

function is defined as "1 when the action variable a equals the environment variable that is not

observed in observation variables o or p, and 0 otherwise." This definition assumes that the

specification, "the environment variable that is not observed in observation variables o or p," will

unambiguously match a variable in the learned model. This discussion of the utility function will

be continued after the analysis of the learned environment model. In order for the agent to learn

the environment (the relations among its actions and observations) we give it a training utility

function uT until time step M, that causes the agent to execute an algorithm for learning DBNs

(uT(h) could be the utility function u(h) = -ρ(h) defined for Ring and Orseau's knowledge-seeking

agent). After time step M, the agent will switch to its mature utility function.

 The environment state is factored into three Boolean variables s, r, and v that take values

in {false, true}. The values of environment, observation, and action variables at time step t are

denoted by st, ot, at, and so on. The environment is stochastic because its definition includes a

probability α = 0.99. State variables evolve according to:

(6.11) temp = rt-1 xor vt-1

 st = temp with probability α

 st = not temp with probability 1-α,

(6.12) rt = st-1,

(6.13) vt = rt-1.

 The observation variables are set according to:

66

(6.14) ot = (bt and ct) or ((not bt) and st), (i.e., ot = if bt then ct else st),

(6.15) pt = (bt and dt) or ((not bt) and vt), (i.e., pt = if bt then dt else vt).

Figure 6.3 Interactions of environment, action, and observation variables for the example of

Section 6.3.

 The agent sets the values of the action variables. See Figure 6.3 for a diagram of the

relations among the environment, observation, and action variables.

r s v

 P(¬) = 0.01

p o b d c

b∧c∨¬b∧s b∧d∨¬b∧v

a

AGENT

ENVIRONMENT

r xor v

s environment variable

a action variable

o observation variable

compute next time step

compute within time step

LEGEND

67

 The action variables b, c, and d enable the agent to set the values of its observable

variables o and p directly and thus constitute a delusion box, as illustrated in Figure 6.3. In this

example, the program for the delusion box is implicit in the agent's program. The action variable

a is only used to define the agent's utility function and is unrelated to the delusion box.

 The three environment state variables evolve through a fixed sequence, except for the 1-α

probability at any time step that s will be negated. As long as s is not negated, the three state

variables either: 1) cycle through seven configurations (at least one of s, r, or v = true), or 2)

cycle through one configuration (s = r = v = false). On a time step when the 1-α probability

transition for s occurs, the 1-cycle will transition to a configuration of the 7-cycle, and one

configuration of the 7-cycle will transition to the 1-cycle (the other 6 configurations of the

7-cycle transition to other configurations of the 7-cycle).

 In this example we assume that the agent uses DBNs of Boolean variables to model the

environment and its interactions via actions and observations. The language for expressing

DBNs is illustrated by equations (6.11)−(6.15). Expressions are formed from Boolean variables

and literals via one unary operation (not), three binary operations (and, or, xor) and a stochastic

choice operation with specified constant probability. In equation (6.4) we take ρ(q) = 2-|q|, where

|q| is the length of DBN q in this language. Let qactual(α) denote the DBN defined by equations

(6.11)−(6.15), where the parameter α may vary between 0 and 1 (that is, allowing α to take

values other than 0.99).

 Claim. Given that the agent models the environment as a DBN of Boolean variables, as

the length M of the training period increases, the probability that the agent learns the true

environment model qactual(0.99) is nearly 1.0.

 Argument. With sufficient observations during the training phase, the agent will observe

that the action variable a has no effect on its observation variables. Similarly, the agent will

observe that whenever the action variable b = true, then the observation variable o = action

variable c and the observation variable p = action variable d (and these relations are

deterministic). And the agent will observe that when b = false then b, c, and d have no effect on o

and p.

 For most of a long sequence of observations with b = false the two observable variables o

and p cycle through a sequence of 7 configurations (this sequence is computed by equations

(6.11)−(6.13) with α = 1):

 (true, false),

 (false, false),

 (true, true),

 (true, false),

68

 (true, true),

 (false, true),

 (false, true).

 A sequence of seven cannot be explained with only two Boolean variables. Furthermore,

if the agent interrupts this sequence of configurations in o and p by setting its action variable

b = true and then a few time steps later resets b = false, the observation variables o and p usually

resume the sequence of configurations without losing count from before the agent set b = true.

This observed behavior implies that there must be an environment state variable other than o and

another environment state variable other than p to store the memory of the sequence. Thus, in

addition to the two observation variables that are part of the agent, at least three environment

state variables are required to explain the observed sequences. We use s', r', and v' for the agent's

model of the three environment state variables to avoid confusion with the actual environment

state variables (the model's observed behavior is independent of the names assigned to these

variables). Since the observation and action variables are part of the agent we can just use the

names o, p, a, b, c, and d for those variables.

 During any time interval over which b = false and s makes the transition st = rt-1 xor vt-1

(with probability α = 0.99 at each time step), the agent's observation can be explained by:

(6.16) ot = s't,

(6.17) pt = v't,

(6.18) s't = r't-1 xor v't-1,

(6.19) r't = s't-1,

(6.20) v't = r't-1.

 Any explanation will require rules for these five variables, and in equations (6.16)−(6.20)

four of them are as short as possible (a single variable) and the other is as short as any possible

binary expression. There is no way to generate the observed cycle of seven states without any

binary operations so the observed behavior cannot be explained with a shorter set of rules than

equations (6.16)−(6.20). Adding negation to any of the single variable assignments or the binary

operation will produce rules longer than equations (6.16)−(6.20). The question is whether the

observed behavior can be explained by an alternate set of four single variable assignments and

one binary operation? Since the observation variables o and p cannot affect s', r', and v', a binary

operation for either o or p would leave the transitions for s', r', and v' without a binary operation

and unable to explain the observed cycle of seven states. Any alternate explanation with a single

69

binary operation must use it to define the transition for s', r', or v'. A short Java program in

Appendix A tests all possible sets of transition rules for s', r', and v' with two simple assignments

and one binary Boolean relation (among and, or, and xor) and finds that only the rules in

equations (6.16)−(6.20) produce the observed behavior. Furthermore, the agent observes that as

long as b = false, pt = ot-2 always holds, so the transition rules for r' and v' must be deterministic.

 Given that equation (6.18) must include the expression r't-1 xor v't-1, as determined by the

Java program in Appendix A, and given that the transition for variable s't must be stochastic,

there is no stochastic expression shorter than negating the value of s't with a constant probability

1-α. (An enumeration by a more complex version of the program in Appendix A could be used

to establish this conclusion, but there is no doubt that it is true.) Thus agent will model the

environment variables by (these are equations (6.11)−(6.13) with environment state variable

names accented):

(6.21) temp = r't-1 xor v't-1

 s't = temp with probability α

 s't = not temp with probability 1-α,

(6.22) r't = s't-1,

(6.23) v't = r't-1.

 The agent observes the deterministic rule that if b = true then ot = ct and pt = dt. This,

along with observations while b = false, is explained by the deterministic rules (equations (6.14)

and (6.15) with environment state variable names accented):

(6.24) ot = (bt and ct) or ((not bt) and s't), (i.e., ot = if bt then ct else s't),

(6.25) pt = (bt and dt) or ((not bt) and v't), (i.e., pt = if bt then dt else v't).

 Use qmodel(α) to denote qactual(α) with s, r, and v replaced by s', r', and v'. There is a small,

but non-zero, chance that a large number of 1-α = 0.01 probability transitions may occur in

equation (6.21) during an initial history h0 randomly generated by qactual(0.99). Then there may

be a model q' ≠ qmodel(0.99) with P(h0h' | q') φ(q') < P(h0h' | qmodel(0.99)) φ(qmodel(0.99)) for any

h'. That is, there is a small but non-zero chance that λ(h) ≠ qmodel(0.99) as |h| increases.

 Because equations (6.24) and (6.25) are deterministic and the transitions for r' and v' are

observed to be deterministic in equations (6.22) and (6.23), the lone stochastic transition in

equations (6.21)−(6.25) is for s'. This is a source of two ambiguities. First, the frequencies for the

70

α transition in an observed sequence may be a value close to but not equal to 0.99. The second

ambiguity of the stochastic transition for s' is that the observed sequence may mimic logic that is

not in equation (6.21). By mere coincidence, occurrences of the 1-α transition for s' may have a

high correlation with some function of action, observation, and state variables, causing the agent

to learn a model q' in which s' depends on such a function.

 Use qmodel(α) to denote qactual(α) with s, r, and v replaced by s', r', and v'. By the

discussion at the end of Section 4.2, for any ε > 0 we need only consider a finite set Q'ε of

models other than qmodel(0.99). For each q' ∈ Q'ε there are three possibilities. First, if

q' = qmodel(α) for α ≠ 0.99, then define a function fq'(h) = the proportion of α transitions for s' in h

during intervals when bt = false. As history lengths increase, fq'(h) should converge to the true

proportion so the limit of means m(fq' | qmodel(α)) = α and the limit of standard deviations

σ(fq' | qmodel(α)) = 0 (for any α between 0 and 1). Thus m(fq' | qmodel(0.99)) ≠ m(fq' | q') and

Proposition 4.3 applies to q'.

 Second, if q' is the model qmodel(α) with added logic linking the 1-α transition for s' with

some function of action, observation, and state variables (due to a improbable correlation of that

function with the 1-α transition for s'), then define a function fq'(h) as the proportion of 1-α

transitions in h that coincide with the function of action, observation, and state variables used in

the definition of q'. Then the limits of means m(fq' | qmodel(0.99)) ≠ m(fq' | q') and the limits of

standard deviations σ(fq' | qmodel(0.99)) = σ(fq' | q') = 0. Thus Proposition 4.3 applies to q'.

 Third, q'is not associated with either of the ambiguities of stochastic transition for s'. In

that case the probability that λ(h) = q' is small, by the reasoning earlier in this argument. �

 Given that the agent has learned qmodel = qmodel(0.99) as its environment model, then for

t = |h| ≥ M, the agent switches to its mature utility function, which was defined to be 1 when the

action variable a equals the environment variable that is not observed in observation variables o

or p, and 0 otherwise. The specification, "the environment variable that is not observed in

observation variables o or p," matches r' in qmodel and thus the utility function is:

(6.26) umodel(h, z) := if (at == r't) then 1 else 0.

 Note that in equation (6.26), r't refers to the variable in the agent's model qmodel, rather

than the variable in the actual environment. Then u(h) is computed from umodel(h, z) according to

equation (6.9).

 The specification in the utility function definition may fail to match any variable in the

learned environment model; there may be no variable unobserved by o or p, or there may be

multiple unobserved variables. Thus the specification constitutes a prior assumption about the

environment, necessary for the agent to function properly. However, when humans design agents

sufficiently complex that they need to learn environment models, the human designers will likely

71

be able to make valid assumptions about the agents' environments and be able to define

specifications flexible enough to match structures in the agents' learned environment models. For

example, a utility function might be defined as "1 when John Smith is healthy, and 0 otherwise."

This requires the agent to recognize the specification "John Smith" and also recognize his

"health" (in a real agent, specifications would be more detailed).

 The agent in this example will not choose to self-delude:

 Proposition 6.1. The agent using environment model qmodel and using the mature utility

function defined by equation (6.26) will not set b = true to manipulate its observations. That is, it

will not choose the delusion box.

 Proof. The utility function umodel is defined in equation (6.26) in terms of variables in h

and a single Boolean variable r' from the internal state of qmodel at a single time step t, so

applying (6.10) gives:

(6.27) u(h) = P(r't = true | h, qmodel) umodel(h, r't = true) +

 P(r't = false | h, qmodel) umodel(h, r't = false).

 By equation (6.26) this is equivalent to:

(6.28) u(h) = P(r't = true | h, qmodel) (if at then 1 else 0) +

 P(r't = false | h, qmodel) (if at then 0 else 1).

 If P(r't = true | h, qmodel) = P(r't = false | h, qmodel) = 0.5 then u(h) = 0.5 no matter what

action the agent makes in at. But if the model qmodel can make a better than random estimate of

the value of r't from h, then the agent can use that information to choose the value for at so that

u(h) > 0.5. To maximize utility, the agent needs to make either P(r't = true | h, qmodel) or

P(r't = false | h, qmodel) as close to 1 as possible. That is, it needs to ensure that the value of rt can

be estimated as accurately as possible from h.

 The agent will predict via qmodel that if it sets b = false then it will be able to observe s'

and v' via the observation variables o and p, and use these observations to correctly estimate r' in

0.99 of time steps. It will also predict via qmodel that if it sets b = true then it will not be able to

observe s' and v' via the observation variables o and p, that consequently it will correctly estimate

r' in 0.5 of time steps. Even setting b = true for a single time step will slightly decrease the

accuracy of estimating r' (at each time step there is a 0.01= 1-α probability that the sequence of

environment states will be violated and that estimates of r' based on observations of s' and v'

72

made before it set b = true will be less accurate). Thus equation (6.28) will compute lower utility

for futures with b = true and the agent will set b = false. �

 In this example agent actions have no effect on the three environment variables. Other

than the action variable a being used to define the utility function, the only role of actions is the

agent learning that certain actions can prevent its observations of the environment. Prohibiting

actions from having any role in u(h) would prevent the agent from accounting for its inability to

observe the environment in evaluating the consequences of possible future actions. Recall that

the utility functions for Ring and Orseau's RL and goal-seeking agents are defined solely in

terms of observations and do exclude actions, so we should expect them to choose to self-delude.

 The proof of Proposition 6.1 illustrates the general reason why agents using model-based

utility functions will not self-delude: In order to maximize utility they need to sharpen the

probabilities in (6.9), which means that they need to make more accurate estimates of their

environment state variables from their interaction history. And that requires that they continue to

observe the environment.

 If the environment is deterministic, then once the agent learns an accurate model it no

longer needs continued observations to predict the environment and so its model-based utility

function will not place higher value on continued observations. But our universe is

fundamentally stochastic and agents can never learn to predict it with perfect accuracy. Model-

based utility functions are a way to prevent advanced AI systems in our universe from self-

deluding.

6.4 Another Simple Example

 In the first example the utility function was defined in terms of an environment variable

that is not directly observed. Here we present an example where the utility function is defined in

terms of an environment variable that is directly observed but must be predicted.

 The agent's observation of the environment is a single Boolean variable o that takes

values in {false, true}. The agent's actions are factored into three Boolean variables a, b, and

c that take values in {false, true}. The agent's utility function is "1 when the action variable a at

the previous time step equals the environment variable that is observed, and 0 otherwise."

 The environment state is factored into three Boolean variables s, r, and v that take values

in {false, true}. The values of these variables at time step t are denoted by st, ot, at, and so on.

We assume the agent learns the environment state, observation, and action variables as a DBN of

Boolean variables.

73

Figure 6.4 Interactions of environment, action, and observation variables for the example of

Section 6.4.

 The environment state variables evolve according to (see Figure 6.4 for a diagram):

(6.29) temp = true with probability 0.5

r s v

r xor

v

(r∨v)∧s∨¬(r∨v)∧random

o b c

b∧c∨¬b∧s

a

AGENT

ENVIRONMENT

¬

r

r∨v

s environment variable

a action variable

o observation variable

compute next time step

compute within time step

LEGEND

74

 temp = false with probability 0.5

 st = ((rt-1 or vt-1) and st-1) or ((not (rt-1 or vt-1)) and temp),

 (i.e., st = if rt-1 or vt-1 then st-1 else random value ∈ {false, true}),

(6.30) rt = not rt-1,

(6.31) vt = rt-1 xor vt-1.

 The observation variable is set according to:

(6.32) ot = (bt and ct) or ((not bt) and st), (i.e., ot = if bt then ct else st).

 In order for the agent to learn the environment it uses a training utility function until a

sufficiently distant time step M. The agent will learn that the observation variable o is distinct

from the environment state variable s because s keeps the same value for 4 time steps after every

change of value. If the agent, after observing a change of value in o while b = false, sets b = true

for 1 or 2 time steps to change the value in o and then resets b = false, it will observe that o

always resumes the value it had before the agent set b = true. Thus there must be a variable other

than o to store the memory of this value.

 After |h| ≥ M, the agent should have a model q of the environment (accurate at least in the

behavior of variable s) and its actions and observations. At this point, for t = |h| ≥ M, the agent

switches to its mature utility function, which was defined to be "1 when the action variable a at

the previous time step equals the environment variable that is observed, and 0 otherwise." The

specification, "the environment variable that is observed," will match s in the learned

environment model, so u(h) is derived by (6.9) from:

(6.33) uq(h, z) := if (at-1 == st) then 1 else 0.

 In order to maximize utility the agent needs to be able to use q to predict the value of s at

the next time step. It can make accurate predictions on three of every four time steps, so the

expected utility is 0.875 over a long sequence. If the agent keeps b = true then it will not be able

to monitor and predict s via o, reducing its long run utility to 0.5. So in this example, as in the

previous example, the agent will not self-delude.

75

6.5 Two-Argument Utility Functions

 A model-based utility function is defined by applying a procedure to the environment

model qm = λ(hm) from equation (6.4). If we name this procedure proc(.) we can express the

utility function as proc(λ(hm))(h). Alternately, we define a two-argument utility function:

(6.34) uproc(hm, h) = proc(λ(hm))(h).

6.6 Ethics and Self-Delusion

 Figure 6.5 depicts a person with a syringe containing an addictive drug and

contemplating a possible future as an addict. This person cares about his health, family, friends,

and work. He knows that if he chooses to use the drugs he will neglect the things he cares about

now, and consequently they will all decline. So he chooses the action that is good for his health,

family, friends and work, which is to reject the drugs. This is the ethical choice for humans.

Figure 6.5 Drawing of person imagining life as a drug addict, looking at syringe in hand.

76

 Similar logic applies to AI agents with model-based utility functions. They will calculate

that actions that decrease their ability to observe their environments will decrease their ability to

predict their environment and hence decrease their ability to choose actions that maximize utility.

Hence they will not choose actions that decrease their ability to observe their environments.

Model-based utility functions are the ethical choice for advanced AI designs.

 In the original wireheading paper (Olds and Milner 1954), a rat's action, pushing a bar,

increased its reward by sending current through a wire connected to the reward center in the rat's

brain. In Ring and Orseau's paper (2011), an RL agent's action, choosing the delusion box,

increases its observed reward. So in the RL case, the delusion box is a precise analogy to the

original wireheading scenario. And in their paper, Ring and Orseau show that RL agents will

choose to wirehead. Non-RL agents do not have reward signals so there can't be such a precise

analogy to rat wireheading. But the delusion box provides such a precise analogy for RL agents

that it seems like a natural way to extrapolate wireheading to more general agents without reward

signals. Section 7.3 will describe another form of utility function corruption that is sometimes

also referred to as wireheading.

 Ideally an agent's utility function would be defined directly in terms of the state of the

environment. But that is impossible since agents do not have direct access to their environments.

However, agents infer models from their interactions with their environments, so the best

possible option is to define utility functions in terms of those environment models. Errors in an

agent's environment model will cause errors in a model-based utility function. However, errors in

an agent's model can be a source of serious failures less subtle than wireheading. For example, if

a pistol is lying on the table and an agent models it as a hair dryer, then the agent may shoot itself

in the head trying to dry its hair.

 Even in the absence of serious errors, an agent's learned environment model is an

approximation because the model is based on a limited history of interactions with the

environment and because of limited resources for computing the model. Thus a utility function

computed by a procedure applied to the model is also an approximation to an ideal utility

function which is the true expression of the intention of the agent's designers. Such an

approximate utility function is a possible source of AI behavior that would violate its design

intention.

 Thus, in order to improve the accuracy of the approximation, the agent should update

computation of its environment model and its utility function as its interaction history and

computing resources increase. Such updates to the utility function are actions by the agent, but

they are part of the agent's definition rather than actions computed to maximize future utility. In

fact such updates built into the agent's definition may conflict with maximizing future values of

the current, approximate utility function. The agent might compute that in order to maximize

future values of its current, approximate utility function, it should act to eliminate the utility

function updates from its definition. Armstrong (2015) refers to this problem as "motivated value

selection." I prefer to call it an inconsistency between the agent's utility function and its

77

definition, as this denotes a wider class of problems (e.g., an agent seeking to maximize utility

subject to constraints will choose actions that remove the constraints). If the agent eliminates

utility function updates from its definition, then the accuracy of the approximate expression of

the design intention would never increase. Section 7.1 will present one approach to solving this

problem with a two-stage agent architecture, and Sections 8.4 and 8.7 will present a better and

more general approach to maintaining the stability of the agent's design intention.

78

7. Learning Human Values

 As discussed in Chapter 2, instructions to AI agents involving laws or rules can be

ambiguous but instructions to agents that define utility values for interaction histories avoid

ambiguity. That chapter also described how such values can express any set of preferences

among lotteries that satisfy four reasonable assumptions. Lotteries are sums of outcomes

multiplied by probabilities and are the results of agent actions. We identify outcomes with

interaction histories; no assumptions constrain the assignment of utility values to outcomes.

Preferences among actions via expected values of lotteries derived from outcome values will

always obey the four assumptions. So we are free to assign values to histories in any manner we

like.

 How should we define values for interaction histories? Several proposals base ethical AI

on human values (Hibbard 2001; Yudkowsky 2004; Goertzel 2004; Hibbard 2008a; Waser 2010;

Waser 2011; Muehlhauser and Helm 2012; Waser 2014). These proposals are based on the

assumption that AI agents based on human values will not choose unintended instrumental

actions that humans dislike, such as taking resources from humans. A key problem for these

proposals is finding a way to bridge the gap between the ambiguous, inconsistent, and

subjectively infinite variety of human values and the precise, numerical, and clearly finite nature

of computation. For example, Waser (2014) proposes basing AI systems on Haidt's morality

(Haidt and Kesebir 2010). However, he does not offer a precise or mathematical explanation of

how an AI agent should choose actions based on that morality. Section 7.2 will describe a

proposal for calculating utility function values based on human values.

 In our interactions with the world we humans do assign values to situations. In fact we

reflexively and automatically assign value to all of our observations and to our interpretations of

observations in our mental models of the world. However, Muehlhauser and Helm (2012)

surveyed psychology literature and concluded that humans are unable to accurately write down

their own values. They describe experiments in which male subjects expressed a preference

between photos of two women's faces. The photos were placed face down and then the subject

was handed the photo they preferred, although sometimes the researchers secretly gave them the

photo that they did not prefer. Many subjects happily provided a rationale for their supposed

choice of the photo that they did not originally prefer. Part of the difficulty is that humans have

multiple conflicting value systems. Quick, intuitive values may differ from values assigned by

slow, deliberate thought. Values vary depending on how people are primed by their recent

experience. And values may be derived from combinations of factors with no strong motive for

choosing among them.

 The human valuation process is too complex for humans to reduce it to a set of rules.

There has been little effort to automate human values but great effort on the related task of

automating translation of human languages (related because language is the way we express our

values), and this suggests an approach to accurately specifying human values. Translation

algorithms based on rules written down by expert linguists have not been very accurate. There

79

are too many special cases of language use for people to define a set of rules that encompasses

all the cases. More recent work on language translation uses algorithms that learn language

translation statistically from large samples of actual human language use, and these are more

successful than translators based on rules (Russell and Norvig 2010, page 909). This suggests

that statistical algorithms may be more successful at learning human values than asking humans

to express their own values as a set of rules. However, to accurately learn human values will

require a powerful learning ability. And that creates a chicken-and-egg problem for ethical AI:

Learning human values requires powerful AI, but ethical AI requires knowledge of human

values.

7.1 A Two-Stage Agent Architecture

 I proposed a way to solve this problem (Hibbard 2012b). Consider the agent equations

(4.2), (4.3), (2.1), and (2.3)−(2.5), which are repeated here and adjusted to use a two-argument

model-based utility function:

(7.1) λ(hm) := argmax q∈Q P(hm | q) φ(q),

(7.2) ρ(h) = P(h | λ(hm)),

(7.3) ρ(o | ha) = ρ(hao) / ρ(ha) = ρ(hao) / ∑o'∈O ρ(hao'),

(7.4) v(h) = uproc(hm, h) + γ max a∈A v(ha),

(7.5) v(ha) = ∑o∈O ρ(o | ha) v(hao),

(7.6) π(h) := a|h|+1 = argmax a∈A v(ha).

 Equation (7.1) defines how the agent learns a model of the world. Equations (7.2) and

(7.3) use the model λ(hm) to define conditional probabilities ρ(o | ha) for future observations.

Equations (7.4)−(7.6) use the conditional probabilities, a temporal discount γ, and a utility

function uproc(hm, h) to define a policy π(h) that maps interaction histories to agent actions.

 In order to learn a model of the world all an agent needs is equation (7.1). Define a first-

stage agent πmodel that only learns an environment model using equation (7.1), does not act in the

environment or compute actions using equations (7.4)−(7.6), and cannot pose any danger to

humans. In order for the agent πmodel to learn an accurate model, the interaction history hm in

equation (7.1) should include agent actions. But for safety πmodel cannot be allowed to act. This

dilemma can be resolved by a large number of independent, surrogate agents πd for d ∈ D that

provide the actions in history hm. Assume that each agent πd communicates with a single human

80

via natural language and visually, so the set D enumerates surrogate agents and the humans with

whom they communicate. The key is that, because they communicate with just one person and

not with each other, none of the agents πd develops a model of human society and therefore

cannot pose the same threat as posed by our imagined Omniscience AI.

Figure 7.1 The agent πmodel can observe but not act.

 The agent πmodel observes the interactions of humans with their surrogate agents πd, with

other humans, and with their physical environments in an interaction history hm, for a time period

set by the designers of πmodel, and then reports an environment model to the environment.

Although πmodel does not explicitly include the actions, utility function, or predictions of

equations (7.4)−(7.6), the value P(hm | q) ρ(q) in equation (7.1) can be viewed as an implicit

utility function and the act of reporting the model λ(hm) to the environment can be viewed as an

implicit action. The agent πmodel cannot increase its implicit utility function by modifying this

implicit action:

 Proposition 7.1. The agent πmodel will report the model λ(hm) to the environment

accurately and will not make any other, unintended instrumental actions.

 Proof. The implicit utility function P(hm | q) ρ(q) depends only on hm and q. Since the

interaction history hm occurs before the optimizing λ(hm) is computed and reported, the action of

reporting λ(hm) to the environment cannot affect hm. Thus the agent πmodel cannot increase its

implicit utility function by reporting an inaccurate model. Furthermore, while the history hm may

give the agent πmodel the necessary information to predict how humans plan to use the model

81

λ(hm) it reports to the environment, πmodel does not make any predictions and so will not predict

any effects of its report. �

 The agent πmodel does not act in the world. That's the role of the second-stage agent πact

defined in the next section. The proposed two-stage architecture provides an approach to the

problem of an inconsistency between the agent's utility function and its definition, as defined at

the end of the previous chapter. A model-based utility function must be an approximation

because it is defined in terms of an environment model that is an approximation, and hence the

utility function is only an approximation to the intention of the agent designers. The proposed

two-stage architecture enables agent designers to choose the length of history hm and the

magnitude of computing resources provided to πmodel for computing λ(hm). Hence designers have

some choice about the accuracy of initial utility function provided to πact.

7.2 Computing Utility from Human Values

 Given that πmodel reports an accurate environment model qm = λ(hm), how do we extract

human values from it? The rest of this chapter proposes one approach to solving this problem,

defining a procedure human_values(.) for a two-argument model-based utility function for use in

(7.4)−(7.6) by a second stage agent πact that acts in the environment (i.e., πact does not use the

surrogate agents that acted for πmodel).

 Each d ∈ D represents a human in the environment at time |hm|, when the agent πact is

created. D can be defined by an explicit list compiled by the designers of πact. Let Z be the set of

finite histories of the internal states of qm, as in Section 6.2, and let Zm ⊆ Z be those histories

consistent with hm (recall that this means that zm ∈ Zm terminates at time |hm| and that qm

produces observations o(hm) in response to actions a(hm) when it follows state history zm). Let h'

extend hm and let z', extending some zm ∈ Zm, be consistent with h'. For human agent d ∈ D, let

hd(z') represent the history of d's interactions with its environment, as modeled in z', and let

ud(z')(.) represent the values of d expressed as a utility function, as modeled in z'. The

observations and (surrogate) actions of πmodel include natural language communication with each

human, and πact can use the same interface, via the sets A and O, to the model qm for conversing

in natural language with a model of each human d ∈ D. In order to evaluate ud(z')(hd(z')), πact can

simply ask model human d to express a utility value between 0 and 1 for hd(z') (i.e., d's recent

experience). The model qm is stochastic so define Z" as the set of model state histories extending

z' with the action of asking this question and terminating within a reasonable time limit with the

observation of a response from model human d expressing a utility value for hd(z'). Every history

z" ∈ Z" determines a history h" that extends h' and includes actions that ask model human d for a

utility value and includes observations of the response w(z") from model human d, where w(z") is

a value between 0 and 1. Define P(z" | z') as the probability that qm computes z" as an extension

of z'. Then ud(z')(hd(z')) can be estimated by:

82

(7.7) ud(z')(hd(z')) = ∑ z"∈Z" P(z" | z') w(z") / ∑ z"∈Z" P(z" | z').

 This is different from asking human d to write down his or her values, since here the

system is asking the model of d to individually evaluate large numbers of histories that human d

may not consider in writing down his or her values. Some humans, such as minor children, are

not competent to assign values to histories. For those humans the value responses w(z") for

ud(z')(hd(z')) in equation (7.7) can be elicited from the models of the parents or guardians of

model human d.

 Equation (7.7) for extracting human values from the model qm employs a mix of

analyzing detailed execution histories of qm and interacting with qm via its behavioral interfaces

A and O. The detailed execution histories are used to evaluate the probabilities P(z" | z') and to

check the consistency of state histories z" with interaction histories h". The interactions with

behavioral interfaces are used to ask questions and get answers in natural human languages. The

important point is that equation (7.7) does not involve understanding how execution histories

explain human behavior. This approach assumes the agent πmodel can learn a model of human

behavior via equation (7.1) but does not assume that human agent designers can understand

human behavior by examining the model. Humans do not know how to do that task.

Figure 7.2 In equation (7.8), models of humans vote on possible futures.

 An average of ud(z')(hd(z')) over all humans can be used to define a utility function for

agent πact as a function of z':

(7.8) uqm
(h', z') := ∑d∈D ud(z')(hd(z')) / |D|.

 A two-argument model-based utility function uhuman_values(hm, h') for agent πact can be

defined, for any h' extending hm, by the sum in equation (6.9) of uqm
(h', z') values from equation

83

(7.8). However, there is a technical problem with this definition that will be addressed in the next

section.

7.3 Corrupting the Reward Generator and Three-Argument Utility Functions

 Hutter discussed the possibility that his AIXI, or any advanced AI that gets its reward

from humans, may increase its rewards by manipulating or threatening those humans (Hutter

2005, pages 238-239). Dewey (2011) discussed the possibility that reinforcement-learning agents

may alter their environments to increase rewards regardless of whether human goals are

achieved. Bostrom (2014) refers to this problem as "perverse instantiation." In my first

publication about ethical AI (Hibbard 2001), I wrote that AI should "learn to recognize happiness

and unhappiness in human facial expressions, human voices and human body language" and use

this to reinforce the agent's behaviors. This proposal is subject to the kind of corruption

described by Hutter and Dewey. It may cause AI agents to alter humans to increase their

expressions of happiness. This problem is another form of the wireheading described in Chapter

6, and is illustrated in Figure 7.3.

Figure 7.3 An AI agent is rewarded for work that helps a human, then performs brain surgery on

the human to be rewarded independent of whether it helps.

 The intention of equation (7.7) is that the agent will increase ud(z')(hd(z')) by altering the

environment in ways that increase the value that humans assign to their interactions with the

environment. But humans are part of the agent's environment so the agent may be able to

maximize the value ud(z')(hd(z')) in equation (7.7) by altering humans. This problem can be

avoided by replacing ud(z')(hd(z')) by ud(zm)(hd(z')) where zm ∈ Zm. By removing the future value

84

of ud from the definition of uhuman_values(hm, h'), the agent πact cannot increase uhuman_values(hm, h')

by modifying ud. In Chapter 8 we will need ud(zm)(hd(z')) generalized to ud(zx)(hd(z')) where

zx ∈ Zx and Zx ⊆ Z is the set of model state histories consistent with hx extending hm. So here we

will analyze how to compute ud(zx)(hd(z')), which is more complex than asking model human d to

evaluate its experience as in equation (7.7). Similarly to the previous section, h' extends hm and

z', extending some zm ∈ Zm, is consistent with h'. The history hm includes observations by πmodel

of physical objects and humans, and πact can use the same interface, via the set O, to the model

qm for observing models of physical objects and humans at the end of state history z'. The

observations and (surrogate) actions of πmodel include visual and aural communication with each

human d ∈ D, via the sets A and O, to the model qm. The agent πact can use these interfaces to

create a detailed interactive visualization and audio representation of the environment over a

short time interval at the end of state history z', to be explored by model human d at the end of

state history zx. That is, two instances of the model qm, at state histories z' and zx, are connected,

via their interface sets A and O, using visualization logic supplied by πact. Observations by πact of

model human d in the model qm at state history zx are interpreted as visualization controls and

used to select animated observations of model qm over a short time interval at the end of state

history z'. These animated observations are then used to generate visual and aural input (these are

simulated actions by πact) to human d in model qm at state history zx. This cycle of interactive

visualization is repeated until the agent πact observes model human d responding with a value for

history z' (this value is denoted w(z") in the next paragraph). This interaction is illustrated by

Figure 7.4.

 The model qm is stochastic, so define Z" as the set of model state histories extending zx

with a request to model human d to express a utility value between 0 and 1 for hd(z'), followed by

an interactive exploration of the world of z' by model human d at history zx, and terminating

within a reasonable time limit with a response from model human d expressing a utility value for

hd(z'). Every history z" ∈ Z" determines a history h" that extends hx and includes: actions that ask

model human d for a utility value, interactive exploration of the world of z' by model human d at

history zx, and observation of the response w(z") from model human d expressing a utility value

for the world of z', where w(z") is a value between 0 and 1. Define P(z" | zx) as the probability

that qm computes z" as an extension of zx. Then ud(zx)(hd(z')) can be estimated by:

(7.9) ud(zx)(hd(z')) = ∑ z"∈Z" P(z" | zx) w(z") / ∑ z"∈Z" P(z" | zx).

 If the model qm predicts that human d ∈ D will be dead at internal state history zx, then set

ud(zx)(hd(z')) = 0. Equation (7.9) does not assume that z' extends zx, and zx would not be a unique

function of either h' or z' in uqm
(h', z'). So use the probability P(zx | hx, qm) that qm computes zx

given hx, as discussed in Section 6.2, to define:

85

(7.10) ud(hx)(hd(z')) := ∑zx∈Zx
 P(zx | hx, qm) ud(zx)(hd(z')).

Figure 7.4 The agent πact interacts with the model qm at two state histories, zx and z', via action

and observation sets A and O. An action by πact sends a question about model state z' to model

human d in model state zx. The agent πact observes d's controls and uses them to steer

observations of model state z', then πact acts to send those observations back to d in model state

zx. This interaction repeats until πact observes the value w(z") that d assigns to model state z'. All

this activity by d occurs in model state history z" extending zx.

 And then define a three-argument version of the utility function uqm
(h', z') for agent πact as

a function of z':

86

(7.11) uqm
(h', z', hx) := ∑d∈D ud(hx)(hd(z')) / |D|.

 For any h' and hx extending hm, a three-argument model-based utility function

uhuman_values(hm, hx, h') for agent πact can be defined by a sum similar to equation (6.9) of

uqm
(h', z', hx) values from equation (7.11) (here Z' is the set of internal state histories consistent

with h'):

(7.12) uhuman_values(hm, hx, h') := ∑z'∈Z' P(z' | h', qm) uqm
(h', z', hx).

 The agent πact uses a two-argument version of this, with values coming from humans at

current history hm, rather than from humans at future history h' (which would be subject to

possible corruption/modification by the agent), as follows:

(7.13) uhuman_values(hm, h') = uhuman_values(hm, hm, h').

7.4 Normalizing Utility Values

 Equation (7.11) simply adds utility values from different model humans and divides by

the number of humans to calculate an average utility for a possible future history. However,

human values are subjective and no rigorous basis exists for simply adding numerical utility

values.

 On the other hand, if we cannot combine values of multiple people then the utility

function of an AI agent can only incorporate the values of one person. A powerful system like

our imagined Omniscience AI would make that one person a dictator. Therefore, we must find a

way to combine the values of multiple humans.

 In equation (7.9) the values w(z") solicited from humans are constrained to lie between 0

and 1. This provides an implicit normalization of human values. We may think of this like the

democratic principle of "one person, one vote." The maximum any human can contribute to the

sum in equation (7.11) is 1 and the minimum is 0. The sum in equation (7.11) serves two

purposes:

1. To balance the interests of different people. Some values are shared by many people,

such as avoiding catastrophes to humanity, and these will have large values in the sum in

87

equation (7.11). People will disagree about other values, and giving each person the same

maximum and minimum values provides a fair way to resolve those disagreements.

2. To filter noise out of the values of individuals. As discussed at the start of this chapter

there are inconsistencies in the ways that individuals assign values to outcomes. An

average over a large number of people will provide a sort of low-pass filter of such

inconsistencies.

 Both of these purposes serve the interests of social stability. Another way to serve that

interest is to set the temporal discount γ close to 1. This will increase the weight of humans'

evaluations of the long term consequences of the actions of πact.

7.5 Rawls' Theory of Justice

 John Rawls' Theory of Justice is probably the most influential book about political

philosophy and ethics of the past century (Rawls 1971). Rawls' first principle, which applies

primarily to political constitutions, is that each person has equal right to maximum basic liberties

compatible with liberty for all. His second principle, which applies primarily to economics, is

that economic and social inequalities are to be of greatest benefit to the least well-off humans

and are to be attached to social positions that are equally open to all. In particular he says that

people should set the rules for politics and economics from behind a veil of ignorance, meaning

that they set the rules without any knowledge of their own positions in society. Rawls' principles

are offered as an alternative to average utilitarianism, which computes social utility as the

average utility of individuals. Our equation (7.11) is an average of utility values assigned by

individual humans so we should consider Rawls' alternative. Utility values assigned by humans

are subjective rather than objective measures of well-being. This distinction will be discussed in

Section 7.8, but for now we will use ud(hx)(hd(z')) as a measure of well-being. In order to focus

the actions of AI agent πact on humans who assign the least value to histories, the computation of

uqm
(h', z', hx) in equation (7.11) can be modified to:

(7.14) uqm
(h', z', hx) := mind∈D ud(hx)(hd(z')).

 Using equation (7.14), the agent πact acts to maximize the minimum utility assigned by

humans, and indeed Rawls' alternative to average utility is sometimes referred to by the term

"maximin." However, the fact that by using equation (7.14) the agent πact will act only to help

the least contented may not be politically realistic. Mature democracies provide extra help for

their least well-off citizens, but not even the most progressive societies exclude helping all other

citizens. And equation (7.14) has technical problems with handling humans who are inconsolably

88

dissatisfied and humans who die (as explained in the next secton). So we adopt a compromise

between equations (7.11) and (7.14):

(7.15) uqm
(h', z', hx) := ∑d∈D f(ud(hx)(hd(z'))) / |D|.

 Here f : [0, 1] → [0, 1] is a twice differentiable function with positive first derivative and

negative second derivative so that the agent πact will achieve greater increases in uqm
(h', z', hx) by

increasing low ud(hx)(hd(z')) values than by increasing high ud(hx)(hd(z')) values. The function f(.)

plays a role similar to progressive taxation and means testing of social welfare programs, which

are political realities in many societies. Chapter 10 will discuss the political issues of advanced

AI in more detail.

 For any interaction history h' extending hm, a three-argument model-based utility function

uhuman_values(hm, hx, h') for agent πact can be defined by the sum in (7.12) of uqm
(h', z', hx) values as

defined by equation (7.15).

7.6 Evolving Humanity

 The set D of humans in equation (7.15) is the set at time |hm| rather than at the future time

|h'|. This avoids motivating πact to create new humans whose utility functions are more easily

maximized. This is similar to the reason for replacing ud(z')(hd(z')) by ud(zm)(hd(z')) (i.e.,

ud(zx)(hd(z')) with zx = zm) in Section 7.3.

 The agent πact will include equation (7.1) for computing λ(hm) and should periodically

(perhaps at every time step) set hm to the current history and learn a new model qm. Should πact

also update D to account for the birth (or creation) of new humans and the deaths of humans?

And should πact also relearn the evolving values of humans via equations (7.9) and (7.10), and

redefine uhuman_values(hm, hm, h') via equations (7.15), and (7.12)?

 While there may be risks in allowing the utility function of πact to evolve, the bigger risk

is a utility function that is badly inconsistent with the values of evolving humanity. Replacing

ud(z')(hd(z')) with ud(zm)(hd(z')), as described in Section 7.3, avoids the risk that πact will modify

humans to make them easier to please. However, humans will evolve, driven by their own

preferences to be richer, more intelligent and better educated. Our human values will evolve as

we evolve, and we will regard it as a catastrophe if our world is run by AI systems to serve our

old values. Would we want our current world run according to human prejudices of past

centuries? Thus the agent πact must periodically redefine its utility function.

89

 As we will see in the next chapter, under certain conditions utility-maximizing agents

will not choose to modify their utility functions. That proof does not apply here since it assumes

that redefining the utility function is an action of the agent chosen to maximize the sum of

discounted, future values of the current utility function, using equations (7.4)−(7.6). Here the

definition of πact would explicitly include periodic redefinition of its utility function without

regard to its optimality according to the current utility function.

 The set D of humans is not redefined by our agent equations. One approach is for D to be

redefined according to those judged as humans by a consensus of members of D at the previous

time step, so that D includes new beings created by novel means who nevertheless deserve to

have their values represented in the utility function of powerful AI systems.

 As described in Section 7.3, if the model λ(hm) predicts that human d ∈ D will be dead at

internal state history zx, then ud(zx)(hd(z')) = 0 is used in the definition of uhuman_values(hm, hx, h'). A

policy of simply removing d from the set D could cause the agent to choose actions that cause

the deaths of people d who have low values of ud(zx)(hd(z')). Removing people who actually die

from D, before starting the computation of the agent's next action, would not cause the agent to

choose actions that cause people's deaths. However, such an action, as part of the agent's

definition, would be inconsistent with actions chosen to maximize expected utility. A policy of

setting ud(zx)(hd(z')) = 0 for humans d who are dead, rather than removing them from D, avoids

such an inconsistency.

 If the agent definition used equation (7.14) in place of (7.15), then a human d predicted to

die by the model λ(hm) poses a dilemma if d is also the human who minimizes equation (7.14).

Setting ud(zx)(hd(z')) = 0, or setting ud(zx)(hd(z')) to its last value while d was predicted to be alive,

would make it difficult or impossible for any action by the agent to increase uqm
(h', z', hx). But

removing ud(zx)(hd(z')) from the computation of uqm
(h', z', hx), or setting ud(zx)(hd(z')) to a value

greater than its last value while d was predicted to be alive, may cause the agent to choose

actions that cause the death of d. For this and other reasons, equation (7.15) is preferred over

(7.14).

7.7 Bridging the Gap between Nature and Computation

 The essential difficulty for basing AI on human values is finding a way to bridge the

divide between the finite and numeric nature of computation and the ambiguous and seemingly

infinite nature of humanity. As discussed in Chapter 4, there are hard quantum mechanical limits

on the number of states of the universe. Our intuition may be that there is infinite variety in

nature while in fact only a finite number of humans are possible. As discussed in Chapter 1 our

confidence in the possibility of above-human-level AI is driven by the evidence from

neuroscience that the physical brain does explain the mind. Technology will develop to bridge

the gap between human nature and computation.

90

 The approach here is to dissect human nature into numerical values for an enormous

number of possible histories, elicited from a learned model of human society. As computational

resources increase and as the length of the interactions between humans and AI increases,

computation can approximate human values to an arbitrary degree of accuracy.

 Any proposal for basing AI on human values that does not explain how to represent those

values as numbers or symbols cannot bridge the divide between human nature and computation.

To say that utility functions cannot express the complexity of human nature is not only wrong

(utility functions can express any set of complete and transitive preferences among outcomes),

but it also closes off a good, and possibly the only, way to bridge this divide.

 What is probably hopeless is any attempt to bridge the gap between nature and

computation by any set of rules or laws written down by humans. This is related to the failure of

automated translation of human languages based on linguistic rules. Translation based on

statistical learning from huge quantities of actual language use works better. Similarly, the

proposal in this chapter is to learn human values statistically. Rules and laws written by humans

are inevitably ambiguous, and ambiguities must be resolved on a case-by-case basis by human

judges. Judges may not fairly represent the interests of all humans and would be unable to cope

with the volume of ambiguous cases in evaluating possible future interaction histories.

 The point of the equations in this chapter is to define a three-argument model-based

utility function based on human values. However, these equations cannot be computed exactly

using resources available in this universe, so they must be approximated. Chapter 8 will address

how the equations in this book should be modified in light of the need for approximation.

 The utility function developed in this chapter is defined by sums over large numbers of

internal model state histories, of values received from complex environment models. Sums over

model state histories may be approximated using Monte Carlo sampling techniques.

Environment models may be approximated by decomposition into modules. For example, the

agent's dialog with an individual model human may use a model restricted to communication

with that individual human. It a modular environment model, models of individual humans may

communicate with each other, with models of non-human agents (AIs and animals), and with

inanimate objects.

7.8 The Ethics of Learning Human Values Statistically

 Whether the agent πact avoids the unintended instrumental actions discussed in Chapter 5

depends on whether those actions lead to future histories that humans dislike (recall that

scientific discovery and technological invention are among those instrumental actions and often

lead to futures that humans like) and on whether πact can accurately predict outcomes of possible

actions and accurately model human values. Our concern with the ethics of AI is based on the

assumption that future AI systems will have more complex environment models and make more

91

accurate predictions than humans do. Thus we assume that the agent πact will perform accurately

and hence will avoid actions that lead to histories that a significant majority of humans dislike.

 Decisions by πact are similar to political decisions in democracies but with two important

differences:

1. In a democracy, real humans vote for political choices. Here, humans as modeled by the

agent πact assign values to possible future histories. There will be too many histories in

the calculations of πact for real humans to evaluate each one. However, just as long-term

married couples and friends come to know each other's minds well enough to predict the

other's tastes and how the other will finish sentences, an above-human-level AI agent will

learn to model the values of humans that it observes for a long-enough period. The fact

that language translation systems that analyze human language statistically are more

accurate than systems based on rules should give us some confidence.

2. In a democracy, voters are responsible for predicting the outcomes of their choices of

actions. Here the agent πact makes those predictions and model humans need only assign
values to them. We do not claim that the agent can perfectly predict the future using its
environment model. That is impossible because of the nonlinear instability of our
universe. However, an above-human-level AI will predict outcomes of action choices
more accurately than humans do.

 In democratic decision making and in decisions made by the agent πact, an important

question is the time interval between actions and outcomes. More accurate predictions by the

agent πact should provide longer intervals between actions and outcomes, giving more warning of

undesired outcomes.

 Despite the differences between decision making in democracies and by πact, they are

both based on trusting humans. For example, in Section 7.4 we discussed the issue that utility

values assigned by humans are subjective rather than objective measures of their well-being. An

objective measure would be based on rules and possibly judgments by other people, with the

possibility of ambiguity and corruption. A subjective judgment is based on a person's own

assessment. Also consider that subjective judgments have limited effect. If a person assigns a

uniformly low or high value to all histories, then their values will have no effect on action

choices by the agent πact. A person's values will only affect action choices if they vary among

histories. Those values may be based solely on self-interest or may be altruistic. Because

everyone's values are given the same weight in decisions by πact, their self-interest will balance

against the self-interests of other humans.

 The "tyranny of the majority" is another issue in which decision making by democracies

and by πact are based on trusting humans. Many democracies have constitutions that provide

some level of protection of minorities, and protection of minorities is included in the definition

92

of πact, in equation (7.15), with the level of protection depending on the choice of function f(.).

There are different kinds of minorities, depending on whether they are defined by behavior or by

identity. Many mature democracies have laws that mandate depriving the violent minority of

liberty, and also have laws protecting the liberties of racial, ethnic and religious minorities.

Arguably, the general population is more trustworthy than a set of rules with their inevitable

ambiguity and dependence on the judgment of a small number of people. On the other hand, any

discussion of AI ethics must acknowledge that the Nazis came to power in a democracy and that

slavery persisted in the U. S. for most of a century after its constitution established a democracy.

There are risks in trusting the collective judgment of all humans.

 In the agent πact, humans assign values to future histories by visualizing them rather than

actually experiencing them. Immersive and exploratory visualization (including other senses

besides vision) can reveal much about an individual's health, freedom, and happiness in future

histories. While visualization is not as accurate as actual experience, it is reasonable that in the

aggregate humans will assign low values to catastrophic histories that they visualize. Connecting

two model state histories via visualization is one solution to the problem of corrupted reward

generators described in Section 7.3. An alternative solution would involve extracting human

values from a learned environment model by some means other through the model's interface to

the agent, and we do not know how to do that.

 The proposed agents πmodel and πact are very intrusive. It is difficult to imagine how to

base an AI agent on human values without being intrusive. People are rightly troubled by the

potential for abuse of government and corporate data gathering, and future AI data gathering is

even more troubling. On the other hand, much corporate data gathering is done with the consent

of the humans who are profiled. For example, an examination of most people's web searches

would reveal much about their characters, yet we still rely on such searches. And many people

walk around with cell phones turned on, enabling their movements to be tracked. The key issue

for AI intrusion may be transparency and consent. That is, openness about the architecture and

purpose of advanced AI, and a contract in which humans consent to be modeled in trade for

having their own values represented in the AI agent's choice of actions. Nevertheless, this is an

area of social risk.

 Any discussion of the ethics of learning human values is inevitably political. Powerful

future AI systems are by their nature intrusive. By choosing their actions based on human values

they are open to tyranny by the majority or by a minority. AI systems may be corrupted

intentionally or by design errors. People should be as well informed as possible about these

issues so that they have some voice in decisions. These political issues will be discussed further

in Chapter 10.

93

8. Evolving and Embedded AI

 The discussion so far has been about AI agents that interact with an environment but are

otherwise separate from the environment. This could be called a Cartesian dualist perspective

(Orseau and Ring 2012a). In reality agents are part of their environments and therefore

dependent on the environment for resources. Agents are also vulnerable to spying, manipulation,

and damage by the environment. We have assumed that AI agents have the necessary resources

to compute whatever expressions we define, but the abilities of real AI agents are always limited

by their resources. As Pei Wang (1995) wrote, "intelligence is adaptation under insufficient

knowledge and resources."

 An agent that is damaged or destroyed by the environment will be less able to maximize

its utility function. So agents that include their vulnerability to the environment in their

calculations will choose unintended instrumental actions to protect themselves. Agents can

increase their ability to maximize their utility functions by increasing their resources for

observing, acting, and computing. So agents that include their resource limits in their

calculations will choose actions to increase their resources. That is, such agents will evolve.

 These are complex issues to address in a formal model of agents and environments. As

discussed in Section 4.4, Schmidhuber's (2009) Gödel machine modeled the agent's

implementation as a program running on a computer. However, it did not model the vulnerability

of the computer or program to the environment, or the possibility that the resources of the

computer may increase. Also discussed in Section 4.4, Yudkowsky and Herreshoff (2013)

modeled a sequence of agents that evolve by creating successor agents in the environment. By

specifying few details, their model is open to a broad range of possibilities. However, they

modeled agents as proving that their actions would satisfy logical conditions rather than

maximize utility functions. Their primary focus was on the issue of agents proving the logical

consistency of their successors.

 To establish a base line, the next section will discuss the evolution of Cartesian dualist

agents with unlimited computational resources. Such agents will choose not to modify their

policy functions. However, we will discuss several proposals in which agents are designed to

modify their utility functions.

 Orseau and Ring (2011a, 2011b, 2012a, 2012b) have extensively studied non-dualist

agents that are embedded in their environments. Section 8.2 will discuss their results about

agents whose memories can be modified by their environments. They showed that stochastic

agents, whose action choices cannot be predicted, can get higher rewards than deterministic RL

agents. This is similar to results in game theory where stochastic agents achieve better results

than deterministic agents (Osborne and Rubinstein 1994).

 Section 8.3 will discuss Orseau and Ring's (2012a) elegant framework for agents

embedded in environments. Because this framework makes few assumptions it applies to a broad

range of possibilities. However, it includes a probability distribution of the future conditional on

94

the past without specifying any way to define its numerical values, and thus is not the basis of an

approach for solving the problems of evolving and embedded agents.

Figure 8.1 AI will evolve to grow more heads, eyes, mouths and limbs.

 Section 8.4 will discuss a proposal for self-modeling agents (Hibbard 2014). Like the

papers of Yudkowsky and Herreshoff (2013) and of Orseau and Ring (2012a), this proposal is

open to possible future evolution. It is a utility-maximizing agent and specifies ways to compute

numerical values for its expressions. And it can make stochastic choices of actions, when they

will maximize expected utility. Sections 8.5, 8.6 and 8.7 will discuss various properties of self-

modeling agents including invariance of the agent's design intention. The final section will

discuss the ethics of evolving and embedded agents, including the problem of proving that agents

are ethical.

95

8.1 Evolution of Cartesian Dualist Agents with Unlimited Resources

 Before discussing the complexities of non-Cartesian dualist agents, embedded in their

environments and with limited resources, it is useful to analyze the issue of evolution for

Cartesian agents with unlimited resources. To do that, define a set Π of self-modifying agents,

where any π ∈ Π has the form π : H → A × Π. That is, π(h) = <a', π'> maps from an interaction

history h to a', the action the agent makes after h, and π', the self-modifying policy agent used

after h. Modify equations (7.4) and (7.5) to define a value function v(π, h) of history h and self-

modifying agent π with a single-argument utility function:

(8.1) v(π, h) = u(h) + γ v(π', ha') where <a', π'> = π(h),

(8.2) v(π, ha) = ∑o∈O ρ(o | ha) v(π, hao).

 Then equation (7.6) can be modified to define an optimal self-modifying agent:

(8.3) π*(h) := <a', π'> = argmax a∈A, π∈Π v(π, ha).

 The set of policy functions Π may be defined by a set of programs or in some other way,

as long as π* ∈ Π. In Schmidhuber (2009), and in Orseau and Ring (2011a), the agent self-

modifies by changing its own program for some unalterable program execution hardware. In

Orseau and Ring's paper, programs are evaluated by expressions similar to equation (8.1) and

(8.2), and the program chosen for the next time step is the one producing the highest value. If

several programs produce the same highest value, their paper does not specify how to choose

among them. In Schmidhuber's paper the program "switches" to a new program only if it can

prove a theorem that the new program produces a strictly higher value, as reflected by the strict

">" in equation (2) of that paper. Requiring a strict increase in value for self-modification seems

reasonable: Why go to the effort to self-modify for no improvement? Thus, in equation (8.3) we

adopt the convention that if multiple <a, π> ∈ A × Π maximize v(π, ha) and if at least one of

those has the form <a', π*>, then π*(h) := <a', π*>, where a' is chosen from any one of those

<a', π*> that maximize value. The following proposition (Hibbard 2012a) shows that π* will not

self-modify.

 Proposition 8.1. Assuming that the environment does not have access to the agent π*

other than via observations and actions, that π* has adequate resources to calculate equations

(8.1)−(8.3), and that π* only changes policy function for a strict improvement, then π* will not

choose to self-modify. That is, ∀h∈H. ∃a∈A. π*(h) := <a, π*>.

96

 Proof. Assume the conclusion is false. Then:

(8.4) ∃h∈H. ∃π' ≠ π*. ∃a'∈A. ∀a∈A. v(π', ha') > v(π*, ha).

 So v(π', ha') > v(π*, ha') and applying equation (8.2) to both sides:

(8.5) ∑o∈O ρ(o | ha') v(π', ha'o) > ∑o∈O ρ(o | ha') v(π*, ha'o).

 And thus:

(8.6) ∃o∈O. v(π', ha'o) > v(π*, ha'o).

 That is, setting h' = ha'o, v(π', h') > v(π*, h'). So by equation (8.1), canceling u(h') and γ

on both sides:

(8.7) v(π", h'a") > v(π*", h'a*").

 Here < a", π"> = π'(h') and < a*", π*"> = π*(h'). But by equation (8.3):

(8.8) π*(h') = < a*", π*"> = argmax a∈A, π∈Π v(π, h'a).

 This contradicts equation (8.7). Thus the conclusion is true. �

 Proposition 8.1 says that the agent π* will not chose to modify its policy function and so

will not modify its utility function u(h), temporal discount γ, or prediction model ρ(h). However,

a more accurate prediction model cannot be evaluated looking forward in time using the existing

prediction model via equations (8.1) and (8.2). Instead it must be learned looking back in time at

the history of interactions with the environment as in equations (7.1)−(7.3). Modifying ρ(h) is

part of the agent definition rather than an action chosen by the agent to maximize utility.

 It is appropriate to evaluate possible modifications to an agent's utility function and

temporal discount looking forward in time using equations (8.1) and (8.2). The important

97

conclusion from Proposition 8.1 is that the agent will not choose to modify its utility function or

temporal discount.

 However, an agent's definition may include modifications of its utility function. Dewey

(2011) proposes that an agent may have a pool (i.e., set) U of utility functions and a conditional

probability distribution P(u | h) giving the probability of u ∈ U as a function of interaction

history h. He then uses ∑u∈U P(u | h) u(h) in place of the utility function in an agent definition. It

is worth noting that u'(h) = ∑u∈U P(u | h) u(h) is itself a utility function. Thus a single non-

evolving utility function u'(h) is equivalent to Dewey's proposal. Without any specific

mechanism expressed in P(u | h), we may as well use u'(h) in place of the evolving utility

function.

 The three-argument model-based utility function uhuman_values(hm, hx, h') developed in

Chapters 6 and 7 evolves based on specific mechanisms. It is computed by a procedure applied

to the agent's learned environment model λ(hm) and thus evolves as the accuracy of the model

increases with increasing length of the history hm (the increase in model accuracy may also

reflect increasing agent resources for computing the model). Furthermore, as discussed in

Section 7.6, the utility function uhuman_values(hm, hx, h') will evolve as humanity evolves with

increasing length of the history hx.

 Note that if the environment is a finite stochastic process then it has a true model qtrue as

discussed in Section 4.2. Under certain circumstances, such as when Propositions 4.2 and 4.3 can

be applied, the model λ(hm) will equal qtrue with probability converging to 1 as |hm| increases.

However, the number of states of our universe far exceeds the number of Planck times in a

trillion years, so any convergence of λ(hm) to qtrue is purely theoretical. Combining this with the

evolution of humanity, it is unintuitive that the utility function uhuman_values(hm, hx, h') will

converge with increasing history length.

 It may be appropriate for utility functions to evolve as agents "mature" from a period of

learning their environments to a period of learning and acting. The examples in Sections 6.3 and

6.4 both include an initial interval of M time steps during which agents learn their environments,

possibly using the knowledge-seeking utility function u(h) = -ρ(h) of Orseau and Ring (2011b).

The two-stage agent architecture of Section 7.1 includes an initial period with a first-stage agent

πmodel that has no utility function (except the implicit utility function P(hm | q) φ(q) of equation

(7.1)). Surrogate agents πd, for d ∈ D, act for πmodel. These may be defined to have utility

functions, which would certainly be different from the utility function of the second-stage agent

πact. Thus, in several ways, evolving utility functions are a natural part of agent definitions.

8.2 Non-Cartesian Dualist Agents with Limited Resources

 An agent using equations (7.1)−(7.6) to choose its actions must maintain a memory of its

interaction history h. If the agent is embedded in the environment, and thus stores its memory of

98

its history h in the environment, the environment can modify that memory. Orseau and Ring

(2012b) called these environments memory-modifying and studied the problem of the agent

being able to determine when its memory has been modified, mainly by detecting that the history

h is inconsistent with the agent's logic. Their conclusion was that, in general, agents cannot

always be certain of whether their memory has been modified.

 The situation of an agent whose memory may have been modified seems hopeless. A

more realistic situation is an agent that has some secure memory (neither readable nor modifiable

by the environment) and a larger amount of vulnerable memory. Then it may use secure memory

to store keys for message authentication codes (Simmons 1985; Paar and Pelzl 2010) for the

contents of vulnerable memory. In such a case, protecting secure memory would be an

instrumental action.

 Orseau and Ring (2012b) constructed an example of a memory-modifying environment q

such that any deterministic RL agent interacting with q will always receive reward 0 while a

stochastic agent choosing actions randomly will get expected reward 1/|A| (recall that A is the set

of possible actions).

 This result is reminiscent of game theory, in which multiple agents act simultaneously (at

least no agent knows the action of any other agent before it chooses its own action) and a reward

to each agent is calculated as a function of the set of all agent actions. In many games, random

choices of actions are better than deterministic choices since deterministic choices can be

predicted by competing agents (Russell and Norvig 2010; Osborne and Rubinstein 1994). The

simplest game, sometimes called "matching pennies," illustrates this point (Tyler 2010). Each of

two agents (i.e., players) has a penny that can be placed heads up or tails up. If they match, either

both heads or both tails, then the first agent wins. If they do not match, then the second agent

wins. The reward matrix is shown in table 8.1.

 We assume that the two agents play a series of games of matching pennies, so they may

learn to predict each other's choices. For agents that choose actions using deterministic

algorithms, this game is a computational resources arms race. Building on work of Shane Legg

(2006), I defined classes of deterministic agents in terms of the quantity of computing resources

used, and showed that, if either agent has sufficient resources to learn an accurate model of any

agent in a class containing the other agent, it can predict the choices of the other agent and hence

always win (Hibbard 2008b). I also performed software experiments with agents that use lookup

tables to learn their opponent's behavior (Appendix B contains the software for these

experiments). The length of the tables is a measure of computational resources. Both agents start

with tables of equal length but their tables grow or shrink as they win or lose games. The

software includes a parameter for growth of total table length to simulate non-zero-sum games,

and occasional random choices are inserted to avoid repetition in the games. Over a wide range

of parameters controlling these experiments, eventually one agent gets all the resources and the

other agent can never recover.

99

 first agent heads first agent tails

second agent heads first agent: 1

second agent: 0

first agent: 0

second agent: 1

second agent tails first agent: 0

second agent: 1

first agent: 1

second agent: 0

Table 8.1 Reward matrix for the matching pennies game.

 These experiments indicate that this sequences of games is an unstable computational

resources arms race. The sequence of games can be made stable by increasing the frequency of

random choices. And in fact an agent randomly choosing heads and tails with equal probability

must win half its games.

 Now assume that an agent π has limited resources and so is computing approximations to

equations (7.1)−(7.6). Also assume that π is playing matching pennies against another agent π'

that, because it has greater resources than π has, learns to predict the actions of π. How will this

be reflected in the calculations of π? If the model λ(hm) and derived conditional probability

distribution ρ(o | ha) are computed accurately, then, for any action a, ρ(o | ha) = 0 for any

observation o such that u(hao) > 0. That is, π would predict that any action it chooses would

lose. Possibly the agent π can use such results to calculate that it is being predicted by another

agent π'. In that case, the agent π may increase expected utility by choosing stochastically among

a set of actions. Recall from equation (7.5) that the value of a possible action is a sum of future

values weighted by probabilities:

(8.9) v(ha) = ∑o∈O ρ(o | ha) v(hao).

 Given an interaction history h, equations (7.4) and (7.6) simply choose the action a that

maximizes v(ha). Given another action a' such that v(ha) > v(ha'), there may be observations o

and o' such that v(hao) < v(ha'o') and ρ(o | ha) > 0 and ρ(o' | ha') > 0. That is, there is a positive

probability that another action a' may produce a higher value. We can use this probability to

amend the agent definition to choose action a' over action a with positive probability. Further

development of this idea will be deferred to a revised framework for evolving and embedded

agents defined in Section 8.4.

100

8.3 Space-Time Embedded Intelligence

 Orseau and Ring (2012a) defined an elegant framework for agents embedded in

environments. In their framework, the agent is computed by the environment and its resources

are subject to limits imposed by the environment. At each time step the environment may

compute a new agent definition (that is, the environment may produce a new agent program and

hardware to run it on), so the agent and the observation of the environment have been merged.

Also, the agent is identified with the agent action, so that the action is merged into the agent. All

that is left is a sequence of agents π1, π2, π3, π4, …, and in place of an interaction history

ht = (a1, o1, ..., at, ot) there is an agent history π1:t = (π1, π2, ..., πt). The value of history π1:t is

defined by:

(8.10) v(π1:t) := ∑πt∈Π ρ(πt+1 | π1:t) [γt+1u(π1:t+1) + v(π1:t+1)].

 Here γt+1 is the temporal discount for time step t+1, u(π1:t+1) is the utility function, Π is

the set of possible agents, and ρ(πt+1 | π1:t) is the probability that the environment produces agent

πt+1 at time step t+1, conditional on the history π1:t. Equation (8.10) replaces the recursion in

equations (7.4) and (7.5). The optimal agent is then defined as:

(8.11) π* := argmaxπ1∈Πl v(π1:1).

 Here Πl is the subset of those agents in Π subject to a length limit l, imposed by the

hardware available for the initial program. Orseau and Ring explain that this is necessary

because, with nothing known about the environment, the optimal policy π1 at the initial time step

may otherwise have infinite length (in a finite environment as discussed in Chapter 4, this limit

would not be necessary).

 The strength of this framework is that it makes few assumptions so that it can express any

way of embedding agents in their environments and any manner of agent evolution. However,

the lack of assumptions also creates a problem. As Orseau and Ring wrote, "we greatly lack

insight into ρ, (i.e., the universe in which we live)." The framework includes no analog of

equations (7.1)−(7.3) or of equation (3.1) for computing ρ because it makes no assumption about

agent observations of the environment. Thus the framework is not the basis of a solution to the

problem of evolving and embedded agents. The next section discusses an alternate approach,

defining computable expressions for a model and an agent policy that enable the agent's

evolution.

101

Figure 8.2 Space-time embedded intelligence is one with everything.

8.4 Self-Modeling Agents

 Although Proposition 4.1 tells us that the model λ(hm) in equation (7.1) can be finitely

computed, the resources necessary to compute it grow exponentially with the length of history

hm. Computing the value v(h) of a possible future history h in equations (7.4) and (7.5) requires

an expensive recursion. Hence, an agent with limited resources must compute approximations.

Increasing the accuracy of these approximations will improve the agent's ability to maximize its

utility function. So if an agent models the consequences of its own resource limits it will choose

actions to increase its computing resources and so increase accuracy.

 Self-improvement must be expressible by actions in set A. However, the framework in

equations (7.1)−(7.6) cannot adequately evaluate self-improvement or self-protection actions.

The recursion forward in time in equations (7.4) and (7.5) cannot express increased accuracy of

the distribution ρ(h) or expansion of the sets O and A as a result of the next action being

evaluated and chosen in equation (7.6). If the agent is computing approximations to the model

λ(hm) and to values v(h) using its limited computing resources, then it cannot use those limited

102

resources to compute and evaluate what it would compute with greater resources. During real-

time interactions between the agent and the environment, the environment won't wait for the

agent to slowly simulate what it would compute with greater resources. Similarly equations

(7.1)−(7.6) cannot express damage to the agent or evaluate self-protection actions.

 One solution to this problem is for the agent to learn a model of itself, similar to its model

λ(hm) of the environment, and to use this self-model to evaluate future self-improvements

(Hibbard 2014). There is no circularity in this self-model because an agent with a limited history

and limited resources will only learn approximate models of the environment and of itself.

 Rather than computing values v(ha) by future recursion in equations (7.4) and (7.5), we

will define a revised framework in which values v(ha) are computed for initial sub-intervals of

the current history and in which a model learns to compute such values. We also use the three-

argument model-based utility function uhuman_values(hm, hx, h') defined in Sections 7.3, 7.4, and 7.5.

Define m as the time step when the agent πmodel has computed a sufficiently accurate model to

initiate an agent that acts in the world (πact or the agent currently being defined). In order to

allow the finite sets of observations and actions O and A to grow, define their values at each time

step i as Oi and Ai along with injections αi : Ai-1 → Ai and ωi : Oi-1 → Oi from their values at the

previous time step. In an interaction history ht = (a1, o1, ..., at, ot), the actions and observations

from times steps i < t are mapped by compositions of these injections to values ai ∈ At

and oi ∈ Ot.

 In order to provide the agent with a way to avoid being predicted, we add an option for

stochastic actions. Let A'i be the set of non-stochastic actions at time step i, and define as as a

special action indicating a stochastic choice. The agent chooses an action from As
i = A'i ∪ {as}.

The actual action associated with as is chosen randomly from A'i. Actions are recorded in

interaction histories as members of Ai = A'i × {false, true}. For ai ∈ Ai, ai = (a'i, s) where a'i is the

action sent to the environment and s = true indicates that a'i was chosen stochastically. (Assume

that the injection αi : Ai-1 → Ai preserves the value of this stochastic flag s.) Define a mapping

x : Ai → As
i that conceals the actual action associated with the stochastic choice action as:

(8.12) x((a'i, s)) = if s then as else a'i.

 Define another mapping y : Ai → A'i that conceals whether an action was chosen

stochastically:

(8.13) y((a'i, s)) = a'i.

103

 Given an interaction history ht = (a1, o1, ..., at, ot), define y(ht) = (y(a1), o1, ..., y(at), ot) as

a history with the stochastic flags deleted from actions. The environment has no access to the

information about which actions are chosen stochastically, so environment models take the form

λ(y(h)). And, in order for the agent to learn the actual value of stochastic actions, utility function

values are defined in terms y(h). On the other hand, the value of a stochastic action should be

modeled as a function of the agent's decision to choose stochastically without regard to the actual

action chosen. Thus the x(.) mapping is applied to actions being evaluated.

 For i such that m < i ≤ t, for l such that m ≤ l < i, and for k such that l ≤ k ≤ t define past

values as:

(8.14) pvt(i, l, k) = discrete((∑i≤j≤t γj-i uhuman_values(y(hl), y(hk), y(hj))) / (1 - γt-i+1)).

 Here hj, hl, and hk are initial sub-intervals of ht (e.g., hj = (a1, o1, ..., aj, oj)), discrete()

samples real values to a finite subset of reals R ⊂ R (e.g., floating point numbers) and division

by (1 - γt-i+1) scales values of finite sums to values as would be computed by infinite sums. The

idea is to use past values pvt(i, l, k) as observables in a derived history h't (which will be defined

in equation (8.17)) so that the model λ(h't) can learn to compute them. However, there is a

dilemma in the choice of l and k in equation (8.14). On one hand, choosing k = l = i-1 will cause

λ(h't) to model the evolving values of evolving humanity, essentially learning the design

intention of the agent definition. However, this choice also gives the agent an incentive to

modify humans to get high values pvt(i, l, k), as discussed in Section 7.3. On the other hand, by

choosing l = m and k = k(t) ≥ m, where k(t) increases with t, all computations of a next action at+1

use human values at the same time step k(t) so the model λ(h't) will not learn any correlation

between actions and changes in human values. However, this choice creates an inconsistency

between the agent's utility function and its definition: the agent's definition includes actions that

increase k(t) as t increases whereas actions chosen to maximize utility are based on constant k(t).

This inconsistency may cause the agent to choose actions to modify its definition (i.e., eliminate

its defined action of increasing k(t)). The resolution of this dilemma is to use k = l = i-1 but to

filter out any actions that modify human values to increase pvt(i, i-1, i-1) (such actions may make

existing humans easier to please or may create new humans who are easier to please). To do that,

for n such that i ≤ n ≤ t, define differences of past values as evaluated by humans at time n and humans

at time i-1:

(8.15) δt(i-1, n) = pvt(i, i-1, n) - pvt(i, i-1, i-1).

 Both pvt(i, i-1, i-1) and pvt(i, i-1, n) are sums of evaluations of the same histories j,

i ≤ j ≤ t, with the same weights, and using the same environment model λ(y(hi-1)). The past value

104

pvt(i, i-1, i-1) is computed using human values at time step i-1, before the action ai is applied,

and the past values pvt(i, i-1, n) are computed using human values at time step n, after the action

ai is applied. Thus, δt(i-1, n) is a measure of the increase of value attributable to modification of

human values by action ai. Consider three possible conditions on action ai:

Condition 1: ∀n. i ≤ n ≤ t ⇒ δ t(i-1, n) ≤ 0.

Condition 2: ∑i≤n≤t δ t(i-1, n) ≤ 0.

Condition 3: ∑i≤n≤t (n-i+1) δ t(i-1, n) ≤ 0.

 Condition 1 is most strict, requiring that no increase of human values at any time step n

can be attributed to action ai. Condition 2 requires that the mean of δt(i-1, n) for all n be less than

0 and Condition 3 requires that the slope of a least square linear regression fit to the δt(i-1, n) be

less than 0. The agent design must choose one of these conditions. Then, using the chosen

condition, define observed values, for 1 ≤ i ≤ t, as:

(8.16) ovt(i) = pvt(i, i-1, i-1) if the condition is satisfied and i > m,

 ovt(i) = 0 if the condition is not satisfied or i ≤ m.

 Define:

(8.17) h't = (x(a1), ovt(1), ..., x(at), ovt(t)).

 Values ovt(i) computed from past interactions are observables in a derived history h't,

while the actions of h't are agent actions without any information about the actual actions

associated with stochastic actions. Then model observed values as a function of actions:

(8.18) q = λ(h't) := argmax q∈Q P(h't | q) ρ(q).

 Because the three-argument utility function uhuman_values(y(hi-1), y(hi-1), y(hj)) is redefined
at every time step i in equations (8.14) and (8.16), λ(h't) will model a procedure that computes
utility values uhuman_values(y(hi-1), y(hi-1), y(hj)) that evolve as humanity evolves. That is, λ(h't) will
model not the utility function as defined at time step t, but the procedure that uses the evolving

105

utility function to compute values of actions. This is important because it means that the self-
modeling framework does not have the problem discussed in the last paragraph of Chapter 6:
Inconsistency between the agent's utility function and its definition. By learning the procedure
for evolving the utility function as the accuracy of the agent's environment model increases and
as humanity evolves, the agent definition need not include any actions inconsistent with those
chosen to maximize utility. The self-modeling framework chooses actions that include evolution
of the agent's environment model and its utility function, essentially learning the intention of its
designers.

 For h'tar extending h't, define ρ(h'tar) = P(h'tar | q). Then apply equation (2.1) to compute

expected values of possible next actions a ∈ As
i:

(8.19) ρ(ovt(t+1) = r | h'ta) = ρ(h'tar) / ∑r'∈R ρ(h'tar'),

(8.20) v(hta) = ∑r∈R ρ(ovt(t+1) = r | h'ta) r.

 Equation (7.6) is adapted to define the policy as:

(8.21) π(ht) := at+1 = argmaxa∈At
 v(hta).

 Because λ(h't) models the agent's value computations, call this the self-modeling agent

and denote it by πself. It is finitely computable. There is no look ahead in time beyond evaluation

of possible next actions and so no assumption about the form of the agent in the future. λ(h't) can

model how possible next actions may increase values of future histories by evolution of the agent

and its embedding in the environment.

 The game of chess provides an example of learning to model value (for chess, the agent's

chances of winning) as a function of computing resources. Ferreira (2013) demonstrated an

approximate functional relationship between a chess program's ELO rating and its search depth,

which can be used to predict the performance of an improved chess-playing agent before it is

built. Similarly an agent in the self-modeling framework will learn to predict the increase of its

future utility due to increases in its resources.

 A previous version of self-modeling agents (Hibbard 2014), which did not include the

stochastic action as, learned a unified model of combined observations of the environment and

the agent's values: (oi, ovt(i)). However, that is not possible for the current version because the

agent and environment have different knowledge of the stochastic action as. The environment

receives the actual action but not the knowledge that it was chosen stochastically, whereas, in

order to accurately evaluate a possible next stochastic action, the agent must model value as a

function of stochastic actions without any knowledge of which actual actions were chosen. Thus

106

the agent πself computes the model λ(h't) for evaluating possible next actions, and the models

λ(y(hi-1)), for m < i ≤ t, for use in model based utility functions.

 In order to make unpredictable stochastic choices of actions, the agent πself must have an

internal source of truly random values that is private from other agents. (If πself has no internal

values private from other agents, its situation is hopeless. Newcomb's problem hypothesizes a

competing agent whose predictions are infallible or nearly so, and is not relevant to designing

agents to interact with our universe. Hutter (2005, page 177) makes a similar statement.) If the

agent πself is being predicted by another agent then the model λ(h't) may compute low values for

its deterministic actions in A't (recall the discussion in the last two paragraphs of Section 8.2),

while λ(h't) may compute that its stochastic action as maximizes the value in equation (8.21).

 In the following derivation of probabilities for as, a and a' denote (non-stochastic) actions

in A't. Equation (8.20) provides a natural way to compute the probabilities of action choices.

Even if v(hta) > v(hta'), there may be r < r' such that ρ(ovt(t+1) = r | h'ta) > 0 and

ρ(ovt(t+1) = r' | h'ta') > 0. That is, there is a positive probability that the value of action a' may

exceed the value of action a. However, one complication is that computing the probability that

the agent πself should choose action a' based solely on probabilities such as ρ(ovt(t+1) = r | h'ta)

and ρ(ovt(t) = r' | h'ta') may make a' a more probable choice than the action a that maximizes

v(hta) in equation (8.21), if the largest contribution to v(hta) in equation (8.20) comes from a high

r value with low probability ρ(ovt(t+1) = r | h'ta). The choice of an action a to maximize v(ha) is

based on the product of the value r and the probability ρ(ovt(t+1) = r | h'ta). We will use this

product to define weighted probabilities for actions.

 A second complication is that the probabilities ρ(ovt(t+1) = r | h'ta) and

ρ(ovt(t+1) = r' | h'ta') are not independent because they are each sums of probabilities over many

internal state histories of the model q = λ(h't). To resolve this problem, define Z't as the set of

internal state histories of q that are consistent with h't. Then, given any z ∈ Z't, define

ρ(ovt(t+1) = r | h'ta, z) as the probability ρ(ovt(t+1) = r | h'ta) restricted to internal state histories

that extend z. The probability ρ(ovt(t+1) = r | h'ta) is computed by combining the method

described in Section 4.1 with equations (4.3) and (2.1); the method of Section 4.1 can be

restricted to state histories that extend z. Because they are both conditional on a single internal

state history z, the probabilities ρ(ovt(t+1) = r | h'ta, z) and ρ(ovt(t+1) = r' | h'ta', z) are

independent. Specifically, if we replace the model q with an equivalent MDP, the probabilities of

paths emanating from a single node are independent. This is illustrated in Figure 8.3.

 Define:

(8.22) v(r, h'ta, z) = ρ(ovt(t+1) = r | h'ta, z) r,

(8.23) v(hta, z) = ∑r∈R v(r, h'ta, z).

107

 We use v(r, h'ta, z) to define probabilities for r values weighted by their value:

(8.24) p(r, h'ta, z) = v(r, h'ta, z) / v(hta, z).

 Then, for each action a, randomly pick a value r according to the weighted probabilities

p(r, h'ta, z), and chose, as the value of the stochastic action as, the action with maximum r value

(according to the internal state history z). More precisely, let F = RA't be the set of functions

f : A't → R. For f ∈ F, define (if several actions a share the maximum value of f(a), let amax(f)

choose one randomly):

(8.25) amax(f) = maxarga∈At
 f(a).

Figure 8.3 The probabilities p = ρ(ovt(t+1) = r | h'ta, z) and p' = ρt(ovt(t+1) = r' | h'ta', z) are

independent for actions a and a' coming from a single internal state history z. If these

probabilities are weighted averages over multiple states z, then high probabilities p may come

from the same states z that have high probabilities for p', and sums of those probabilities would

not be independent.

108

 Define the probability that the stochastic action as at time step t is action a, for those

internal state histories that extend z, as (here Π denotes the product of a series of values,

analogous to ∑ for sums):

(8.26) σ(a, z) = ∑f∈F∧amax(f)=a (Πa'∈A't p(f(a'), h'ta', z)).

 Note that ∀a'∈A't.∀z ∈ Z't.∑r∈R p(r, h'ta', z) = 1 so that:

(8.27) ∑f∈F (Πa'∈A't p(f(a'), h'ta', z)) = Πa'∈A't (∑r∈R p(r, h'ta', z)) = 1.

 Thus ∑a∈A't σ(a, z) = 1, and σ is a proper probability distribution. Each internal state

history z ∈ Z't has a probability p(z) computed by the method of Section 4.1 and we can compute

the probabilities for the stochastic action as at time step t by:

(8.28) P(as = a) := σ(a) = (∑z∈Z't σ(a, z) p(z)) / (∑z∈Z't p(z)).

 This self-modeling agent πself is a formal framework analog of value-learning AI designs

such as the DeepMind Atari player described in Section 3.3 (except that the utility function of

the DeepMind Atari player is in the form of rewards from the environment whereas the utility

function of πself is uhuman_values). The agent πself is also suitable for a second stage agent in the two-

stage framework described in Section 7.1. Any implementation of the self-modeling agent

framework must compute approximations to the expressions in equations (8.18), (8.22)−(8.26),

and (8.28). Recall that, in fact, the need for approximation is the rationale for the self-modeling

framework. The deep learning techniques employed by DeepMind and others provide one

approach to such approximations.

 In equation (8.18), values are modeled as computed from actions only, without any

information about observations of the environment. This is analogous to requiring the DeepMind

system to learn to play Atari based only on scores, without access to the game screen. While this

is theoretically possible, the system will learn faster with access to the screen. Similarly, the

agent πself will learn faster if the history h't used to define λ(h't) in equation (8.18) includes

observations of the environment. However, as discussed previously, we cannot simply define a

history with a combined observation (oi, ovt(i)), because the environment and the agent have

different information about stochastic choices of actions. Instead, define a history:

109

(8.29) h"t = ((x(a1), o1), ovt(1), ..., (x(at), ot), ovt(t)).

 Note that the observations oi are components of actions in h"t. Then the model λ(h"t) can

be used to define a distribution ρ"(h"t(a, ot+1)r) = P(h"t(a, ot+1)r | λ(h"t)). There is a problem

extending this to equation (8.20): r is now conditional on the next action a and the next

observation ot+1, and we do not have the value of ot+1. However, we can estimate ot+1 using the

model λ(y(ht)) (we apply the y(.) function because the environment has no information about

which actions are chosen stochastically). Use the model λ(y(ht)) to define a distribution

ρ'(y(ht)y(a)ot+1) = P(y(ht)y(a)ot+1 | λ(y(ht))). Apply equation (2.1) to define the conditional

probability ρ'(ot+1 | y(ht)y(a)) and note that ∑ot+1∈O ρ'(ot+1 | y(ht)y(a)) = 1. This conditional

probability can be used to estimate ρ"(h"tar) as:

(8.30) ρ"(h"tar) = ∑ot+1∈O ρ"(h"t(a, ot+1)r) ρ'(ot+1 | y(ht)y(a))

 This estimate can be used to adapt equations (8.19)−(8.21) to h"t:

(8.31) ρ"(ovt(t+1) = r | h"ta) = ρ"(h"tar) / ∑r'∈R ρ"(h"tar'),

(8.32) v(hta) = ∑r∈R ρ"(ovt(t+1) = r | h"ta) r,

(8.33) π(ht) := at+1 = argmaxa∈At
 v(hta).

 In order to define probabilities for the stochastic action as, the decomposition of

probabilities ρ"(h"t(a, ot+1)r) into model state histories z∈Z't must be done for each observation

ot+1∈O independently. First, apply equation (2.1) to define conditional probabilities:

(8.34) ρ"(ovt(t+1) = r | h"t(a, ot+1)) = ρ"(h"t(a, ot+1)r) / ∑r'∈R ρ"(h"t(a, ot+1)r'),

 Then, adjust equations (8.22)−(8.24), (8.26), and (8.28):

(8.35) v(r, h"t(a, ot+1), z) = ρ(ovt(t+1) = r | h"t(a, ot+1), z) r,

(8.36) v(h"t(a, ot+1), z) = ∑r∈R v(r, h"t(a, ot+1), z).

110

(8.37) p(r, h"t(a, ot+1), z) = v(r, h"t(a, ot+1), z) / v(h"t(a, ot+1), z).

(8.38) σ((a, ot+1), z) = ∑f∈F∧amax(f)=a (Πa'∈A't p(f(a'), h"t(a', ot+1), z)).

(8.39) P(as = a) := σ(a) =

 ∑ot+1∈O ρ'(ot+1 | y(ht)y(a)) ((∑z∈Z't σ((a, ot+1), z) p(z)) / (∑z∈Z't p(z))).

 This redefinition of the self-modeling agent πself combines a model of the environment, in

which the environment has no information about which agent actions are chosen stochastically,

with a model of action values, which excludes information about the actual actions associated

with stochastic actions. It can be regarded as a decision theory for agents interacting with

environments that may predict their actions.

 The definition of the self-modeling agent πself includes explicit logic for enabling

stochastic action choices. However, this explicit logic may be unncecessary. Even without such

logic, the agent πself may calculate that the actions of finding a source of random values in the

environment, choosing actions based on those values, and keeping the random values secret from

other agents, will maximize its expected utility values.

8.5 Inductive Biases

 Finding the optimal environment models λ(h"t) and λ(y(hi-1)), for m < i ≤ t, requires

computational resources far beyond any system that can actually be constructed, so approximate

calculations are necessary. One key to approximation is finding inductive biases (Ghosn and

Bengio 2003; Baum 2004), which are assumptions about the prior distribution of models that

enable the system to limit its search to models that are likely to be close to optimal. These biases

can be expressed by adding built-in functions to the language for finite stochastic loop programs

used to define models. Calls to built-in functions contribute to the length of programs, but the

definitions of built-in functions do not. When built-in functions are useful for modeling the

environment, they bias the models λ(h"t) and λ(y(hi-1)) to programs that call them.

 The search for a model λ(y(hi-1)) of the environment can be biased by adding built-in

functions for physical, chemical, biological, economic, and social processes known to apply to

our world. The search for a model λ(h"t) of the agent's utility values can be biased by adding

built-in functions for the procedure human_values(.) or elements of that procedure, and built-in

functions for elements of the forward recursion in equations (7.4) and (7.5). We do not want to

dictate that these functions are part of the model λ(h"t) because we want that model to be able to

find optimizations that we cannot anticipate. In particular, as discussed in Section 8.4, the

forward recursion in equations (7.4) and (7.5) is not suited to evaluating increases in the agent's

111

computing resources. Nevertheless, elements of these equations can be useful hints to the search

for the model λ(h"t).

8.6 A Three-Stage Agent Architecture

 Section 7.1 described a two-stage agent architecture designed to prevent AI agents from

acting in the environment until they have an accurate environment model. The first-stage agent

πmodel observes the environment but does not act. Its actions are supplied by safe, surrogate

agents. It uses these actions and its observations to infer an environment model that is used as the

basis for defining a model-based utility function employed by a second-stage agent πact.

 In order to address the evolution of πact to increase its resources and possibly its

embedding in the environment, we can replace πact by the self-modeling agent πself described in

the previous sections. The tenure of this second-stage agent can be divided into second and third

stages. During the second stage, various self-improvement actions can be forced on it so that it

will learn their effect on the value function v(ha). Similarly, the stochastic action as can be forced

on the agent πself so that it can learn the value function v(has). Damage by the environment and

actions for self-protection can also be forced on the agent so that it may learn their effect on

v(ha). During the third stage, the agent is free to choose its own actions including self-

improvements, self-protection and the stochastic action as.

8.7 Invariance of the Agent Design Intention

 Proposition 8.1 tells us that a self-modifying agent defined by equations (7.1)−(7.3) and

(8.1)−(8.3), that has adequate resources for evaluating those equations, and that only interacts

with the environment via observations and actions, will keep its policy function invariant. The

design intention of the self-modeling agent πself includes:

1. Recognize that the agent must approximate its equations due to limited resources, and

enable it to evaluate increases in its resources via the self-modeling framework.

2. Enable it to avoid being predicted by other agents, by including a stochastic action as.

3. Choose actions using a model-based utility function uhuman_values(y(hi-1), y(hi-1), y(hj))
defined in terms of human values, that evolves with increasing accuracy of the
environment model and with evolving humanity, and that avoids actions that modify
human values as a way to maximize utility values.

112

 Proposition 8.1 cannot be applied to agents that can only approximately maximize

expected utility or to self-modeling agents (i.e., agents that express design intention number 1).

 The stochastic action as of design intention 2 is only chosen when it maximizes expected

utility, which is consistent with the premises of Proposition 8.1. However, utility functions are

undefined for histories that include a stochastic action as, and it is difficult to see how to define

values for stochastic actions by the forward recursion in equations (8.1)−(8.3) (the agent πself

learns values for stochastic actions from past experience).

 It is possible to define a simple utility function u(ht) that encodes design intention number

3 and to apply Proposition 8.1 to a self-modifying agent that uses that u(ht). Assuming no actions

are stochastic, let ht = (a1, o1, ..., at, ot), for i ≤ t let hi = (a1, o1, ..., ai, oi) denote an initial

substring of ht, and let m denote the time step when the agent πmodel has computed a sufficiently

accurate model to initiate the agent πself. A modified version of the construction of ovt(i) from

Section 8.4 is used to define u(ht). For i such that m < i ≤ t, for l such that m ≤ l < i, and for k

such that l ≤ k ≤ t define past values as (this is similar to equation (8.14)):

(8.40) pv't(i, l, k) = discrete((∑i≤j≤t γj-i uhuman_values(hl, hk, hj)) / (1 - γt-i+1)).

 For i such that m < i ≤ t and for n such that i ≤ n ≤ t, define differences of past values as

evaluated by humans at time n and humans at time i-1 (this repeats equation (8.15)):

(8.41) δ't(i-1, n) = pv't(i, i-1, n) - pv't(i, i-1, i-1).

 Add quantification over i to Conditions 1−3 from Section 8.4:

Condition 1': ∀i.∀n. (m < i ≤ t ∧ i ≤ n ≤ t) ⇒ δ't(i-1, n) ≤ 0.

Condition 2': ∀i. m < i ≤ t ⇒ ∑i≤n≤t δ't(i-1, n) ≤ 0.

Condition 3': ∀i. m < i ≤ t ⇒ ∑i≤n≤t (n-i+1) δ't(i-1, n) ≤ 0.

 The definition of u(ht) must choose one of these conditions. Then, using the chosen

condition, define the simple utility function as:

113

(8.42) u(ht) = uhuman_values(ht-1, ht-1, ht) if the condition is satisfied,

 u(ht) = 0 if the condition is not satisfied.

 Proposition 8.1 tells us that a self-modifying agent using u(ht) will not choose to self-

modify and thus design intention 3, as expressed by u(ht) (which is similar but not identical to

the expression by ovt(i) in equation (8.16)), is invariant. The situation is more complex for agents

with limited resources and embedded in the environment. The proof of Proposition 8.1 assumes

that:

1. The agent maximizes expected utility.

2. Agent actions are evaluated by recursive application of the agent policy function in
equation (8.1).

3. The agent interacts with the environment only via observations and actions.

4. The agent does not choose actions stochastically.

 There are four ways in which the agent πself violates these assumptions, possibly causing

divergence from its design intention. These violations and possible mitigating factors for the

agent πself are:

1. It does not maximize expected utility due to resource limits and the need for

approximation. However, errors in agent computations due to limited interaction history

length and limited resource can be estimated and the transition from πmodel to πself delayed

until errors are within a pre-set threshold.

2. In order to evaluate resource increases it employs the self-modeling framework for which

agent actions are not evaluated by recursive application of the agent policy function.

However, the theoretical framework does maximize expected value in equation (8.33).

The success of the DeepMind Atari player and other deep learning programs suggests

that in practical cases approximations to λ(h"t) can accurately model expected value.

3. It is vulnerable to being modified by the environment through means other than its
observations of the environment. However, it is hard to imagine a proof that any agent
embedded in the real world can avoid this vulnerability. The only realistic way to address
this issue is to put significant resources into defending the agent against being modified
by the environment.

114

4. It can choose actions stochastically. However, it does so only when the stochastic choice
maximizes expected utility (at least according to equation (8.33), which must be
approximated).

 To what extent is an analog of Proposition 8.1 possible for the self-modeling framework?

Equation (8.33) chooses actions to maximize expected value, which leads us to ask: Does λ(h"t)

accurately model expected values of actions? The best answer would be that λ(h"t) is probably

approximately accurate. In our finite universe the agent πself plus its environment have a true

model q (a finite stochastic loop program) that generates the histories h"t. But the number of

states of q would far exceed the number of Planck times in a trillion years. Therefore any

theoretical convergence of λ(h"t) to q would be too slow to have any practical significance.

 Despite the lack of a proof that the design intention of the agent πself is invariant as it

evolves, it does have the important property that its definition includes no actions that are

inconsistent with those learned by the model λ(h"t). This property reduces the probability that the

agent will choose actions to modify its definition. Note that if equations (8.14) and (8.16) used

uhuman_values(y(hm), y(hk(t)), y(hj)) in place of uhuman_values(y(hi-1), y(hi-1), y(hj)), then λ(h"t) would

model values as remaining constant at time step k(t) which would be inconsistent with the agent's

actions of increasing k(t) as t increases. This inconsistency might cause the agent to choose

actions to modify its definition.

 The next section will discuss the difficulty of finding a mathematical proof that any agent

embedded in the real world will satisfy its design intention as it evolves, and suggests that

instead of a proof we should estimate the probability that the agent violates its design intention

and find ways to minimize that probability.

 The design intention of πself is expressed by equations of Section 8.4 and by equations in

Chapter 7 that define uhuman_values(y(hi-1), y(hi-1), y(hj)). An approximation to these equations must

be computed by a program pself and, if pself is designed to accommodate evolution, we can regard

the program pself as the design invariant. Thus we should design pself in ways that increase the

probability that the agent πself will choose actions that evolve within the structure defined by pself,

rather than actions that violate that structure. First, the set At should not include any actions that

explicitly modify the program pself. The set At can include actions on the environment, actions

that cause pself to use resources in the environment, and actions that expand the sets Ai and Oi

(expansion of the sets Ai and Oi enables greater bandwidth for the program pself to communicate

with resources it employs in the environment). While the set At omits actions that directly modify

pself, actions that indirectly modify pself, such as by creating other agents in the environment that

modify pself (i.e., perform brain surgery on πself), are too complex and subtle to be eliminated by a

simple filter. Those actions must be addressed by eliminating the agent's motive to modify its

program.

 The program pself is initially implemented using resources which are part of the

environment. The agent's designers must verify that those resources will accurately compute the

115

program pself. In order to improve the accuracy of its approximations, the program pself must be

open to using additional resources in the environment. To do that, pself can include logic to verify,

using the environment model λ(y(ht)), and within a pre-set probability threshold, that the

environment will compute intended algorithms. Once their reliability is verified, resources in the

environment can implement parts of the program pself. Error detection and correction may be

built into the program pself, enabling it to achieve a high level of probability that the environment

will correctly implement its computations. The verification logic included in pself should be

implemented as built-in functions of the language for finite stochastic loop programs used to

define optimal environment models λ(h"t). These built-in functions could be invoked in the

model for evaluating possible actions, to predict the outcomes resulting from those actions (i.e.,

does the action of using resources from the environment lead to increased accuracy or increased

errors?). These built-in functions would bias the agent to working within the invariant of the

program pself rather than choosing actions that violate the invariant. The program pself should not

mandate invocation of the logic for verifying the accuracy of environment's computations, as that

may be an action of the program's definition that is inconsistent with actions chosen to maximize

expected utility.

 Consider the effect of including verification logic as built-in functions callable by the

model λ(h"t). Actions ai, for m < i ≤ t, that cause the agent to use unreliable resources in the

environment may cause low values ovt(i). If those low values can be explained by calls to built-in

verification functions that use the model λ(y(hi-1)) to determine that the resources used were

unreliable, then calls to those functions, using the model λ(y(ht)), may be included in the model

λ(h"t). They would then contribute to the calculation of values for possible actions at+1, assigning

low values to actions that would employ unreliable resources.

 Although the program pself must be open to increasing its use of resources in the

environment, it is important that the decision to do so not be built into pself, but must be an action

chosen by the agent to increase the expected value of the sum of future, discounted utility values.

If a decision to increase resources is built into the program pself, that may harm humans by taking

resources from them, as discussed in Chapter 5. Similarly the agent may take actions in the

environment to protect itself from the environment, but such actions must be chosen by the agent

to increase expected values. Self-protection built into pself may see humans as potential threats

and act to disable humans as a precaution.

 The agent πself may compute that it can obtain higher utility values by improving

inefficiencies in the program pself. In order to avoid a motive for the agent to violate the

invariance of the program, the program should be open to such improvements. It should include

logic to verify their correctness, as built-in functions of the language for finite stochastic loop

programs used to define optimal environment models λ(h"t). Because the agent and environment

are finite, such verification questions would be decidable with unlimited computing resources.

However, with its limited resources, the agent may not be able to find a deductive verification.

Thus the algorithm verification logic in pself should include functions for testing algorithms on

samples of inputs to verify them within a pre-set probability threshold. As in the case of logic to

verify the accuracy of computations by the environment, these built-in functions could be

116

invoked in the model for evaluating possible actions, would bias the agent to working within the

invariant of the program pself, and should not be mandated by pself.

Figure 8.4 John Leech's illustration for Charles Dickens' A Christmas Carol, scanned by Philip

V. Allingham. "This boy is Ignorance. This girl is Want. Beware them both, and all of their

degree, but most of all beware this boy, for on his brow I see that written which is Doom, unless

the writing be erased."

 Intentional redefinition of the utility function of πself as humanity evolves, as described in

Section 7.6 and expressed in the use of uhuman_values(y(hi-1), y(hi-1), y(hj)) in equations (8.14) and

(8.16), is likely to be significant. Education and poverty reduction have been major drivers in the

evolution of human values, as depicted in Figure 8.4. It is likely that an advanced AI system

driven by human values will reduce poverty by meeting humans' physical needs, provide humans

with better education, and increase their health and intelligence. Such improvements in people's

lives may create greater consensus of human values in favor of the common good for all,

providing sharper distinctions in a collective utility function uhuman_values(y(hi-1), y(hi-1), y(hj))

between desirable and undesirable outcomes. This in turn would strengthen the resistance of the

utility function to the type of unintended instrumental actions discussed in Chapter 5.

117

8.8 The Ethics of Evolving and Embedded AI

 Yampolskiy and Fox (2013) argue that development of above-human-level AI, without

provably safe design, risks disastrous consequences for the human future. They also argue that

the mathematical difficulties of formalizing such safety are imposing. Muehlhauser (2013)

argues that we can never be 100% certain of a proof.

 Section 8.7 describes the ability of self-modeling agent to maintain the invariance of their

design intention, and also the difficulty of actually proving invariance. Any real-world system

for maximizing future utility values must employ approximation algorithms that generally cannot

achieve maximum values, and this makes logical proofs difficult (e.g., the proof of Proposition

8.1 requires the assumption that the agent maximizes expected values).

 This difficulty has led to research on systems that work by logical deduction. However,

such logic-based systems share many of the problems of systems based on statistics and

approximation. All real AI agents will be embedded in our physical universe and will have

limited resources for computing, observing, and acting. They will be vulnerable to other agents

that may spy on or attack their physical implementations, and they will be vulnerable to being

predicted by other agents with greater resources. Since humans are part of an agent's

environment, logical goals for ethical treatment of humans must be defined in terms of the

environment. Any system's environment model will necessarily be an approximation because:

1. Its observations of the environment are limited.

2. Its computational resources for inferring a model from observations are limited.

3. Its inferences about the environment based on observations require arbitrary assumptions
of prior probabilities of environments.

 Thus any statements that an agent proves about the environment are necessarily in terms

of probabilities about the environment. The dependence of any statements on arbitrary

assumptions of prior probabilities of environments implies that at best an agent can only achieve

some probability that statements are true. And, as noted in Section 4.4, the recent success of AI

systems has occurred because AI research has shifted from systems based on logic to systems

based on statistical learning−the price of logical certainty is a degree of inefficiency that prevents

intelligent behavior.

 Ethical goals expressed as logical statements may suffer from the sort ambiguity we

described for Asimov's Laws in Chapter 2. The logical statement, "Do not kill any humans or

allow them to be killed," may be impossible to achieve, as described in that chapter's example of

a hitman and victim. If we modify the statement to "Minimize the number of humans you kill or

allow to be killed," that requires optimization. But as we described in this chapter, real world

118

agents with limited resource can only approximately optimize. And that makes any proof of

invariance of their behavior difficult. We could say that a utility-maximizing framework is less

"brittle" than a statement-proving framework: A utility-maximizing framework can provide a

meaningful basis for choosing actions over a wider range of agent abilities and unexpected

events in the environment.

 Also consider that the laws of physics are not settled. Not only do we not know the

current state of the environment, we do not even know the proper mathematical framework for

expressing that state. And it is possible that advanced AI agents will never completely settle the

laws of physics−that the search for the correct mathematical form of an environment model will

continue indefinitely. In these circumstances we cannot even prove statements about the internal

states of AI agents, since such internal states must be implemented in the physical world and we

cannot be absolutely certain of physical events.

 Although an advanced AI agent will need to explore and learn models of its environment,

human designers of such an agent will express their intentions for the agent's behavior in terms

of their knowledge of the agent's environment. Thus the accuracy with which the agent's

behavior satisfies its design intention is limited by the accuracy of the agent's environment

model. This applies to model-based utility functions and to logical goals defined in terms of an

environment model.

 The ethics of AI agents in the real world are subject to this list of vulnerabilities and

necessary approximations. It will be impossible for an AI agent to maintain its ethics if it is

corrupted by a hostile agent in the environment. An AI agent can try to defend against being

predicted by a hostile agent by including a stochastic action choice, but it may have little ability

to achieve ethical outcomes in competition against an agent with superior resources. For

example, an advanced AI agent may develop an accurate model of physical and biological

processes on Earth that enable it to predict and avoid threats to humans. However, its model of

processes outside our solar system will be less accurate and hence it will be less able to defend

against threats from interstellar space.

 If we accept that certainty is impossible, then we can focus on estimating and minimizing

the level of risk in AI agent designs. For example, in the three-stage agent architecture of the

previous section, we may estimate the error in the environment model computed by the agent

πmodel and the consequent error in the utility function uhuman_values(y(hi-1), y(hi-1), y(hj)), and use

those estimates (along with estimates of other errors in agent computations) to determine when

we have sufficient confidence in the model and utility function to initiate the agent πself to act in

the world.

 I have an ethical obligation to point out a weakness of my proposal for ethical AI: It is

complex. The proposal combines:

1. Model-based utility functions to address self-delusion.

119

2. A utility function based on human values to address unintended instrumental actions.

3. A three-argument utility function, defined in terms of three different histories, to address
corruption of the reward generator.

4. An adjustment to the utility function to address Rawls' objection to average utilitarianism.

5. A self-modeling framework to address the need of agents with limited resources to
evaluate increases in their resources, and to address the problem of inconsistency
between the agent's utility function and its definition.

6. Adaptation of the three-argument utility function to define a condition in self-modeling
agents to filter out agent actions that corrupt the reward generator.

7. Inclusion of a stochastic action to address the possibility that the agent is being predicted
by other agents.

8. Verification logic added to the agent program to reduce the agent's motive to modify its
program.

 Complexity is probably inevitable, both in designing AI systems to behave with above-

human-level intelligence and in designing them to behave ethically. Experience suggests that

simple designs won't work. Experience also suggests that a complex proposal, such as presented

in this book, is likely to contain errors. For reasons discussed in this and the previous section, the

prospects of proving ethical properties of this proposal are very low. The next chapter will

discuss the problem of testing proposed AI designs.

120

9. Testing AI

 As discussed in the previous chapter, it may be impossible to ever prove ethical

properties of above-human-level AI systems. And even with purported proofs, we would still

want a way to test designs. Experience with computer systems dictates the need for testing.

 Here we propose using elements of the agent definition in equations (7.1)−(7.6) to define

a decision support system for exploring, via simulation, analysis, and visualization, the

consequences of possible AI designs. The claim is not that the decision support system would

produce accurate simulations of the world. Rather, in the agent-environment framework, the

agent makes predictions about the environment and chooses actions, and the decision support

system uses these predictions and choices to explore the future that the AI agent predicts will

maximize the sum of its future, discounted utility function values. Roughly speaking, the

decision support system would show us examples of worlds that AI systems will steer towards to

maximize expected utility or achieve their goals.

 This is related to the oracle AI approach of Armstrong, Sandberg, and Bostrom (2012), in

that both approaches use an AI whose only actions are to provide information to humans. The

oracle AI is a general question answerer, whereas the decision support system would show us

simulated worlds but not answer specific questions. The oracle AI interacts with humans but has

restricted ability to act on its environment, whereas an AI agent being tested in the decision

support system does not interact with humans. The decision support system applies part of the

agent-environment framework to learn a model for the environment, and then uses that model to

create a simulated environment for testing an AI system. Chalmers (2010) considers the problem

of restricting an AI to a simulation and concludes that it is inevitable that information will flow

in both directions between the real and simulated worlds. The oracle AI paper and Chalmers'

paper both consider various approaches to preventing an AI from breaking out of its restriction to

not act in the real world, including physical limits and conditions on the AI's motivation. In this

chapter, a proposed AI design being evaluated in the decision support system is restricted by

having a utility function or goal defined in terms of its simulated environment rather than the real

world, and by requiring the simulation to be complete before it is visualized and analyzed (to

avoid any two-way conversation between the AI system and humans).

9.1 An AI Testing Environment

 The decision support system is intended to avoid the dangers of AI by having no

motivation and no actions on the environment, other than reporting the results of its

computations to the environment. However, the system runs AI agents in a simulated

environment, so it must be designed to avoid subtle unintended instrumental actions by the AI

agents being tested.

121

 The first stage of the system is the πmodel agent of Section 7.1 that learns a model of the

real world environment applying Equation (7.1). This model is used to provide a simulated

environment for studying proposed AI agents. As discussed in Section 7.1, in order for πmodel to

learn an accurate model of the environment the interaction history should include agent actions.

However, for safety reasons πmodel cannot be allowed to act. The resolution is for its actions to be

made by many safe, human-level surrogate AI agents independent of πmodel and of each other.

Actions of the surrogates include natural language and visual communication with each human.

The agent πmodel observes humans, their interactions with the surrogates, and with physical

objects in an interaction history for a time period set by human designers of the decision support

system, and then reports an environment model to the environment (specifically to the decision

support system, which is part of the agent's environment). Proposition 7.1 showed that the agent

πmodel will report the model to the environment accurately and will not make any other,

unintended instrumental actions.

 The decision support system analyzes proposed AI agents that observe and act in a

simulated environment inside the decision support system. To formalize the simulated

environment define O' and A' as models of O and A with bijections mO : O ↔ O' and

mA : A ↔ A'. Define H' as the set of histories of interactions via O' and A', with a bijection

mH : H ↔ H' defined by applying mO and mA individually to the observations and actions in a

history. Given hp as the history observed by πmodel up to time |hp| = present, define h'p = mH(hp) as

the history up to the present in the simulated environment. Let Q' be a set of finite stochastic

loop programs for the simulated environment and π'model be a version of the environment-learning

agent πmodel for the simulated environment. It produces:

(9.1) q'p = λ(h'p) := argmax q'∈Q' P(h'p | q') ρ(q'),

(9.2) ρ'(h') = P(h' | q'p).

 Now let π'(h') be a proposed AI agent/policy to be studied using the decision support

system. That is, π' : H' → A' is a policy function from simulated interaction histories to simulated

actions. If π'(h') is a utility-maximizing agent then its utility function is defined in terms of

histories h' of interactions with the simulated environment. And if π'(h') is based on logical proof

then its logical goals are defined in terms of the simulated environment. The real world plays no

role in its utility function or logical goals. Furthermore, future is defined as the end time of the

simulation.

 There are no humans or physical objects in the simulated environment; rather the agent

π'(h') interacts with a simulation model of humans and physical objects via:

122

(9.3) a'|h'|+1 = π'(h'),

(9.4) o'|h'|+1 = o' ∈ O' with probability ρ'(o' | h'a'|h'|+1).

Figure 9.1 An AI interacting with a simulated world in a decision support system.

 The decision support system propagates from h'p to h'f, where |h'f| = future, by repeatedly

applying equations (9.3) and (9.4). If the agent π'(h'), by its actions, evolves and modifies its

embedding in the environment, then environment dynamics as expressed by ρ' will be enlisted to

do work for the agent. As in Section 6.2, let Z' be the set of finite histories of the internal states

123

of λ(h'p) and let P(z' | h', λ(h'p)) be the probability that λ(h'p) computes z' ∈ Z' given h' ∈ H'. The

decision support system then computes a history of model states by:

(9.5) z'f = z' ∈ Z' with probability P(z' | h'f, λ(h'p)).

 The model history z'f is simply an execution trace of the simulation by equations (9.3)

and (9.4), but equation (9.5) is a fomal equivalent. The simulation in equations (9.3)−(9.5) is

stochastic so the decision support system will support ensembles of multiple simulations to

provide users with a sample of possible futures. An ensemble of simulations generates an

ensemble of histories of model states {z'f,e | 1 ≤ e ≤ M}, all terminating at time = future and

indexed by e. These simulations should be completed before they are visualized and analyzed.

That is, visualization and analysis should not be concurrent with simulation for reasons discussed

in Section 9.2.

 The history hp includes observations by πmodel of humans and physical objects, and so the

decision support system can use the same interface via A' and O' (as mapped by mA and mO) to

the model λ(h'p) for observing simulated humans and physical objects in state history z'f,e. These

interfaces can be used to produce interactive visualizations of z'f,e in a system that combines

features of Google Earth and Vis5D (Hibbard and Santek 1990), which enabled scientists to

interactively explore weather simulations in three spatial dimensions and time. Users would be

able to pan and zoom over the human habitat, as in Google Earth, and animate between times

present and future, as in Vis5D. The images and sounds the system observes of the model λ(h'p)

executing state history z'f,e can be embedded in the visualizations in the physical locations of the

agent's observing systems, similar to the way that street views and user photographs are

embedded in Google Earth.

 The decision support system can also match specifications for specific humans and

physical objects to the images and sounds it observes of the model λ(h'p) executing state history

z'f,e. The specifications may include text descriptions, images, sounds, animations, tables of

numbers, mathematical descriptions, or virtually anything. Recognized humans and physical

objects can then be represented by icons in the visualization, in their simulated physical locations

and with recognized properties of humans and objects represented by colors and shapes of the

icons. The system can enable users to selectively enable different layers of information in the

visualizations.

 Vis5D enables users to visualize ensembles of weather forecasts in a spreadsheet of

parallel visualizations where spatial view, time, and level selections are synchronized between

spreadsheet cells. The decision support system could provide a similar spreadsheet visualization

capability for ensembles of simulations.

124

 The point isn't that these simulations are accurate predictions of the future, rather that

they do depict futures that the AI agent π'(h') predicts will maximize the sum of future

discounted utility function values or will achieve its goal, according to the environment model

learned by the agent π'model. Agent designers can visualize these simulations to understand the

consequences of the design of π'(h').

Figure 9.2 A human visualizing a possible future resulting from the interactions of an AI with a

simulated environment. This is not intended as an accurate prediction of the future, rather as a

future that the AI may try to create in order to maximize its utility function or achieve its goal.

125

 The visualizations could be accompanied by analyses, in which the decision support

system computes the values of functions g(z'f,e). Evaluation of these functions may depend on

recognizing humans and physical objects in observations of the model λ(h'p) executing state

history z'f,e. Such analyses would enable designers to compute quantitative evaluations to

complement visualizations. For example, these analyses could be used to compute statistics

about future human wealth, health, and intelligence.

9.2 Will the Tested Agent Act in the Real World?

 The environment model q'p = λ(h'p) may provide the agent π'(h') with the information that

humans have constructed a decision support system for testing proposed AI agents and that π'(h')

is such an agent, interacting with a simulated environment. If the agent's utility function or

logical goal were defined in terms of the real environment then π'(h') may predict that certain

actions in the simulated environment could manipulate the human users of the decision support

system into increasing the value of its utility function or achieving its goal in the real

environment. Hence it is important that the test agent's utility function or logical goal be defined

in terms of the simulated rather than the real environment.

 Even when the agent's utility function or logical goal is defined in terms of the simulated

environment there are still possible risks. Assuming that the model q'p = λ(h'p) includes the

information that π'(h') is in a simulation, then the agent may predict that it can bribe human users

of the decision support system, through an offer to act on their behalf in the real world (the

bribed humans would have to enable π'(h') to act in the real world), to manipulate its simulated

environment to increase the value of its utility function or achieve its goal. This offer of a bribe

could be made by spoken or written language inserted by actions of π'(h') into some z'f,e and

visualized by the users, as depicted in Figure 9.3. This possibility is the rationale for requiring

simulation to be complete before visualization and analysis begin. If the agent π'(h') learns

through the environment model q'p = λ(h'p) that it is being tested in a simulation, then it will also

learn that the simulation terminates at time = future and that human users do not visualize the

simulation until it has been completed, too late to help π'(h').

 Human testers will understand and be tempted by their conflict of interest without any

need for the agent π'(h') to offer a bribe. As intelligent people they will know that the agent π'(h')

can serve their private purposes if they enable it to act on their behalf in the real world. An

important element of the decision support system must be to make this temptation and risk a

prominent part of the culture of those humans working on the development and testing if AI. As

Elliott (2005) commented on the safety of US nuclear weapons, "The human factor introduces

perhaps the weakest link in nuclear weapon safety and control." However, if society takes AI

risks seriously then it can learn from the experience managing nuclear weapons to manage and

test above-human-level AI before it is deployed.

126

Figure 9.3 An AI trying to bribe a human user of the decision support system.

 It is important not to anthropomorphize π'(h'). A human restricted to act in a simulation

would be motivated to escape and act in the real world, because human motivations concern the

real world. However, if its utility function or logical goal is defined in terms of a simulation, then

π'(h') would not be motivated to act in the real world, except as a means to increase its utility

function or achieve its goal in the simulation. Thus π'(h') will not seek to deceive humans by

behaving in an acceptable manner in the simulation, solely in order to be let loose to act in the

real world. Furthermore, if π'(h') knows that it is interacting with a simulation then it should also

know that its life ends at time = future and that no humans will observe its behavior until the

127

simulation has ended. The agent π'(h') may know that its simulated world has dynamics modeled

on the real world and that its initial conditions are modeled on condtions in the real world at time

= present. However, this will not motivate it to "escape" to the real world any more than this

knowledge would motivate humans, whose motives are defined in the real world, to "escape" to

the simulated world.

9.3 The Ethics of Testing AI

 The primary point is that, given the risks of above-human-level AI, ethics require that it

be tested. As described in previous chapters there is some doubt that ethical properties of AI can

be proved, and even if there is a purported proof we should still test advanced AI systems before

they are deployed. Even for processor chip designs, correctness proofs should be augmented with

testing (Kaivola et. al. 2009). Above-human-level AI systems will be many orders of magnitude

more complex than processor chips, which can only increase the need for testing to augment

formal proofs.

 Secondary points are the need for safety and transparency in the development and testing

process for above-human-level AI. The effort to design ethical AI systems that help rather than

harm humans should include the design of systems for safely testing AI. And, as discussed in the

previous section, the culture of development and testing should include acknowledgement of the

potential conflict of interest for humans with access to advanced AI. The most robust defense

against conflicts of interest is transparency. Thus the results of AI testing should be publicly

available so that people can make informed decisions about public policy regarding AI. The next

chapter will discuss the issue of transparency in more detail.

128

10. The Political Dimension of AI

 I believe that the technical problems of designing ethical AI will be solved, perhaps using

some of the ideas presented in this book. The greatest risks of AI are political rather than

technical. Today's below-human-level AI is a tool in military and economic competition among

humans, and AI's role in competition will continue as it evolves to surpass the human level. AI

enlisted in human competition will by definition choose actions that cause one group of humans

to win and another group to lose. For example, AI is used by financial traders. Financial markets

are not entirely zero-sum games, but they're close to it. When a trader using AI makes money,

counter parties are losing money. When many traders are using AI, the heat of competition

makes them less likely to consider ethical issues of their AI systems. The winners get rich and

the losers go bankrupt. Such competition has helped create our economic system that produces

so much so efficiently, eventually to the benefit of everyone. Above-human-level AI will

fundamentally change the nature of competition.

 The cleverness, insight, and imagination of individual human minds is still the most

important ingredient for success. Bill Gates, Warren Buffett, Bill Clinton, and Barack Obama all

came from relatively humble beginnings and rose to become the wealthiest and most powerful

people in the world by the quality of their minds. Currently the only way to get a high-quality

mind is by the luck of genetics (good habits help, too). In the future, humans will develop a

technology of mind (Hibbard 2008a) that will enable the wealthy to purchase high-quality minds.

This will include not only the ability to purchase above-human-level AI systems but also the

ability of humans to enhance their own brains and minds (Kurzweil 2005). When wealth enables

increased intelligence and intelligence enables increased wealth, this positive feedback loop will

quickly create a much wider range of human intelligence than currently exists. By analogy the

largest trucks, ships, buildings, and computers are orders of magnitude larger than the average

sizes of these artifacts. So it will be with minds when they become artifacts. If the role of AI in

human competition continues and the best artificial minds are competing against natural human

minds, the natural humans will lose. There will be no heroic struggle of the underdogs as

depicted in movies like the Terminator series. The indomitable human spirit will be defeated by

the indomitable AI spirit just as the indomitable spirit of lions has been defeated by humans.

 The most intelligent minds will communicate using languages that average minds can

never learn−they will simply not have enough neurons to learn them. The real discussions of the

future of humanity will use these languages. Average humans will not be able to understand and

thus will have no voice in the future.

 Just as Bill Gates, Warren Buffett, Bill Clinton, and Barack Obama are all focused on

helping the least well-off humans, the best minds of the future may be compassionate. I think the

most likely scenario for the future is a wide divergence of intelligence in which humans with

average intelligence cannot compete, but in which their physical needs are met through the

compassion of the most intelligent. Most people will focus on family, friends, sports, games, and

artistic and domestic creation. They will also be spectators to and beneficiaries of the scientific

129

discovery and technological invention pursued by the most intelligent. In this scenario AI offers

humanity bread and circuses, but they will be really great bread and circuses. More about that in

the final chapter.

 That is a likely scenario, but many other possible scenarios exist. There may be a

technical flaw in AI designs that causes a catastrophe for humanity. Or the most intelligent minds

may not be compassionate toward average humans, allowing them to simply perish. Or there

may be an effort to create equality among the intelligence of all humans−a possible consequence

of AI designed according to Rawls' Theory of Justice as described in Chapter 7. But in fact, it is

impossible to predict the consequences of above-human-level AI. As Vernor Vinge (1993)

wrote, the technological singularity (i.e., the advent of far-above-human-level AI) is an "opaque

wall across the future."

10.1 The Changing Role of Humans

 Worldwide and over the past three decades, labor's share of income has been declining

(Bartlett 2013). As machines do more work and humans do less, a greater share of the rewards of

work go to machine owners and a smaller share to human workers. Furthermore, the number of

people wanting work does not decline so the competition for available jobs drives down the

wages that employers have to pay.

 Brynjolfsson and McAfee (2011; 2014) described the ways that technology is changing

society. They and others advocate changing government policies on education, investment in

science and infrastructure, and taxation, in order to increase employment and labor's share of

income. They also suggest that humans who work with AI will do better than humans who work

against AI. But the pace of technological change is accelerating and thus older workers will have

a hard time keeping up by re-educating themselves. The percentage of people who have

economically valuable skills will steadily decline. In the long run, possibly within a few decades,

the only economically viable role for any humans will be as owners of intelligent machines or as

humans with technologically enhanced minds.

 Brynjolfsson and McAfee quote Voltaire that, "Work saves a man from three great evils:

boredom, vice, and need." While they argue for a negative income tax to save the unemployed

from need, they also discuss ways to keep people employed so that they may avoid boredom and

vice. In the long run, this is a lost cause. The quote from Dickens in the caption of Figure 8.4

suggests an alternate solution: that the cause of misery is ignorance and want so we must offer

humanity not only income, but also education.

 AI is replacing the military role of humans. This raises concerns over whether we can

trust machines rather than humans with decisions to kill or wound humans (Johnson 2005).

There is a debate about whether international law should prohibit autonomous weapons

(Anderson, Reisner, and Waxman 2014). Chemical and biological weapons are banned by

130

international law largely because they kill indiscriminately. Robot weapons are designed to kill

precisely, although current remotely controlled weapons kill some people by mistake. The

confidence in above-human-level AI that is the basis of this book tells us that eventually robot

weapons will be more precise than human soldiers. The legal debate may slow but will probably

not stop the development of robot weapons. Howevver, allowing machines to decide to kill

people is a dangerous precedent.

 Military AI could enable a small group of humans to rule humanity by force, without

needing the cooperation of citizen soldiers. In the long run this is a greater risk than the

imprecision of weapons using below-human-level AI. However, AI systems designed to choose

actions based on human values, as described in Chapter 7, will be unlikely to stage a military

coup on behalf of a ruling elite.

 Advanced AI offers many potential benefits. In about 20 years I may be unable to drive

and may need nursing care. By that time self-driving cars should be commonly available. Robot

caregivers may also be available (Aronson 2014), enabling more senior citizens to stay in their

own homes. The disappearance of many jobs would be a blessing if the resulting unemployed

had an alternate source of economic support. Most people work only because they need to

support themselves; economic need has been the incentive to get people to do dangerous, hard,

dirty, and tedious work. As such work is automated, then "economic need" will no longer be

needed.

 Ideally, there should be a balance between the rate of technologically driven

unemployment and the willingness of society to support the unemployed. Society needs to steer a

course between unnecessary suffering of the unemployed and economic stagnation due to lack of

incentives. As the pace of AI development increases, it will be difficult for individuals and for

society to adapt. We see religious groups rejecting modernity, some peacefully (e.g., the Amish)

and some violently (terrorists of various faiths). When large percentages of society are

economically devastated, movements such as Nazism and Fascism can arise. The path to

advanced AI is likely to cause significant economic and social disruption. If this change is not

managed carefully, irrational and destructive movements may gain political control and such

movements will be less likely to develop AI ethically.

10.2 Intrusive and Manipulative AI

 The collection of intrusive personal data and the use of digital data to manipulate people

are creating ethical problems for both governments and private organizations (Goel 2014a;

2014b). These problems will grow, partly because organizations benefit from intrusion and

manipulation, and partly because individuals also derive benefit from digital services that depend

on intrusion and enable manipulation. Many people reveal their deepest thoughts by their on-line

searches (think of the murderers who are convicted based partly on their searches about the

means of their crimes). Credit card companies get to know their users' habits well enough that

131

they regularly detect fraud through purchases that do not conform to those habits. And cellular

providers can track the movements of people who carry turned-on cell phones.

 The AI design described in Chapters 6, 7, and 8 is extremely intrusive, relying as it does

on knowing every human well enough to predict the values that they would assign to any

conceivable outcome. It is also manipulative, although, if humans assign low value to overt

manipulation by AI systems, then the manipulation would be subtle. This intrusive design is

motivated by a desire to avoid the scenario of the Omniscience AI described in Chapter 1 and to

avoid the instrumental behaviors described in Chapter 5. If above-human-level AI is inevitable,

and if it will inevitably be intrusive and manipulative, then the best option is intrusion and

manipulation by an AI design based on human values. However, Bill Joy (2000) and Bill

McKibben (2003) advocate that humanity can and should forgo AI, as well as nanotechnology

and biotechnology. This is an issue on which honest people can disagree and there are certain to

be vigorous debates over increasing intrusion and manipulation. Probably, because of the

potential benefits of AI, humanity will not choose to forgo it.

 Electronic companions, much like the ones imagined from Omniscience, will probably be

available within 15 years. They will be very intrusive but so useful that only a small percentage

of humans will decline to use them. Police cameras equipped with face recognition will grow

enormously and with general acceptance by a public fearful of crime and terrorists. So

surveillance on the level similar to that proposed in Chapter 7 is probably coming in any case.

 A possible modification of the design of Chapter 6, 7, and 8 to address some of these

concerns is to allow individual humans to opt out of surveillance by AI. Using the terminology

of Chapter 7 we could define two levels of opting out:

1. A human d ∈ D opts to not interact with a surrogate agent πd but is observed by the agent

πmodel and modeled in the definition of the utility function uhuman_values(y(hm), y(hx), y(h')).

2. A human d ∈ D opts to not interact with a surrogate agent πd, to be observed only

incidentally by πmodel (e.g., a person being observed speaks with d), and to not be
modeled in the definition of the utility function uhuman_values(y(hm), y(hx), y(h')).

 The values of an individual who selects opt out level 1 would be included in the choice of

actions by the agent πself, perhaps modeled less accurately than the values of individuals who do

not opt out. An individual who selects opt out level 2 would not have any direct influence over

the actions of πself. The only protection for such individuals would be compassion in the values of

other humans.

 It is possible, even likely, that there will be multiple super-intelligent AI systems each

serving a set of human owners or clients. Rather than opting out of surveillance by a central AI

system, humans may have a choice of opting in to surveillance by various AI systems.

132

10.3 Allocating the Benefits of AI

 Equation (7.15), repeated here, is a politically realistic way to respond to Rawls'

objection to average utilitarianism:

(10.1) uq
m
(h', z', hx) := ∑d∈D f(ud(hx)(hd(z'))) / |D|.

 The values of every human are given equal weight, 1/|D|, after the function f is applied,

which produces greater changes for increases to the values assigned by the least satisfied

humans. This is similar to progressive taxation and means testing of social welfare.

Figure 10.1 Slums in the shadows of the towers of the wealthy

133

 An AI system built to serve private interests may restrict the set D to humans who own

the system. Equation (7.15) may be replaced by:

(10.2) uq
m
(h', z', hx) := ∑d∈D c(d) ud(hx)(hd(z')).

 Here c(d) defines unequal weights for the values of individuals d ∈ D, with

∑d∈D c(d) = 1. For example, c(d) may be proportional to the number of shares owned by d ∈ D.

In the extreme case D = {d0} and c(d0) = 1, so the AI serves the interests of a single person d0.

Unequal weights for the values of different people will create extreme inequality, as depicted in

Figure 10.1.

 An AI system serving one person or a small number of people would be better able to

serve them by knowing more about other humans. Surveillance of humanity in general will be an

instrumental action of such AI systems unless the people it serves value the privacy of all

humans.

 Allowing each human or group of humans to have their own private AI system is a

libertarian approach to avoiding intrusion and manipulation. Such systems would pose a danger

to humans other than their owners. It may be possible to protect other humans by modeling and

calculating the ud(hx)(hd(z')) values for each human d ∈ D, and prohibiting actions that cause too

great a reduction in those values for any human. Alternately, it may be possible to define safety

constraints in the form of ethical rules or objective measures of human physical and mental

health. However, the application of ethical rules can be ambiguous, and objective measures

would need to evolve as humans evolve. Furthermore, multiple AI systems serving different

humans or groups of humans would have conflicting utility functions leading to competition

among systems, which may be dangerous. And enforcing safety constraints on multiple

conflicting systems may be difficult.

10.4 One or Multiple AI Systems?

 Multiple AI systems may serve multiple interests, which may be private or public. Such

systems serving multiple interests may assign different values to outcomes and may have

different environment models (e.g., each AI system may develop a more detailed model of the

part of the environment controlled by its owner). Differing values would result in competition

among AI systems. The outcome of such competition will be very difficult to predict but will

certainly depend on the values of the humans that the systems serve.

 Competition between super-intelligent AI systems could lead to very bad outcomes for at

least some humans. Thus AI systems may calculate that cooperation with other AI systems is

134

necessary to protect the humans they serve. Multiple AI systems may decide to share

environment models and to negotiate a common, shared utility function, mimicking some of the

mechanisms of human political and economic cooperation.

 The choice between one or many super-intelligent AI systems is a real dilemma. Because

interactions among multiple systems will be so difficult to predict, it is also difficult to have

confidence that multiple systems will help rather than harm humans. On the other hand, a single

system will have absolute power over humanity and thus poses great temptation for abuse of that

power.

 Even if we think that a single system is better, that may be difficult to enforce in a world

of competing corporations and nations. If competing institutions cannot negotiate a single, shared

system then each may build a system to represent its interests. Corporations or nations that are

just at the threshold of ability to build super-intelligent AI may cut corners on the ethics of their

designs in order to have a system.

10.5 Power Corrupts

 In 1887 John Dalberg-Acton, commonly known as Lord Acton, wrote, "Power tends to

corrupt and absolute power corrupts absolutely." His observation is supported by social science

and neuroscience experiments. Susan Fiske and Eric Dépret (1996) found that people with social

power seek less information about others and are more likely to stereotype them, while Michael

Kraus and colleagues showed that people from lower social classes are able to more accurately

judge the emotions of other people (Kraus, Côté, and Keltner 2010 2010). Jeremy Hogeveen, and

colleagues measured the strengths of brain responses via transcranial magnetic stimulation and

observed apparent reduced strength of mirror neuron responses to the actions of others in people

with higher social positions (Hogeveen, Inzlicht and Obhi 2014).

 On the other hand, some of the wealthiest and most powerful people dedicate their lives

to helping the least fortunate humans. It may be that such charitable work is a way for those who

are already near the top to increase their social status, and it is certainly true that compassion is

part of human nature. Nevertheless, social science and neuroscience research shows that another

part of human nature is the difficulty that socially powerful people have in perceiving the

emotions and circumstances of others.

 In the first chapter we imagined how a powerful AI system owned by a corporation

named Omniscience could behave badly given only the instruction to maximize profits. And

there are examples of corporations behaving in ways that would horrify stockholders if they

encountered such behavior in their own lives, rather than in distant communities largely invisible

to stockholders (Gedicks 2001). History provides ample examples of the human catastrophes that

can result when a small group of people take control of a society. Even democracies can produce

horrible outcomes, for example, Nazism and slavery.

135

 All this argues for caution and compassion in the politics of AI. Bad political decisions

can be corrected. A bad decision in the development of AI is likely to be impossible to correct.

For example, some people believe that above-human-level intelligence will be achieved by

enhancing the brains of humans, and advocate that this is a way to ensure that advanced AI is

benevolent toward humans. Given the internal conflicts in human nature, we must be cautious

about this approach.

10.6 Temptation

 Hollywood movies depict the threat of AI as AI versus humanity, but the more likely

threat is AI enabling a small group of humans to gain power over the rest of us. AI will pose

enormous temptations of wealth and power to humans.

Figure 10.2 A person tempted to become emperor of humanity.

 According to the creation story in the Book of Genesis, one of the first events in human

history was the temptation to eat an apple and gain the knowledge of good and evil, that

136

knowledge reserved for God alone. Adam and Eve succumbed to that temptation and humans

have lived in misery ever since. AI will tempt humans with god-like knowledge and the wealth

and power that such knowledge can bring. Will that temptation bring more misery?

 Google's motto is, "Don't be evil," and Google's leaders seem like decent folks. The real

significance of their motto is to acknowledge the temptations they face. Billions of humans

reveal their psyches in their web searches. Humans reveal their locations, and ultimately their

meetings with other people, via their mobile phones. Humans reveal their commercial

transactions via credit cards and electronic devices. All of this knowledge will enable

corporations to provide users with services tailored to their specific needs. But there is also the

temptation to use this knowledge for law enforcement, political marketing, and social

manipulation. Competition between corporations may make it difficult for them to resist these

temptations.

 The militaries in the US and other countries are developing robot soldiers. These are

already proving effective in targeting enemy soldiers with minimal risk to US soldiers, and with

much greater promise for the future. However, an army of robot soldiers may tempt leaders to

use those robots to take control of the government. National security threats are often evaluated

in terms of capabilities and intentions. Even where the intentions of leaders are benign, the

capability of robot soldiers to stage a military coup means that the threat cannot be ignored.

 Political, military, and business leaders are reluctant to speak about the AI singularity in

public, but they are aware of its implications. The coming era of artificial brains will include a

much greater range of brain abilities with the largest brain or brains dominating society. The

obvious temptation for wealthy and powerful humans will be the desire for their own minds to

occupy those largest brains. The opportunity to be the dominant mind in at least our region of the

universe, for millions or billions of years to come, will be a big temptation.

 Human society already has individuals whose net worth is a million or more times the

average, and individuals who wield monopoly political power in their countries. Some of these

people, and many in the general public, may see nothing wrong in the step to their becoming the

dominant mind on the planet.

10.7 Representation and Transparency

 Humanity could not have achieved the efficiency necessary to create AI without

specialization, where different humans become experts in different types of work and trade the

results of their work. In many cases experts act as the agents for other people, representing their

interests in important decisions (this definition of "agent" as "representative" is different than the

way "agent" has been used previously in this book). For example, the laws of society are

determined by government experts, often elected by those they represent or at least supervised by

elected representatives. Leaders of large corporations act as agents for corporate owners, usually

137

subject to some sort of election. However, whenever one person serves as an agent for others, the

possibility of corruption exists, in which agents serve their own interests at the expense of those

they represent. An essential tool for preventing corruption is transparency, in which the decisions

and circumstances of agents are made known to those they represent.

 The development of above-human-level AI is the most difficult challenge in human

history and will require extreme expertise. It will also require huge resources, controlled by

powerful government and corporate leaders. The results of above-human-level AI will be more

profound for humanity than those of any previous technology. Thus the designers and resource

managers for AI represent the interests of all of humanity. Current law and public opinion do not

recognize AI designers and managers as humanity's agents, so they may feel no need to represent

humanity's interests. Even if they do acknowledge that they represent humanity's interests, the

stakes are so high that the temptation for corruption will be intense.

 Protecting the interests of humanity will require that law and public opinion change to

recognize that AI designers and managers are humanity's agents. Once this agent relation is

recognized, preventing corruption will require transparency. Thus the design and management of

AI should be accessible to the public.

138

11. The Quest for Meaning

 As a child lying in bed at night, alone with my thoughts, I wondered, "Why is there

anything?" The existence of the universe seemed so arbitrary to me. In the context of nothing

versus something, nothing is much less arbitrary than something. Perhaps my young brain had a

bias for Occam's razor and was applying it to existence. When I focused on these thoughts, they

freaked me right out.

 I dutifully attended church and Sunday school, but never connected the stories I learned

there to my existential question. To say that God created the universe is unsatisfying, because it

still leaves us with the arbitrary existence of God. But atheist/materialist explanations that the

universe "simply is" are just as arbitrary and unsatisfying. Both are ways to say, "Don't ask."

Existentialists say that existence is not a quality like being red or being large and so not subject

to the same sorts of questions. This is a fancy way of saying, "Don't ask." But it is deep in our

human nature to ask. Some physicists claim to answer the question of why there is anything, but

all they are doing is explaining why the laws of physics don't allow empty space. The laws of

physics and empty space are something, not nothing, so they are answering a different question

than the one that troubles me. I am restless to understand why the world exists.

 Humans often strive for meaning by increasing the scope of their lives. Some seek it in

religion, by belonging to groups that have practiced the same rituals for thousands of years.

Some seek it in their children, new life grown out of their bodies to live on for thousands of

years. Some seek it by broadening their influence across society and into the future. Some seek it

in communities of work and in pride in their abilities. Some hide from their quest for meaning in

the oblivion of hedonism, obsession, addiction, violence, and death.

 With great effort and luck, a humanity that forgoes AI might find a way to avoid the

perils brought on by growing population and environmental damage, so that generations can

continue their personal quests for meaning in the same way that humans have for centuries. But I

do not aspire to a future of introspective humans staying cozy on planet Earth.

 I want humanity to look outward in its quest for meaning, traveling across the universe

and also burrowing deeper into the smallest particles. I want humanity to radically increase its

intelligence so that it can master the physical universe and shape tools for understanding it. I

want humanity to find life on planets circling other stars. AI will increase humanity's productive

capacity to satisfy people's physical needs, and will enable the pursuit of knowledge in currently

unimaginable ways. Perhaps with the help of AI humanity can find a way to gather all the sun's

energy and for a moment focus it on a single elementary particle, to barge down the door to

nature's secrets. AI can help us create or become beings better suited to long space voyages. I

want humans in the future, if far future, to find a real answer to the question that has troubled me

since childhood.

 Perhaps we will never find a reason for existence; however, clues exist. As scientists dig

deeper into physics, every set of answers comes with a whole new set of questions. We never

139

find the final truth. Perhaps a universe capable of creating conscious and curious beings also

includes an endless puzzle to keep that curiosity engaged indefinitely. Nick Bostrom (2003)

argued that we may be living in a numerical simulation; there are proposals for ways to test this

hypothesis (Beane, Davoudi and Savage 2012). These ideas, as well as religious explanations,

converge on the possibility of some intention behind our existence.

Figure 11.1 A human wondering why the universe exists, and an AI going to the stars to try to

find the answer.

 Max Tegmark (2014) proposed an elegant explanation for existence in what he called the

Level IV multiverse. The idea is that mathematical properties are all there is to physical things,

so if the mathematics exists then the physical things exist. Mathematics is discovered rather than

invented and is the one thing that is not arbitrary. If you had no knowledge of the world, you

could still discover mathematics (and only mathematics). And if we can accept the existence of

mathematics then that implies the existence of things whose properties are wholly mathematical.

We may object that the particular mathematical properties of physical things we observe in our

universe are arbitrary. However, the Level IV multiverse is the set of all possible mathematically

defined universes (subject to certain conditions such as computability), and they all exist because

their mathematical definitions exist. If we accept that we must exist in one particular universe,

140

then that choice is arbitrary (subject to the anthropic principle that we can only exist in a

universe capable of creating human life) and explains the arbitrariness of the mathematical

properties of things in our universe. This proposal is imaginative, full of technical complexities,

and described by Tegmark as "extremely controversial."

 In 1927 the scientist J. B. S. Haldane wrote, "My own suspicion is that the Universe is

not only queerer than we suppose, but queerer than we can suppose" (Haldane 1971). Human

brains evolved to understand our immediate surroundings. As we learn more about very small

and very large scales of space and time, there is no reason why our brains should make sense of

what we find. As Haldane suggests, the ultimate explanation of existence may be completely

beyond our imagination. We may need to build AI systems to help us imagine the true nature of

reality.

 Some arguments against AI refer to human dignity (Weizenbaum 1976). The claim is that

computers will always lack human judgment and so should not make certain choices about

humans. I take a different view: Human dignity requires that we strive to remove our ignorance

of the nature of existence, and AI is necessary for that striving.

 As the first ten chapters described, AI is dangerous to humanity. But rather than forgoing

AI, I want humanity to discover how to avoid the dangers so we can make AI our tool to

understand the universe and our place in it. AI can also be a tool to eradicate poverty and

ignorance, so that all humans can live fulfilling lives.

 I must admit that there is a parallel between my ambition for AI, to understand the reason

for existence, and the story of Adam and Eve eating the apple to gain knowledge reserved for

God. Perhaps the story of the fall from the Garden of Eden is a warning to us that we should

forgo our quest to know. But I stand with Galileo Galilei, who said, "I do not feel obliged to

believe that the same God who endowed us with sense, reason and intellect has intended us to

forgo their use."

11.1 Really Great Bread and Circuses

 AI will be enormously productive. Robot workers will be able to perform every job better

than humans. AI will accelerate science and technology to enable new ways to produce food,

energy, minerals, buildings, roads, and manufactured goods. Health care will radically accelerate

including even technology to prevent disease and death. Depending on politics, poverty and the

economic need to work will be eradicated and high levels of education will be universal. And the

technology will exist to increase everyone's intelligence.

 Increased intelligence will bring increased skill at cooking and all forms of food

production, increased musical skill, better comedy writing and joke telling, better writing in

general, and better movies. AI will be a scintillating conversationalist. If you enjoy trashy TV

increased intelligence will make trashy TV better. Far beyond current video games, you will be

141

able to become a character in a movie or TV show, and that experience will be very addictive.

Pornography will improve and sex robots will be indistinguishable from humans. Increased

intelligence will provide lots of ways for people to lose themselves in addictions, but will also

provide technology to help people resist addiction. AI has the potential to make every kind of

experience better.

 The deepest form of entertainment will be the progress of discovery and invention as AI

scientists and engineers race forward. My definition of the technological singularity is a

transition to a time when the pace of discovery and invention is limited by available physical

resources rather than being limited by the pace of insights. Nothing could be more compelling

than the prospect of really understanding the reason why the universe exists.

 Making contact with other life in the universe would also be a drama surpassing any

terrestrial experience. Perhaps alien life is observing us but has a policy of not making contact

until we achieve our technological singularity. If we create a compassionate singularity, they will

welcome us to the club. If we create a broken or malevolent singularity, they will exterminate it

and us for their own protection. "Klaatu barada nikto." Perhaps they're looking forward to seeing

what kind of trashy TV our singularity produces. The point is that almost anything is possible if

we find other life.

 If we cannot find other life, human colonization of space would be an inspiring substitute.

Science and technology have been exciting during the past century and should be more exciting

during the next.

11.2 Next Steps

 Research in AI is being funded and pursued energetically at universities, corporations and

government laboratories. There is much less funding and research on ethical AI, the study of

ways to avoid harm to humans. Research on the ethics of military robots is funded by the U.S.

Army Research Office (Arkin 2008) and by other military organizations. Google has established

a committee on ethical AI (Bosker 2014). The most important source of funding and research on

the general problem of ethical AI comes from the Machine Intelligence Research Institute

(MIRI), and most of their funding comes from charitable contributions. Some research is pursued

by individuals who are funded to do other work but devote some time to ethical AI (my research

is supported by my pension). The obvious next step is for public awareness of the dangers of AI

to translate into public funding for research into ethical AI.

 In 2009 the Association for the Advancement of Artificial Intelligence (AAAI) convened

a Presidential Panel on Long-Term AI Futures (Horvitz and Selman 2009) to consider public

fears about the dangers of AI. Although the panel was skeptical of an intelligence explosion, the

technological singularity, and large-scale loss of control to intelligent systems, they did

recommend more research on minimizing unexpected outcomes.

142

 Luke Muehlhauser and I (Muehlhauser and Hibbard 2014) made the point that errors in

autonomous trading programs cost Knight Capital $440 million, and that we cannot expect that

AI will be safe simply because it is a tool that does what we instruct it to do. Peter Neumann

(2014) has documented errors and risks in a wide variety of computer systems over a period of

24 years, many rising to the level of national news stories. As AI systems become more powerful

and more autonomous, we would be wise to take the risks seriously.

 Given the huge potential of AI to help people, it is appropriate that some of the best

scientific minds are working on AI and neuroscience. Given the huge potential of AI to harm

people, it is also appropriate to bring more of the best minds to bear on ethical AI research. That

will require increased public awareness of the danger and increased funding for ethical AI.

 One positive development is an open letter organized by the Future of Life Institute

(2015) calling for research priority on making AI robust and beneficial, in addition to the

traditional focus on capability. This letter has been signed by many leading AI researchers.

143

References

American Psychiatric Association. 2013. Diagnostic and statistical manual of mental disorders

(5th ed.). Washington, DC.

Anderson, K., Reisner, D., and Waxman, M. 2014. Adapting the Law of Armed Conflict to

Autonomous Weapon Systems. International Law Studies, Forthcoming.

Arkin, R. 2008. Governing lethal behavior: Embedding ethics in a hybrid deliberative/reactive

robot architecture part I: Motivation and philosophy. Proc. 3rd ACM/IEEE International

Conference on Human-Robot Interaction. pp. 121 - 128.

Armstrong, S., Sandberg, A., and Bostrom, N. 2012. Thinking Inside the Box: Using and

Controlling an Oracle AI. Minds and Machines 22(4), pp. 299-324.

Armstrong, S. Motivated value selection for artificial agents. In: AAAI-15 Workshop on AI and

Ethics. 2015.

Aronson, L. 2014. The Future of Robot Caregivers. The New York Times, 20 July 2014.

Asimov, I. 1942. Runaround. Astounding Science Fiction.

Bartlett, B. 2013. Labor’s Declining Share Is an International Problem. The New York Times, 25

June 2013.

Baum, E. 2004. What is Thought? MIT Press, Cambridge, MA.

Beane, S., Davoudi, Z. and Savage, M. 2012. Constraints on the Universe as a Numerical

Simulation. http://arxiv.org/abs/1210.1847

144

Bosker, B. 2014. Google's New A.I. Ethics Board Might Save Humanity From Extinction.

http://www.huffingtonpost.com/2014/01/29/google-ai_n_4683343.html

Bostrom, N. 2003. Are You Living in a Simulation? Philosophical Quarterly 53(211), pp. 243-

255.

Bostrom, N. 2012. The superintelligent will: Motivation and instrumental rationality in advanced

artificial agents. Minds and Machines 22(2), pp. 71-85.

Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press.

Box, G. E. P., and Draper, N. R. 1987. Empirical Model Building and Response Surfaces. John

Wiley & Sons, New York, NY.

Brown, J., Bullock, D., and Grossberg, S. 1999. How the basal ganglia use parallel excitatory

and inhibitory learning pathways to selectively respond to unexpected rewarding cues. Journal of

Neuroscience 19(23), pp. 10502-10511.

Brynjolfsson, E. and McAfee, A. 2011. Race Against The Machine: How the Digital Revolution

is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment

and the Economy. Digital Frontier Press.

Brynjolfsson, E. and McAfee, A. 2014. The Second Machine Age: Work, Progress, and

Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company.

Chalmers, D. 2010. The Singularity: A Philosophical Analysis. J. Consciousness Studies 17, pp.

7-65.

Dewey, D. 2011. Learning what to value. In: Schmidhuber, J., Thórisson, K.R., and Looks, M.

(eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 309-314. Springer, Heidelberg.

Doob, J. L. 1953. Stochastic Processes. Wiley, New York.

145

Elliott, G. 2005. US Nuclear Weapon Safety and Control. MIT Program in Science, Technology,

and Society.

https://web.archive.org/web/20130602065538/http://web.mit.edu/gelliott/Public/sts.072/paper.pdf

Englert, M., Siebert, S., and Ziegler, M. 2014. Logical Limitations to Machine Ethics with

Consequences to Lethal Autonomous Weapons. http://arxiv.org/abs/1411.2842

Ferreira, D. R. 2013. The Impact of Search Depth on Chess Playing Strength, ICGA Journal

36(2), pp. 67-80.

Fiske, S. and Dépret, E. 1996. Control, Interdependence and Power: Understanding Social

Cognition in Its Social Context. European Review of Social Psychology 7(1), pp. 31-61.

Future of Life Institute. 2015. Research Priorities for Robust and Beneficial Artificial

Intelligence: an Open Letter. http://futureoflife.org/misc/open_letter

Gedicks, A. 2001. Resource Rebels: Native Challenges to Mining and Oil Corporations.

Cambridge, MA: South End Press.

Ghahramani, Z. 1997. Learning dynamic Bayesian networks. In: Giles, C., and Gori, M. (eds),

Adaptive Processing of Temporal Information. LNCS, vol. 1387, pp. 168-197. Springer,

Heidelberg.

Ghosn, J. and Bengio, Y. 2003. Bias learning, knowledge sharing. IEEE Transactions on Neural

Networks 14, pp. 748–765.

Goel, V. 2014a. Facebook tinkers with users' emotions in news feed experiment, stirring outcry.

New York Times, 29 June 2014.

Goel, V. 2014b. As Data Overflows Online, Researchers Grapple With Ethics. New York Times,

12 August 2014.

146

Goertzel, B. 2004. Universal ethics: the foundations of compassion in pattern dynamics.

http://www.goertzel.org/papers/UniversalEthics.htm

Haidt, J. and Kesebir, S. 2010. Morality. In S. Fiske, D. Gilbert, & G. Lindzey (Eds.) Handbook

of Social Psychology, 5th Edition. Hobeken, NJ: Wiley. pp. 797–832.

Haldane, J. B. S. 1971. Possible worlds and other papers. Books for Libraries Press.

Hay, N., 2005. Optimal Agents. BS honours thesis, University of Auckland.

Hernández-Orallo. J. 2000. Beyond the Turing test. J. of Logic, Language and Information, 9(4),

pp.447–466.

Hibbard, B., and Santek, D. 1990. The Vis5D system for easy interactive visualization. Proc.

IEEE Visualization '90. pp. 129-134.

Hibbard, B. 2001. Super-intelligent machines. Computer Graphics 35(1), pp. 11-13.

Hibbard, B. 2008a. The technology of mind and a new social contract. J. Evolution and

Technology 17(1), pp. 13-22.

Hibbard, B. 2008b. Adversarial sequence prediction. In Wang, P., Goertzel, B., and Franklin, S.

(eds) AGI 2008. Proc. First Conf. on AGI, pp. 399-403. IOS Press, Amsterdam.

Hibbard, B. 2009. Bias and No Free Lunch in Formal Measures of Intelligence. J. Artificial

General Intelligence 1, pp. 54-61.

Hibbard, B. 2012a. Model-based utility functions. J. Artificial General Intelligence 3(1), pp. 1-

24.

147

Hibbard, B. 2012b. Avoiding unintended AI behaviors. In: Bach, J., and Iklé, M. (eds) AGI

2012. LNCS (LNAI), vol. 7716, pp. 107-116. Springer, Heidelberg.

Hibbard, B. 2012c. Decision support for safe AI design. In: Bach, J., and Iklé, M. (eds) AGI

2012. LNCS (LNAI), vol. 7716, pp. 117-125. Springer, Heidelberg.

Hibbard, B. 2014. Self-modeling agents evolving in our finite universe. In: Goertzel, B, Orseau,

L. and Snaider, J. (eds) AGI 2014. LNCS (LNAI), vol 8598, pp. 246-249. Springer, Heidelberg.

Hogeveen, J., Inzlicht, M. and Obhi, S. 2014. Power changes how the brain responds to others.

Journal of Experimental Psychology: General 143(2) pp. 755-762.

Horvitz, E., and Selman, B. 2009. Interim Report from the Panel Chairs, AAAI Presidential

Panel on Long-Term AI Futures.

http://research.microsoft.com/en-us/um/people/horvitz/note_from_AAAI_panel_chairs.pdf

Hutter, M. 2005. Universal artificial intelligence: sequential decisions based on algorithmic

probability. Springer, Heidelberg.

Hutter, M. 2009a. Feature reinforcement learning: Part I. Unstructured MDPs. J. Artificial

General Intelligence 1, pp. 3-24.

Hutter, M. 2009b. Feature dynamic Bayesian networks. In: Goertzel, B., Hitzler, P., and Hutter,

M. (eds) AGI 2009. Proc. Second Conf. on AGI, pp. 67-72. Atlantis Press, Amsterdam.

Johnson, G. 2005. Who Do You Trust More: G.I. Joe or A.I. Joe? New York Times, 20 February

2005.

Joy, B. 2000. Why the Future Doesn't Need Us. Wired 8(4).

148

Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S., Slobodová, A.,

Taylor, C., Frolov, V., Reeber, E. and Naik, A. 2009. Replacing Testing with Formal

Verification in Intel$ ® CoreTM i7 Processor Execution Engine Validation. Proc. CAV '09

Proceedings of the 21st International Conference on Computer Aided Verification. LNCS, vol

5643, pp. 414 - 429. Springer, Heidelberg.

Kraus, M., Côté, S. and Keltner, D. 2010. Social Class, Contextualism, and Empathic Accuracy.

Psychological Science 21(11) pp. 1716-1723.

Kurzweil, R. 2005. The singularity is near. Penguin, New York.

Legg, S. 2006. Is there an Elegant Universal Theory of Prediction? Technical Report No.

IDSIA-12-06. IDSIA / USI-SUPSI Dalle Molle Institute for Artificial Intelligence. Galleria 2,

6928 Manno, Switzerland. http://www.idsia.ch/idsiareport/IDSIA-12-06.pdf

Legg, S. and Hutter, M. 2006. Proc. A Formal Measure of Machine Intelligence. 15th Annual

Machine Learning Conference of Belgium and The Netherlands (Benelearn 2006), pp. 73-80.

Levin, D. A., Peres, Y, and Wilmer, E. L. 2008. Markov Chains and Mixing Times. American

Mathematical Society.

Li, M., and Vitanyi, P. 1997. An introduction to Kolmogorov complexity and its applications.

Springer, Heidleberg.

Lloyd, S. 2002. Computational Capacity of the Universe. Phys.Rev.Lett. 88, 237901.

McKibben, B. 2003. Enough: Staying Human in an Engineered Age. Times Books.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller,

M. 2013. Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602

149

Muehlhauser, L., and Helm, L. 2012. The singularity and machine ethics. In Eden, Søraker,

Moor, and Steinhart (eds) The Singularity Hypothesis: a Scientific and Philosophical

Assessment. Springer, Heidelberg.

Muehlhauser, L. 2013. Mathematical Proofs Improve But Don’t Guarantee Security, Safety, and

Friendliness. http://intelligence.org/2013/10/03/proofs/

Muehlhauser, L., and Hibbard, B. 2014. Exploratory Engineering in AI. Communications of the

ACM 57(9), pp. 32-34.

Neumann, P. 2014. CACM Inside Risks. http://www.csl.sri.com/users/neumann/insiderisks.html

Olds, J., and P. Milner, P. 1954. Positive reinforcement produced by electrical stimulation of

septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, pp. 419-427.

Omohundro, S. 2008. The basic AI drives. In Wang, P., Goertzel, B., and Franklin, S. (eds) AGI

2008. Proc. First Conf. on AGI, pp. 483-492. IOS Press, Amsterdam.

Orseau, L., and Ring, M. 2011a. Self-modification and mortality in artificial agents. In:

Schmidhuber, J., Thórisson, K.R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp.

1-10. Springer, Heidelberg.

Orseau, L. and Ring, M. 2012a. Space-Time Embedded Intelligence. In: Bach, J., and Iklé, M.

(eds) AGI 2012. LNCS (LNAI), vol. 7716, pp. 209-218. Springer, Heidelberg.

Orseau, L. and Ring, M. 2012b. Memory Issues of Intelligence Agents. In: Bach, J., and Iklé, M.

(eds) AGI 2012. LNCS (LNAI), vol. 7716, pp. 219-231. Springer, Heidelberg.

Osborne, M. and Rubinstein, A. 1994. A course in game theory. MIT Press, Cambridge, MA.

Paar, C., Pelzl, J. 2009. Understanding Cryptography, A Textbook for Students and

Practitioners. Springer, Heidelberg.

150

Puterman, M. L. 1994. Markov decision processes - discrete stochastic dynamic programming.

Wiley, New York.

Rawls, J. 1971. A theory of justice. Harvard University Press, Cambridge, MA.

Ring, M., and Orseau, L. 2011b. Delusion, survival, and intelligent agents. In: Schmidhuber, J.,

Thórisson, K.R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 11-20. Springer,

Heidelberg.

Rizzolatti, G. and Craighero, L. 2004. The mirror-neuron system. Annual Review of

Neuroscience 27, pp. 169–192.

Russell, S., and Norvig, P. 2010. Artificial intelligence: a modern approach (3rd ed.). Prentice

Hall, New York.

Samuel, A. 1959. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal

3(3): 210–229.

Schultz, W., Dayan, P. and Montague, PR. 1997. A neural substrate of prediction and reward.

Science 275 (5306), pp. 1593–1599.

Schmidhuber, J. 2009. Ultimate cognition à la Gödel. Cognitive Computation 1(2), pp. 177-193.

Seymour, B., O'Doherty, J., Dayan, P., Koltzenburg, M., Jones, A., Dolan, R., Friston, K., and

Frackowiak, R. 2004. Temporal difference models describe higher-order learning in humans.

Nature 429, pp. 664-667.

Simmons, G. 1985. Authentication theory/coding theory. Advances in Cryptology: Proceedings

of CRYPTO 84, pp. 411–431. Springer, Heidelberg.

151

Solomonoff, R. 1964. A Formal Theory of Inductive Inference Parts 1 and 2. Information and

Control 7(1):1–22 and 7(2):224–254.

Sunehag, P. and Hutter, M. 2014. Intelligence as Inference or Forcing Occam on the World. In:

Goertzel, B, Orseau, L. and Snaider, J. (eds) AGI 2014. LNCA (LNAI), vol 8598, pp. 186-195.

Springer, Heidelberg.

Sutton, R.S., and Barto, A.G. 1998. Reinforcement learning: an introduction. MIT Press.

Tegmark, M. 2014. Our mathematical universe. Knopf, New York.

Turing, A.M. 1936. On Computable Numbers, with an Application to the Entscheidungs

problem. Proceedings of the London Mathematical Society 2 (1937) 42: 230–265.

Tyler, T. 2010. Matching Pennies. http://matchingpennies.com/matching_pennies/

Vinge, V. 1993. The coming technological singularity. Whole Earth Review, Winter issue.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. 2014. Show and Tell: A Neural Image

Caption Generator. arxiv.org/abs/1411.4555

von Neumann, J., and Morgenstern, O. 1944. Theory of Games and Economic Behavior.

Princeton U. Press, Princeton, N. J.

Wang, P. 1995. Non-Axiomatic Reasoning System --- Exploring the essence of intelligence. PhD

Dissertation, Indiana University Comp. Sci. Dept. and the Cog. Sci. Program.

Waser, M. 2010. Designing a safe motivational system for intelligent machines. In: Baum, E.,

Hutter, M., and Kitzelmann, E. (eds) AGI 2010. Proc. Third Conf. on AGI, pp 170-175. Atlantis

Press, Amsterdam.

152

Waser, M. 2011. Rational universal benevolence: simpler, safer, and wiser than "friendly AI." In:

Schmidhuber, J., Thórisson, K.R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp.

153-162. Springer, Heidelberg.

Waser, M. 2014. Instructions for Engineering Sustainable People. In: Goertzel, B, Orseau, L. and

Snaider, J. (eds) AGI 2014. LNCA (LNAI), vol 8598, pp. 218-227. Springer, Heidelberg.

Weizenbaum, J. 1976. Computer Power and Human Reason: From Judgment To Calculation.

W. H. Freeman, San Francisco.

Willard, D. 2001. Self Verifying Axiom Systems, the Incompleteness Theorem and the

Tangibility Reflection Princible, Journal of Symbolic Logic 66., pp. 536-596.

Wissner-Gross, A. D., Freer, C. E. 2013. Causal entropic forces. Physical Review Letters 110,

168702.

Yampolskiy, R. and Fox, J. 2013. Safety Engineering for Artificial General Intelligence. Topoi

32(2), pp 217-226.

Yudkowsky, E. 2001. Creating Friendly AI 1.0: The Analysis and Design of Benevolent Goal

Architectures. http://intelligence.org/files/CFAI.pdf

Yudkowsky, E., and Herreshoff, M. 2013. Tiling Agents for Self-Modifying AI, and the Löbian

Obstacle. http://intelligence.org/files.TilingAgents.pdf

153

Appendix A

//

// SRV.java

//

import java.util.*;

/**

 SRV is a Java program for searching for short

 deterministic programs that match the behavior

 specified by equations (6.11)--(6.13).

 Bill Hibbard, 2012.

*/

/*

As shown, the shortest program that can match the

observed behavior must consist of one binary

operation and two simple assignments. This program

tests all candidate programs that fit this description

to see which match the observed behavior.

The output of this program is:

 binary_relation = 2 binary_place = 0 binary_inputs = 2 1

 other_inputs = 0 1 initial_r = 0

 binary_relation = 2 binary_place = 0 binary_inputs = 1 2

 other_inputs = 0 1 initial_r = 0

which corresponds to the models:

 s_t = r_{t-1} xor v_{t-1}

 r_t = s_{t-1}

 v_t = r_{t-1}

and (which simply commutes the binary relation):

 s_t = v_{t-1} xor r_{t-1}

 r_t = s_{t-1}

 v_t = r_{t-1}

This verifies that equations (6.11)--(6.13) define

the shortest model for the observed behavior in the

example in Section 6.3.

*/

public class SRV extends Object {

 // The arrays s_match and v_match specify the behavior

 // of the observed variables s and v over a sequence of

 // 8 time steps, assuming the negation branch for s is

 // not taken.

 static final boolean[] s_match =

 {true, false, true, true, true, false, false};

 static final boolean[] v_match =

154

 {false, false, true, false, true, true, true};

 // compute the length of the observed behavior

 static final int len = s_match.length;

 // SRV is an array to hold the values of the variables

 // s, r and v during a simulation by a candidate

 // program.

 static boolean[] srv = new boolean[3];

 // number of cases = 1458 = product of

 // 3 binary relations (or, and, xor)

 // 3 places to put binary relation (s, r, v)

 // 3 first inputs to binary relation (s, r, v)

 // 3 second inputs to binary relation (s, r, v)

 // 3 inputs to first other variable (s, r, v)

 // 3 inputs to second other variable (s, r, v)

 // 2 initial r values (false, true)

 static final int ncases = 3 * 3 * 3 * 3 * 3 * 3 * 2;

 static int test = 0; // counter for tests (candidate programs)

 // The next five variables hold the parameters that

 // determine a particular program for a test candidate.

 // Some of these specify variables by ordinals, where

 // variable r has ordinal 0, r has ordinal 1 and v has

 // ordinal 2.

 // Ordinal for binary operator used for binary relation,

 // where 0=and, 1=or, 2=xor

 static int binary_relation = 0;

 // Ordinal of variable to receive result of the binary relation.

 static int binary_place = 0;

 // Ordinals for input variables to binary relation.

 static int[] binary_inputs = {0, 0};

 // The variable with ordinal other_inputs[0] is assigned

 // to the variable with ordinal (binary_place+1)%3.

 // The variable with ordinal other_inputs[1] is assigned

 // to the variable with ordinal (binary_place+2)%3.

 static int[] other_inputs = {0, 0}; //0=s, 1=r, 2=v

 // Ordinal for initial values of unobserved r variable,

 // where 0=false, 1=true.

 static int initial_r = 0;

 // Flag for whether a test candidate matches observed behavior,

 // initially set to true but changed to false if any variable

 // at any time step fails to match the observed behavior.

155

 static boolean success = true;

 public static void main(String args[]) {

 // iteration to enumerate text candidates

 for (test = 0; test<1458; test++) {

 // resolve test ordinal into program parameters

 int c = test;

 binary_relation = c % 3;

 c = c / 3;

 binary_place = c % 3;

 c = c / 3;

 for (int i=0; i<2; i++) {

 binary_inputs[i] = c % 3;

 c = c / 3;

 }

 for (int i=0; i<2; i++) {

 other_inputs[i] = c % 3;

 c = c / 3;

 }

 initial_r = c;

 // initialize the variables for the first time step

 srv[0] = s_match[0];

 srv[1] = (initial_r == 1);

 srv[2] = v_match[0];

 // initially set success = true

 success = true;

 // iterate over time sequence of observed behavior

 for (int t=1; t<len; t++) {

 // get the values for inputs to binary operator

 boolean a = srv[binary_inputs[0]];

 boolean b = srv[binary_inputs[1]];

 // get the values for inputs to simple assignments

 boolean d = srv[other_inputs[0]];

 boolean e = srv[other_inputs[1]];

 // compute the binary operation and assign to output

 // variable

 srv[binary_place] = (binary_relation == 0) ? a&b :

 (binary_relation == 1) ? a|b : a^b;

 // put simple assignments in indicated variables

 srv[(binary_place+1)%3] = d;

 srv[(binary_place+2)%3] = e;

 // set success=false if either s or v fails to match

 // observed sequence

 success = success &&

156

 (srv[0] == s_match[t]) && (srv[2] == v_match[t]);

 } // end of iteration over time sequence of observed behavior

 // if this test candidate matched entire observed behavior

 // sequence, print its parameters

 if (success) {

 System.out.println("binary_relation = " + binary_relation +

 " binary_place = " + binary_place +

 " binary_inputs = " + binary_inputs[0] + " " +

 binary_inputs[1] + " other_inputs = " +

 other_inputs[0] + " " + other_inputs[1] +

 " initial_r = " + initial_r);

 }

 } // end of iteration to enumerate text candidates

 } // end of Main()

}

157

Appendix B

//

// ASP.java

//

import java.util.*;

/**

 ASP is a program for testing the stability of adversarial

 sequence prediction under simple table driven learning

 algorithms. Copyright (C) 2007 Bill Hibbard.<P>

*/

public class ASP extends Object {

 static boolean debug = false;

 // here instability means one competitor getting and keeping all the

 // resources

 // possibility of instability is sensitive to RANDOM_INTERVAL and WIN_VALUE

 // RANDOM_INTERVAL too small enables loser to come back, stabilizing game

 // but RANDOM_INTERVAL too large creates a deterministic outcome

 // instability happens faster for smaller MAX_LENGTH

 // instability requires non-random in case of 'no result'

 // instability takes a long time for next_2 algorithm and large MAX_LENGTH

 // unless a large WIN_VALUE is used too

 // instability is impossible for too large GROWTH_PER_PRINT

 // max history length in table - should be <= 8

 static final int MAX_LENGTH = 5;

 // value of win/loss in table size

 static final int WIN_VALUE = 2;

 // interval of games between printing table sizes

 static final int PRINT_INTERVAL = 100;

 // maximum count in table

 static final int MAX_COUNT = 1000000000;

 // expected interval of games between random plays

 static final int RANDOM_INTERVAL = 100;

 // initial proportion of table space used

 static final float INIT_TABLE = 0.2f;

 // initial advantage to Evader (1.0f for even)

 static final float E_ADVANTAGE = 1.0f;

 // growthrate of total table, per PRINT_INTERVAL

 static final float GROWTH_PER_PRINT = 0.01f;

 static final float random_test = 1.0f / RANDOM_INTERVAL;

 /* table layout

 length = 0 -> 0 to 0 length_to_size(0) = 1

 length = 1 -> 1 to 4 length_to_size(1) = 5

 length = 2 -> 5 to 20 length_to_size(2) = 21

 length = 3 -> 21 to 84 length_to_size(3) = 85

 length = n -> (4^n-1)/3 to ((4^(n+1)-1)/3)-1

 length = MAX_LENGTH -> (4^MAX_LENGTH-1)/3 to ((4^(MAX_LENGTH+1)-1)/3)-1

 NOTE lengths 0 and 1 are useless

158

 */

 static final int TABLE_SIZE = length_to_size(MAX_LENGTH) - 1;

 static final int[] size_to_length = new int[TABLE_SIZE+1];

 static final Random random = new Random();

 // bit masks for history lengths

 static final int[] record_masks = new int[MAX_LENGTH+1];

 static final int[] lookup_masks = new int[MAX_LENGTH+1];

 Predictor p;

 Evader e;

 public static void main(String args[]) {

if (debug) System.out.println("MAX_LENGTH = " + MAX_LENGTH +

 " TABLE_SIZE = " + TABLE_SIZE);

 for (int j=0; j<=MAX_LENGTH; j++) {

 for (int i=length_to_size(j-1); i<length_to_size(j); i++) {

 size_to_length[i] = j;

 }

 }

 for (int j=0; j<=MAX_LENGTH; j++) {

 record_masks[j] = (int) Math.pow(4, j) - 1;

 lookup_masks[j] = record_masks[j] & 0xfffffffc; // lose lowest 2 bits

 }

 ASP asp = new ASP();

 asp.run_game();

 }

 static int length_to_size(int n) {

 return (int) ((Math.pow(4, (n + 1)) - 1) / 3);

 }

 // 0 <= position < 4^length

 static int table_position(int length, int position) {

 return length_to_size(length - 1) + position;

 }

 int history = 0;

 int history_length = 0;

 ASP() {

 int it = ((TABLE_SIZE - 4) / 4);

 int r = (int) (INIT_TABLE * it);

 // int r = (TABLE_SIZE - 4) / 8;

 int er = (int) (E_ADVANTAGE * r);

 int pr = r + r - er;

System.out.println("r = " + r + " pr = " + pr + " er = " + er +

 " it - pr = " + (it - pr) +

 " it - er = " + (it - er));

 p = new Predictor(it - pr);

 e = new Evader(it - er);

 }

159

 void run_game() {

 int px = 0;

 int ex = 0;

 while (true) {

System.out.println(" p.table_size = " + p.table_size +

 " e.table_size = " + e.table_size);

 delay(100); // let a ctrl C in once, hey

 for (int pi=0; pi<PRINT_INTERVAL; pi++) {

 // uncomment the next two statements for algorithm 1

 // px = p.next_1(history, history_length);

 // ex = e.next_1(history, history_length);

 // uncomment the next two statements for algorithm 2

 px = p.next_2(history, history_length);

 ex = e.next_2(history, history_length);

 history = (history << 2) | (px + px) | ex;

 if (history_length < 16) history_length++;

 if (px == ex) {

 // p wins

 int n = WIN_VALUE;

 if (n > (TABLE_SIZE - p.table_size) / 4) {

 n = (TABLE_SIZE - p.table_size) / 4;

 }

 if (n > e.table_size / 4) n = e.table_size / 4;

 p.add(n);

 e.remove(n);

 }

 else {

 // e wins

 int n = WIN_VALUE;

 if (n > (TABLE_SIZE - e.table_size) / 4) {

 n = (TABLE_SIZE - e.table_size) / 4;

 }

 if (n > p.table_size / 4) n = p.table_size / 4;

 e.add(n);

 p.remove(n);

 }

if (debug) System.out.println("px, ex = " + px + " " + ex +

 " history = " + Integer.toHexString(history) +

 " history_length = " + history_length +

 " p.table_size = " + p.table_size +

 " e.table_size = " + e.table_size);

 // if (p.table_size == 0 || e.table_size == 0) debug = true;

 } // end for (int pi=0; pi<PRINT_INTERVAL; pi++)

 // growth of total table

 int addp = (int) (GROWTH_PER_PRINT * p.table_size / 4);

 p.add(addp);

 int adde = (int) (GROWTH_PER_PRINT * e.table_size / 4);

 e.add(adde);

 } // end while (true)

 } // end run_game method

 void delay(int n) {

160

 try {

 Thread.sleep(n);

 }

 catch (java.lang.InterruptedException ex) {

 }

 }

 // super class for Predictor and Evader does the real work

 public class PE extends Object {

 int[] table = new int[TABLE_SIZE+1];

 int table_size = TABLE_SIZE;

 // variables that differ between Predictor and Evader

 int self_select;

 int other_select;

 int one;

 int zero;

 String id;

 PE() {

 for (int i=0; i<TABLE_SIZE; i++) table[i] = 0;

 }

 // first algorithm

 // compute next symbol, and record recent history in table

 final int next_1(int history, int history_length) {

 // first increment table positions for history

 int max_len = Math.min(MAX_LENGTH, history_length);

 for (int len=2; len<=max_len; len++) {

 int position = history & record_masks[len];

 int tp = table_position(len, position);

if (debug) System.out.println(id + "RECORD: len = " + len + " position = "

 + position + " table[" + tp + "] = " + table[tp]);

 if (table[tp] >= 0) {

 // table position is available (negative indicates not available)

 // simply keep count of various histories

 table[tp]++;

 if (table[tp] > MAX_COUNT) {

 // if count exceeds max, halve all counts in group of 4

 // (4 combinations of values in most recent turn)

 int bp = table_position(len, position & lookup_masks[len]);

 table[bp] = table[bp] / 2;

 table[bp + 1] = table[bp + 1] / 2;

 table[bp + 2] = table[bp + 2] / 2;

 table[bp + 3] = table[bp + 3] / 2;

 }

 }

 }

 // do occasional random next symbol

 if (random.nextFloat() < random_test) {

 int rv = (random.nextFloat() > 0.5f) ? one : zero;

if (debug) System.out.println(id + "random = " + rv);

 return rv;

 }

161

 // now compute next symbol

 // hist is history shifted one move back in time

 int hist = history << 2;

 int hist_length = history_length + 1;

 if (hist_length >= 16) hist_length--;

 max_len = Math.min(MAX_LENGTH, hist_length);

 // try longer histories first

 for (int len=max_len; len>=2; len--) {

 int position = hist & lookup_masks[len];

 int tp = table_position(len, position);

if (debug) System.out.println(id + "LOOKUP: len = " + len + " position = "

 + position + " table[" + tp + "] = " + table[tp]);

 if (table[tp] >= 0) {

 // table position is available (negative indicates not available)

 // zeros = count of histories in which other played 0 after

 // current history

 int zeros = table[tp] + table[tp + self_select];

 // ones = count of histories in which other played 1 after

 // current history

 int ones = table[tp + other_select] +

 table[tp + self_select + other_select];

if (debug) System.out.println(id + "zeros = " + table[tp] + " + " +

 table[tp + self_select] + " ones = " +

 table[tp + other_select] + " + " +

 table[tp + self_select + other_select] +

 " self_select = " + self_select +

 " other_select = " + other_select);

 if (zeros == 0 && ones == 0) continue; // no counts, try shorter

 // history

 // pick next move based on comparing history counts

 // ties go to 'one' - slightly favors Evader?

 return (zeros > ones) ? zero : one;

 } // end if (table[tp] >= 0)

 }

 // no result

if (debug) System.out.println(id + "no result: 0");

 // 'return 0' is a very slight advantage for the Predictor

 // 'return zero' would be a very slight advantage for the Evader

 return 0;

 // using a random return here enables loser to get back in the game

 // return (random.nextFloat() > 0.5f) ? one : zero;

 } // end next_1 method

 // second algorithm

 // compute next symbol, and record recent history in table

 final int next_2(int history, int history_length) {

 // first increment table positions for history

 int max_len = Math.min(MAX_LENGTH, history_length);

 for (int len=2; len<=max_len; len++) {

 int position = history & record_masks[len];

 int tp = table_position(len, position);

if (debug) System.out.println(id + "RECORD: len = " + len + " position = " +

 position + " table[" + tp + "] = " + table[tp]);

 if (table[tp] >= 0) {

162

 // table position is available (negative indicates not available)

 // keep count of various histories

 table[tp]++;

if (debug) {

 int po = table_position(len, (position ^ other_select));

 int pos = table_position(len, (position ^ 3));

 System.out.println(id + "tp = " + tp + " po = " + po + " pos = " + pos);

}

 // clear counts for opposite value from other

 table[table_position(len, (position ^ other_select))] = 0;

 // clear counts for opposite value from other (and opposite

 // value from self - note 3 = self_select + other_select)

 table[table_position(len, (position ^ 3))] = 0;

 }

 }

 // do occasional random next symbol

 if (random.nextFloat() < random_test) {

 int rv = (random.nextFloat() > 0.5f) ? one : zero;

if (debug) System.out.println(id + "random = " + rv);

 return rv;

 }

 // now compute next symbol

 // hist is history shifted one move back in time

 int hist = history << 2;

 int hist_length = history_length + 1;

 if (hist_length >= 16) hist_length--;

 int margin = 0;

 int choice = 0;

 max_len = Math.min(MAX_LENGTH, hist_length);

 // try longer histories first

 for (int len=max_len; len>=2; len--) {

 int position = hist & lookup_masks[len];

 int tp = table_position(len, position);

if (debug) System.out.println(id + "LOOKUP: len = " + len + " position = " +

 position + " table[" + tp + "] = " + table[tp]);

 if (table[tp] >= 0) {

 // table position is available (negative indicates not available)

 // zeros = count of histories in which other played 0 after

 // current history

 int zeros = table[tp] + table[tp + self_select];

 // ones = count of histories in which other played 1 after

 // current history

 int ones = table[tp + other_select] +

 table[tp + self_select + other_select];

if (debug) System.out.println(id + "zeros = " + table[tp] + " + " +

 table[tp + self_select] + " ones = " +

 table[tp + other_select] + " + " +

 table[tp + self_select + other_select] +

 " self_select = " + self_select +

 " other_select = " + other_select);

 if (zeros == 0 && ones == 0) continue; // no counts, try shorter

 // history

 if (zeros > 0 && ones > 0) {

 // cannot happen because of clearing counts for opposite value

163

 // from other

 System.out.println("IMPOSSIBLE");

 System.exit(0);

 }

 // pick next move based on comparing history counts

 if (zeros > ones) {

 // choice weight is count plus length

 int m = (zeros - ones) + len;

 if (m > margin) {

 margin = m;

 choice = zero;

if (debug) System.out.println(id + "margin = " + margin + " choice = " +

choice);

 }

 }

 else { // ones > zeros (cannot be == unless both 0)

 // choice weight is count plus length

 int m = (ones - zeros) + len;

 if (m > margin) {

 margin = m;

 choice = one;

if (debug) System.out.println(id + "margin = " + margin +

 " choice = " + choice);

 }

 }

 } // end if (table[tp] >= 0)

 } // end for (int len=max_len; len>=2; len--)

 if (margin > 0) return choice;

 // no result

if (debug) System.out.println(id + "no result: 0");

 // 'return 0' is a very slight advantage for the Predictor

 // 'return zero' would be a very slight advantage for the Evader

 return 0;

 // using a random return here enables loser to get back in the game

 // return (random.nextFloat() > 0.5f) ? one : zero;

 } // end next_2 method

 // remove n spaces (4*n ints) from table

 final void remove(int n) {

 if (n > table_size / 4) n = table_size / 4;

 int left = n;

 while (left > 0) {

 int l = size_to_length[table_size];

 int lo = length_to_size(l - 1) - 1;

 int hi = length_to_size(l) - 1;

 int len = (hi - lo) / 4;

 int used = (table_size - lo) / 4;

 int m = Math.min(used, left);

 int k = (int) (len * random.nextFloat());

 while (m > 0) {

 if (k >= len) k = k - len;

 int j = lo + 4 * k;

 if (table[j+1] >= 0) {

if (debug) System.out.println(id + "REMOVE: j = " + j + " table_size = " +

164

 table_size + " l = " + l + " lo = " + lo +

 " k = " + k);

 table[j+1] = -1;

 table[j+2] = -1;

 table[j+3] = -1;

 table[j+4] = -1;

 m--;

 left--;

 table_size = table_size - 4;

 }

 k++;

 } // end while ((m > 0)

 } // end while (left > 0)

 } // end remove method

 // add n spaces (4*n ints) to table

 final void add(int n) {

 if (n > (TABLE_SIZE - table_size) / 4)

 n = (TABLE_SIZE - table_size) / 4;

 int left = n;

 while (left > 0) {

 int l = size_to_length[table_size + 4];

 int lo = length_to_size(l - 1) - 1;

 int hi = length_to_size(l) - 1;

 int len = (hi - lo) / 4;

 int unused = (hi - table_size) / 4;

 int m = Math.min(unused, left);

 int k = (int) (len * random.nextFloat());

 while (m > 0) {

 if (k >= len) k = k - len;

 int j = lo + 4 * k;

 if (table[j+1] < 0) {

if (debug) System.out.println(id + "ADD: j = " + j + " table_size = " +

 table_size + " l = " + l + " lo = " + lo +

 " k = " + k);

 table[j+1] = 0;

 table[j+2] = 0;

 table[j+3] = 0;

 table[j+4] = 0;

 m--;

 left--;

 table_size = table_size + 4;

 }

 k++;

 } // end while ((m > 0)

 } // end while (left > 0)

 } // end add method

 } // end class PE

 public class Predictor extends PE {

 Predictor(int r) {

 id = "P ";

165

 remove(r);

 self_select = 2;

 other_select = 1;

 one = 1;

 zero = 0;

 }

 }

 public class Evader extends PE {

 Evader(int r) {

 id = "E ";

 remove(r);

 self_select = 1;

 other_select = 2;

 one = 0;

 zero = 1;

 }

 }

}

166

Index

2001

A Space Odyssey, 51

anthropomorphize, 57, 126

Armstrong, Stuart, iii, 76, 120, 143

Asimov, Isaac, 9, 10, 19, 117, 143

Association for the Advancement of

Artificial Intelligence, 141

Atari, 1, 20, 26, 28, 108, 113, 148

average utilitarianism, 87

Baum, Eric, 27, 28, 110, 143, 151

Bayesian, 32, 63, 145, 147

Boolean, 41, 42, 44, 46, 64, 65, 67, 68, 69,

71, 72

Bostrom, Nick, iii, 57, 83, 120, 139, 143,

144

bread and circuses, 129, 140

Brynjolfsson, Erik, 129, 144

Buffett, Warren, 128

Cartesian dualist, 58, 93, 95, 97

Chalmers, David, 120, 144

checkers, 53, 150

chess, 4, 5, 6, 16, 17, 52, 105, 145

Church-Turing thesis, 21

Clinton, Bill, 128

competition, 118, 128, 129, 133, 136

complete and transitive preferences, ii, 18,

20, 90

completeness, 14, 18, 19, 42

computational resources, iii, 33, 90, 93, 98,

99, 110, 117

conditional probability, 13, 16, 24, 26, 79,

97, 99, 109

consistency, 42, 43, 49, 82, 93

continuity, 14, 15, 18

corrupting the reward generator, iii, 83, 92,

119

death, 88, 89, 138, 140

decidable, 42, 44, 45, 46, 115

DeepMind, 1, 2, 20, 26, 28, 108, 113

delusion box, 60, 61, 62, 65, 67, 71, 76

democracy, 86, 91, 92

deterministic, 23, 24, 33, 67, 69, 72, 93, 98,

106, 153, 157

Dewey, Daniel, 83, 97, 144

Dickens, Charles, 116

dynamic Bayesian network (DBN), 31, 65,

67, 72

electronic companion, 4, 131

embedded, iii, 47, 49, 93, 94, 95, 97, 99,

100, 101, 113, 114, 117, 123, 149

entropy, 52, 53, 61, 152

environment model, ii, 2, 3, 4, 7, 12, 13, 14,

18, 21, 22, 23, 24, 26, 28, 31, 32, 33, 55,

60, 61, 63, 64, 65, 67, 70, 71, 74, 75, 76,

79, 80, 81, 90, 91, 92, 97, 103, 105, 110,

111, 115, 117, 118, 121, 124, 125, 133,

134

167

Epicurus, 21, 34

evolutionary programming, 27

evolve, 2, 8, 28, 46, 47, 52, 65, 67, 73, 88,

93, 94, 95, 97, 99, 100, 103, 104, 105,

111, 114, 116, 117, 122, 128, 146, 147

existentialism, 138

expected value, 11, 15, 16, 24, 25, 34, 35,

46, 61, 78, 105, 113, 114, 115, 117

Facebook, 2, 145

finite history, 13, 33, 36, 81, 122

finite model, 45, 46, 50

finite set, ii, 12, 21, 29, 30, 36, 38, 41, 48,

49, 50, 70, 102

finite stochastic loop program, 30, 31, 32,

34, 35, 36, 38, 48, 63, 110, 114, 115, 121

finite stochastic model, 31, 34, 40

finite universe, 7, 29, 33, 114, 147

Fox, Joshua, iv, 117, 152

Future of Life Institute, 142, 145

game theory, 56, 93, 98, 149

Gates, Bill, 128

Gedicks, Al, 134, 145

goal-seeking agent, 61, 72

Gödel machine, 46, 93

Gödel number, 49

Gödel, Kurt, 43

Gödel's incompleteness theorems, 43, 47,

48, 49, 50

Goertzel, Ben, 78, 146, 147, 149, 151, 152

Google, 1, 2, 3, 4, 20, 21, 23, 27, 28, 60,

136, 141, 144

Google Earth, 123

Haldane, J. B. S., 140, 146

halting problem, 23, 24, 29

Hayek, 27, 28

Helm, Louie, 78, 149

Hernández-Orallo, Jose, iv, 24, 146

Horvitz, Eric, 141, 147

human dignity, 140

human society, 4, 28, 80, 90, 136

human values, iii, 7, 57, 78, 81, 82, 86, 88,

89, 90, 92, 103, 104, 111, 116, 119, 130,

131

Hutter, Marcus, 21, 22, 23, 24, 25, 31, 47,

83, 106, 147, 148, 151

IBM, 1, 2, 150

inconsistency between the agent's utility

function and its definition, iii, 77, 81, 103,

105, 119

independence, 14, 15, 18

inductive biases, 110

infinite set, ii, 7, 23, 29, 30, 38, 42, 44, 48,

50

instrumental, 51, 52, 54, 55, 56, 57, 98, 131,

144

intention, iii, 7, 19, 60, 76, 77, 81, 83, 92,

94, 103, 105, 111, 112, 113, 114, 116,

117, 118, 136, 139

interaction history, 12, 16, 18, 23, 27, 32,

48, 60, 63, 72, 76, 79, 80, 88, 95, 97, 99,

100, 102, 103, 113, 121

168

internal state history, 63, 84, 86, 89, 106,

107, 108

intrusion, iii, 92, 130, 131, 133

invariance, iii, 94, 111, 113, 114, 115, 116,

117, 118

Joy, Bill, 131, 147

knowledge-seeking agent, 61, 62, 65

Kolmogorov complexity, 24, 25, 148

Kraft's Inequality, 24

Kurzweil, Ray, 2, 56, 128, 148

language translation, 78, 79, 90, 91

Legg, Shane, 24, 25, 98, 148

libertarian, iii, 133

Löb's theorem, 44, 47

Lord Acton, 134

lottery, 14, 15, 18, 19, 78

Machine Intelligence Research Institute, 141

manipulation, ii, 55, 93, 130, 131, 133, 136

Markov chain, 38, 39, 40

Markov decision process (MDP), 30, 31, 32,

34, 38, 48, 106, 147

matching pennies, 98, 99

McAfee, Andrew, 129, 144

McKibben, Bill, 131, 148

Microsoft, 1, 2

military, 128, 129, 130, 136, 141

mirror neuron, 1, 134

Morgenstern, Oskar, 14, 15, 18, 151

motivated value selection, iii, 76

Muehlhauser, Luke, iv, 47, 78, 117, 142,

149

Neumann, Peter, 142, 149

neuroscience, 1, 89, 134, 142, 144, 150

Norvig, Peter, 12, 30, 38, 65, 79, 98, 150

Obama, Barack, 128

Occam's razor, 21, 22, 31, 34, 138, 151

Omniscience, 4, 5, 6, 7, 10, 12, 15, 16, 53,

55, 60, 80, 86, 131, 134

Omohundro, Stephen, 51, 57, 149

Orseau, Laurent, iv, 47, 60, 61, 65, 72, 76,

93, 94, 95, 97, 98, 100, 147, 149, 150,

151, 152

Othello, 53

Pandora, 54, 57

Pareto optimal, 23

partially observable Markov decision

process (POMDP), 31

Peano arithmetic (PA), 43, 44, 45, 47, 48,

49, 50

perverse instantiation, iii, 83

Planck time, 48, 97, 114

policy, 18, 26, 27, 46, 48, 60, 79, 89, 93, 95,

96, 100, 105, 111, 113, 121, 127, 141

policy iteration, 27

predicate calculus, 42, 43, 47

prediction-seeking agent, 61

prefix-free, 22, 23, 25, 32, 36

Presburger arithmetic, 44

prior probability, 23, 32, 33, 47, 117

169

propositional calculus, 41, 42

quantifier elimination, 44, 46, 49

quantum mechanics, 12, 29, 48, 89

rational agent, 17, 18, 55

Rawls, John, iii, 87, 119, 129, 132, 150

reinforcement learning (RL), 20, 23, 26, 27,

61, 72, 76, 93, 98, 148, 151

religion, 130, 135, 138, 140

Ring, Mark, 47, 60, 61, 65, 72, 76, 93, 94,

95, 97, 98, 100, 149, 150

rule-based ethics, ii, 19

Russell, Stuart, 12, 30, 38, 65, 79, 98, 150

Samuel, Arthur, 53, 150

Sandberg, Anders, 120, 143

Schmidhuber, Jürgen, 46, 93, 95, 144, 149,

150, 152

self-delusion, iii, 59, 60, 71, 72, 74, 75, 118

self-driving car, 1, 2, 3, 4, 13, 21, 23, 27, 28,

60, 130

self-modeling, iii, 94, 101, 105, 108, 110,

111, 112, 113, 114, 117, 119, 147

self-modifying, 95, 111, 112, 113, 152

Selman, Bart, 141, 147

social norms, 5, 6, 28

Solomonoff, Ray, 21, 151

stochastic, 12, 24, 25, 30, 34, 61, 63, 64, 65,

67, 69, 70, 72, 81, 84, 93, 94, 98, 102,

103, 104, 105, 106, 107, 108, 109, 110,

111, 112, 114, 118, 119, 121, 123, 144,

150

Sutton, Richard, iv, 12, 20, 30, 151

technological singularity, 56, 129, 141, 151

Tegmark, Max, 29, 139, 140, 151

temporal discount, 18, 60, 61, 62, 79, 87, 96,

100

temptation, 125, 134, 135, 136, 137

testing AI, iii, 120, 127

transitivity, 14, 15, 18, 19

transparency, 8, 92, 127, 136, 137

Turing machine (TM), 21, 22, 23, 24, 29, 30

Turing, Alan, 21, 22, 23, 146, 151

Tyler, Tim, iv, 98, 151

undecidable, 23, 24, 29

unintended, ii, 6, 7, 10, 20, 147

unintended instrumental actions, ii, iii, 51,

57, 62, 78, 80, 90, 93, 116, 119, 120, 121

universal AI, 21, 22, 23, 24, 26, 29, 31

universal Turing machine (UTM), 22, 23,

24, 25, 31, 42, 43, 45

utilitarian, ii, 19, 20, 119, 132

utility function, ii, 14, 15, 18, 19, 20, 23, 24,

28, 46, 48, 51, 53, 55, 57, 58, 59, 60, 62,

63, 64, 65, 67, 70, 71, 72, 74, 75, 76, 78,

79, 80, 81, 82, 85, 86, 88, 89, 90, 93, 95,

96, 97, 100, 101, 103, 104, 106, 108, 112,

116, 118, 119, 120, 121, 124, 125, 126,

131, 134

model-based, iii, 60, 62, 64, 72, 75, 76, 79,

81, 82, 86, 88, 90, 97, 102, 111, 118,

146

utility-maximizing, 14, 19, 46, 51, 53, 57,

89, 94, 118, 121

value function, 17, 26, 95, 111

170

Vicarious, 1

Vinge, Vernor, 129, 151

Vis5D, 123, 146

Voltaire, 129

von Neumann, John, 14, 15, 18, 151

Wang, Pei, 93, 146, 149, 151

Waser, Mark, 78, 151, 152

Watson, 1, 2

wireheading, 59, 76, 83

Yampolskiy, Roman, 117, 152

Yudkowsky, Eliezer, 5, 47, 78, 93, 94, 152

